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Abstract

We analyze the convergence of the sequential quadratic programming (SQP)
method for nonlinear programming for the case in which the Jacobian of the
active constraints is rank deficient at the solution and/or strict complementarity
does not hold for some or any feasible Lagrange multipliers. We use a nondifferen-
tiable exact penalty function, and we prove that the sequence generated by the
SQP is locally R-linearly convergent if the matrices of the quadratic program
are uniformly positive definite and bounded, provided that the Mangasarian-
Fromowitz constraint qualification and some second-order sufficiency conditions

hold.
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1 Introduction

Recently, there has been renewed interest in analyzing and modifying sequential
quadratic programming (SQP) algorithms for constrained nonlinear optimization for
cases where the traditional regularity conditions do not hold [7, 11, 13]. This research
has been motivated by the fact that large-scale nonlinear programming problems tend
to be almost degenerate (large condition numbers for the Jacobian of the active con-
straints). It is therefore important to establish to what extent the convergence prop-
erties of the SQP methods are dependent on the ill-conditioning of the constraints.
To this end in this paper we relax both traditional regularity assumptions [5]: that
the gradients of the active constraints are linearly independent and that there exists
a choice of Lagrange multipliers that satisfies strict complementarity. To ensure good
global convergence properties, we use a nondifferentiable exact penalty function as a
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measure of the progress of the SQP algorithm [2]. Previous work has shown that,
if certain sufficient conditions are satisfied for one feasible choice of the Lagrange
multipliers, an exact penalty function can be defined that has an unconstrained local
minimum at a solution #* of the nonlinear program [8]. However, in order to obtain
good convergence properties, it is desirable to ensure that z* is an isolated stationary
point of the penalty function. Otherwise, the SQP could stop at a stationary point
different from «*, no matter how close to @* it was initialized. In [4] it is proven
that if, among other conditions, z* is a solution and an isolated local minimum of
the nonlinear program, it is an isolated local minimum of the penalty function. In
[12] it is shown that, if the conditions from [8] hold at xz* for any feasible choice of
Lagrange multipliers, * is an isolated local minimum of the nonlinear program under
consideration. As a consequence of [4], #* is an isolated local minimum of the penalty
function, for some choice of the penalty parameter.

In this paper we provide an alternative proof of the fact that the second-order suf-
ficient conditions from [12] result in the existence of an L® penalty function for which
z* 1s a strict local minimum and an isolated stationary point. The advantage of our
proof is that we can estimate the decrease of the penalty function at each step of the
algorithm as a function of the distance to #*. This guarantees that nondifferentiable
exact penalty SQP algorithms with uniformly positive definite and bounded matrices
of the quadratic programs achieve at least linear convergence even in the presence of
degeneracy, provided that the weaker conditions from [12] hold. The result proven
here is equivalent to the linear convergence of descent methods of unconstrained op-
timization that use directions making acute (bounded away from 90 degrees) angles
with the gradient [9].

In our developments, an important part is played by a function that is an extension
of the usual augmented Lagrangian (Theorem 2.1). The novelty of our approach
consists in the fact that the augmentation is different for zero and nonzero multipliers.
This new object is just once continuously differentiable and has, because of the second-
order sufficient conditions from [12] being satisfied at 2™, a strictly monotone gradient
near z* for all feasible Lagrange multipliers.

1.1 Background and Assumptions

For details on the results of this section, see [1, 2, 12]. The nonlinear program (NLP)
to be solved is

(1)
subject to h(z) =0, g(x) <0, (2)

5]
~—

minimize f(

where h(z) = (h1(%), ..., hm(x)) and g(x) = (g1(2), ..., gr(x)). In this paper, we assume
that f, ¢;, and h; are twice continuously differentiable functions from R” to K. We
denote by #* a solution of the nonlinear program (1-2).

The Lagrangian function of (1-2) is

Lz, A p) = [f(z)+ Z Aihi(e) + Zﬂjgy’(l‘) = f(x) + ATh(z) + pTg(z),  (3)

where A € R™ and p € R™ are the Lagrange multipliers.
When a constraint qualification condition holds (see discussion below), there exist
A*, w* > 0 at «* such that the first-order conditions

Vo L(z® N p*) =0, h(z") =0, g(z") <0, ()79(z") =0 (4)



are satisfied. A point « satisfying (4) is called a stationary point of the NLP. These
are the well-known Karush-Kuhn-Tucker (KKT) conditions. The active set at z* is
defined by

B={i=1,... r|lgi(x") = 0}. (5)

We assume that the Mangasarian-Fromowitz constraint qualification (MFCQ) holds

at the local minimum#* of (1-2): The gradients of the equality constraints, V,h;(z*), j

1...,m, are linearly independent and
3d € R™ such that Vyh;(z*)'d=0,j=1,...m Veg(z*)'d<0,icB. (6)

This ensures that the set of multipliers A*, y* > 0, for which (4) is satisfied is
nonempty and bounded [6]. We denote this set by M (x*).

In this paper we assume the following second-order sufficient condition: There
exists a o > 0 such that for all (A\*, u*) € M(2*)

W e (e N, Y0 > o 7)

Yw such that Vi hi(z*")Tw=0, i=1,....m (8)
Vegi(#*)Tw=0, i€Bu>0 (9)

Vegi(e*)Tw <0, i€ Byl =0. (10)

We denote the set of w’s satisfying (8-10) as F(a*, A*, p*). This ensures that z*
is a strict local minimum and an isolated stationary point of (1-2) [5, 12]. The tra-
ditional second-order sufficiency condition assumes that the gradients of the equality
constraints and active inequality constraints ( ¢ € B) are linearly independent and
that at least one of the p*’s has positive u}, i € B (strict complementarity) [5]. In this
paper these conditions are replaced by the more general MFCQ (6) and (7-10).

The nondifferentiable penalty function considered here 1s

P(r) = max{0, |hi (@), ..., |hm(2)], 91(2), ..., gr(2)}. (11)
We are looking for unconstrained minima of the function
é(x) = f(x) + cP(x),

where ¢ is a sufficiently large constant. Descent directions d of ¢(z) at the point »
can be obtained by solving the following quadratic program [2]:

minimize  Vf(z)Td+ %dTHd + ¢ (12)
subject to  —( < h;(z) + Vhi(z)Td < ¢ i=1,...,m (13)
g;(z) + Vg (x)Td <¢ j=01,...r (14)

where H is some positive definite matrix and go(z) = 0. The matrices H considered
here satisfy
sollall’ < o Ho < Tollo?, Vo € R (15)

We define # to be the set of matrices satisfying (15).

At the current point z* of an iterative procedure that attempts to determine z*,
(12-14) generate the descent direction d*. H can change over the iterations; its current
value is denoted by H* at each iteration. The next iterate is #(¥+t1) = 2k 4 o*d*  where
o is obtained by a line search procedure. Usual stepsize rules are the minimization

rule, the limited minimization rule and the Armijo rule [2]. For these rules; any limit



point of {z"} is a stationary point of ¢(z), and the descent procedure is therefore
globally convergent in this sense [2].

If, in addition,
> NI+ i (16)
i=1 j=1

for some (A*, p*) € M(2*), then z* is a critical point of ¢(z) [1].
A suitable value for ¢ is not available in the early stages of the algorithm. Hence,
it is common to choose [1]

Ck+1 :max{ck,fy—|—2|/\f1 _/\52|+Z/'L‘I;}a (17)
i=1 Jj=1

where A;; and A;2 correspond, respectively, to the left and right inequality constraints
in (13). v is a prescribed safety factor.
Consider the quadratic program

minimize Vi) rd+ %dTHd (18)
subject to hi(z) + Vhi(z)Td =0 i=1,...,m (19)
gi(z) + Vg (z)Td <0 j=0,1,...7. (20)

We denote the solution d of this program by d(H,x) and the set of its multipliers
by M(H,x). With these notations, d(H,z*) = 0 and M(H,z*) = M(x*), for any
H satisfying (15). At = = 2* and H = H* we denote the solution of (18-19) by
dtR TRtk If

S SIS @
i=1 =1

(for at least one set of multipliers (AT%, u™%)), then (d1* ¢* = 0) is a solution of (12-14),
if H = H* [1, p. 195]. We therefore concentrate on the quadratic program (18-20),
since, if ¢* is large enough and we are sufficiently close to z*, it generates the same
descent direction as (12-14), thus sharing its global convergence property.

2 Properties of the Nondifferentiable Exact Penalty
Function for the Degenerate Case

Theorem 2.1 constructs an object that is similar to the augmented Lagrangian. The
augmentation is, however, different for the zero and nonzero multipliers correspond-
ing to the active inequalities. This new function has one but not two continuous
derivatives, and the Hessian is not defined. However, we prove that its gradient is
a monotone mapping, and this suffices to ensure the right descent properties of the
penalty function ¢(z).

Theorem 2.1 There exists a neighborhood V(x*) and v >0, 8 >0, w > 0, such that
YO, 7)€ M(a®) and & € V(a")

a) [,w(l‘,/\*,/,t*) - Ew($*aA*aﬂ*) Z ﬁ”l‘ - x*HZ?

b) (v — «) Vo Ly (2, X, 1) > Bllz — 2|,

where
Lo(x, X p) = fl@)+ W) hx)+ (1) g(x)
+ W(||h(l‘)||2+' > Igf(x)lerZIgf’(l‘)lz) (22)



and g (z) = max{0,g;()}, g7 (x) = max{0, —g;(x)} are the nonnegative and non-
positive part of the constraint g;(x), respectively.

Lemma 2.2 We have that
Lz, &) — L(xz*, &%) — %(x — ")V L(2™,67) (2 — 27)

T =0 23
Vo o =T )
N * oexy 1 *\T _ p*
by i S ZLENE) D VL ) e e (24)
o e =7l

uniformly as & = (A*, u*) € M(x*). Here L(x,&*) = L(x, \*, u*) is the Lagrangian
funetion defined in (3).

Proof As aconsequence of the fact that (6) is satisfied, M (2*), the set of the optimal
multipliers, is bounded, convex, closed, and polygonal. TLet &% = (A* p*) j =
1,...,p be the set of its vertices. For each £ = (A*, u*), there exists a set of numbers
0 <wu; <17 =1,...,p, such that Z§:1 uj = 1 and £ = Z§:1 u;j€™. Since

f(x),g(x), h(x) are twice continuously differentiable, so is £(#,£*). By the definition
of differentiability, we have that, for all £* € M(z*),

f L6 = L6 €) = ba = 2)Von £ €) (@ = 27)

o o =P

=0 (25)

because V,L(x*, %) = 0,VE* € M(z*), by the KKT conditions (4). Since L(z,£*) is

an affine mapping with respect to the variable £*, we have that

L(x,7) = L(2",6") — 5(x — ") Var L (2™, &) (x — 27)

= (26)

le — 2*|*
ZP: g*] (l‘*,f*j) _ %(l‘—l‘;‘)vxx[,(l‘*,f*])(l‘—l‘*) (27)

= |z — 2]
for some u; > 0,7 =1,...,p, where Z§:1 u; = 1. Thus

|£(x,6%) = L(z*,67) — 5(x — &™) Voo Lz, &) (x — 27 < (28)

le — "
i 2, €)= L(a",€9) - || e = NVl €)= )| o)

— r—z

Since the right-hand side is independent of £* and its limit is zero as ¢ — %, the
conclusion of part a follows. Part b is proved in an identical manner, after we note

that
L, &) — L(x*,6%) = 5V L(2, )T (v — 27)

lim_ — =0
T |z — 2]
for all £&* € M(2™), by part a and since
[VaL(x,€7) = Vao £(2, E)(x = 2T)|| _
szt |z — 2]
by definition of differentiability. a



As a result of Lemma 2.2, we can write
* * ok 1 * * ok * *
L(z,67) = L(27,87) = Sz = 2") Ve £(27, &) (& — 27) = o[l — @ 1),

where o||z — J:*||2) denotes a quantity whose ratio to ||z — ar:*||2 tends to zero as
z — z*, uniformly for all £* € M(x*).

Lemma 2.3 There erxists a neighborhood Va(2*) and w > 0 such that Yo € Va(z™)
and (X*, p1*) € M(2*)

Lo(e X p7) = L3(" A ) > Tl — 27,
where o is the constant appearing in (7) and

L3 (e, X i) = flz) + (W) h(e) + (1) g(2)
+o(R@IP+ Y0 (0 @)+ D (e (2)). (30)

i€B, ut>0 ieB

Note The difference between the definitions (30) and (22) resides in the terms
(g7 (#)) that are considered for summation. Only terms corresponding to p¥ > v are
summed in (22).

Proof  We have, by (7-10), that
WV o £(2%, X, 1w > o |w]|”

whenever w € F(x*, A*, pu*). Tt follows that there exists 3; > 0 such that, for all
(A", ™) € M(27),

()" Ve L™, A, p) (w) > [w]|”
Yw such that —pi||w|| < Vehi(29)Tw < Bi||lw|l, i=1,...,m
—Bullwll < Vegi(e™)Tw < Bilwl| i€ B, pu; >0
Vogi (&) w < Brllw] i€ B,uf =0,

We denote the set of w’s satisfying (32-34) as Fg, (2*, A*, p*). This can be proved
by a continuity and compactness argument, using the fact that the set of Lagrange

multipliers is bounded. Note that the bound in (7) is independent of the particular
multiplier (A*, u*) € M(2*). Let

Br = _ max. {[[Vechi(@)||, [[Veeg; (&)}
i=1,...m jEB

Let V1(2*) be a neighborhood of # such that

20> > max. A Vaohi(@)[],[[Verg; ()]}
i=1,...m jEB
Also, let Vo(2*) be the intersection between Vi(x*) and the ball centered at z* of
radius 4%2. Now x € Vo(x*) such that = — &* ¢ Fp, (¢, A*, u*). Then at least one of
the constraints from (32-34) is violated, say, Vg;(z*)¥ (z — 2*) > Bi||z — *||, where
t € B and pf = 0. Then, by Taylor’s remainder theorem,

gie) = gi (&™) + Vgi(a™)T (& — ") + Bl (x — )],



where |f3] < 282. Therefore

0i(2) = Vo (&) (e — a*) + fslle — "] > 2

5 lle = all,

since Fsl|le — «*|| < 28a|jx — 2*|| < < & and thus g () = gi(z) > %Hx — *||. Hence,

(%)lex—x*llzﬁllh(ﬂﬁ)ller Yo la@P+ Yo et @) (35)

i€B, ur>0 i€B, =0

With the same argument if another constraint from (32-34) is violated, it follows that

(35) holds whenever & € Va(2*) and z — «* ¢ Fga, (x*, A*, ). Now

= max
P = e e

[V £(2", A", 17| (36)

is finite because M (z*) is bounded. Choose

Tt0s
37

+

W1 =

(37)

It follows that, if € Va(2*) and (A, u*) € M(a*), we have that either # — z* €
Fp, (¥, A%, *) and then by (31-34) it follovvs that

e — I < 5o — &) Vaaolar™, X ) i = 27), (38)

N | —

or  —a* ¢ Fg, (z*, X", 1*) and then by (36) and (35)

w1 ([A@)° + Cien, o 9@ + Xics uemo lof (@)]7) >
1 *|(2 c
wi(F) e — 2 |1* > §llw — 2" )" + Balle — 27" >
o %112 * *
2w — a||” — £ (z — 2*) T Voo £(2*, X%, p*) (z — 7). (39)

As a result of (38) and (39), we have that for all (A*, u*) € M(z*) and = € Va(z*)
1
Tlle—a*lF < Sle =2 VarL(a®, X p) (& = 2)
+or(lh@IF+ Y la@ P+ > lef @) (40)

i€B, 1 >0 i€B, u*=0
By Lemma 2.2, part a, and (40) we have that
L, (e, N ) = L3, (0 N p7) = (0 = 27) T Voo L (2%, A, ) (o — %) (41)
to(lle = 2*II") + w1 (A + Tien, oo 190 + Cies uezo loF (0)I*) - (42)
> e — 27| + o(||lz — 2*|I"), (43)
where o(||z — J:*||2) denotes a quantity whose ratio to ||z — ar:*||2 tends to zero uni-
formly for all (A*, pu*) € M(2*). We can therefore choose a neighborhood Vs(2*) of «*

in which the quantity in (43) is bounded below by g|[z — x*||2, for all A*, p* € M(z*).
For all z € V5(2*) we have

* * * * * * * g *
£w1($’A’ﬂ)_£w1(x ,/\,ﬂ)Zng‘—l‘ ||2’ (44)



for all (A", ") € M(z*). This completes the proof of the lemma. a

Proof of Theorem 2.1 As a consequence of the fact that (6) is satisfied,
M{(z*), the set of the optimal multipliers, is bounded, convex, closed, and polygonal.
Let €9 = (A%, p*),j = 1,...,p be the set of its vertices. For each £* = (\*, u*),
there exists a set of numbers 0 < u; < 1,7 = 1,...,p, such that Z§:1 u; = 1 and
&= Z§:1 u;€*. With this representation of M(z*), u; = 0 whenever uf = 0 and
/J:J > 0. For each &*, we choose u(&*) to be the unique solution of the following
quadratic programming problem.

min ||u]|” (45)
such that &* =0 _ ;% (46)
P u=1 u; > 0,1<¢<p. (47)

Since quadratic programs can be recast as linear complementarity problems [3],
they share sensitivity properties, in particular that the solution set satisfies the upper
Lipschitz property, with £* regarded as the parameter. Since u(£*) is uniquely defined,
that upper Lipschitz property reduces to the usual Lipschitz property, which implies
that «(£*) is a continous function.

Therefore, from Lemma 2.3 applied to each vertex £€*/, and since the Lagrangians
are linear with respect to the multipliers, we have that Y& € Vs(z*),

p p
* *7 * *z * 2 4 *12
S (€ (£, (0, €)= £3,(7,€) 2 D uil€) Slle — o7 = Sl — 7% (48)
i=1 i=1

Since L7 (x*,&%) = f(z*), V&* € M(x), and Z§:1 u;(&*) = 1, we have that the

last inequality can be rewritten as

%II%‘—%‘*II2 < fl@) = FT) + () h(x) + (17) () (49)
+ wi(llhz |I+Zlgz |2+Z1/)Z gi (2)1),  (50)

where

wlE) = Y wlE). (51)

J=1,00p, u¥>0
Since u;(£*) are continuous functions, so is ¢;(£*). From (46) it follows that, if yf = 0,
then u;(£*) = 0, whenever u;? > 0. Therefore, if uf = 0, then ;(£*) = 0. Also, from
(A7), (&%) < 1,¥€* € M(2*) and 7 € B. Now
e) = max (%), 1€B.
1/) ( ) uf<e,§*€/\/l(x*)1/) (€ )

Since M(z*) is a compact set, it follows that ¢} (¢) is a continuous function and

¥ (0) = 0. Let C be such that |gi(2)]|2 < C||z — 2*||*,Vz € Vs(z*), i € B and € > 0

the largest one for which
o

¥ <
rine%x{d)l ()} < 16Crw,’

where r is the total number of inequalities in (1-2). With this choice of € it follows

from ¢(£*) <1 that
Pien Vil€)Ngr (@) = e, e Vil€)Ngr (27) (52)




+ZieB,uj<g1/%(5*”92'_(95*”2 < ZieB,u:‘ZE g7 ()7
+ZieB,u:‘<e LEOg; (z)]” < ZieB,u:‘ZE lg;7 (=)
*(2 * — % o %112
+r0lle — o*||" maxies ¥ (€) < Ve urse lor (27) P + & lle — 27| (55)

—_~ o~
[
s
=z =

If we majorize with this inequality in (50), taking ||z — ar:*||2 to the right-hand side
and use the definition (22), the claim of part a follows by taking § = &, V(¢*) =
Va(x*), v = ¢, and w = wy.

b) Let

L@ A1) = fl@) + (W) h(z) + (1) g(2) + w(|h(e)]]”
+ > gi(@)P+ Y lm@)). (56)

i€B, ut>v,gi(at)<0 i€B,g:(«1)>0

Then both L+, (2, A", u*) and its gradient coincide with L, (z, A", ¢*) and its gra-
dient, respectively, at ' and z. Also, Lot (2", A%, p*) = L(2*, A", p*) = f(z”) and
Lot has at least two continous derivatives. We then have, by an argument similar
to part b of Lemma 2.2,

* * * * * 1 * * * *
|‘CxT,w(xa/\ M )_[’xT,w(x ’/\ » 1 )_ §vxﬁxtyw(l‘,/\ » H )T($_x )| :O(Hl‘—l‘ ||2)

for all (A\*, u*) € M(z*). Therefore, by taking the previous relation at = z! and
replacing ! with z and Lyt with L, we get

E * )% * 1 E * *
Lo, X% 1) = Lo X% %) = SV LG (2,27, 07) (2 = 2%)| = o(||le — = 1),

where o(||z — J:*||2) again denotes a quantity that converges to zero as * — z* uni-
formly with respect to (A*, u*) € M(z*). From the last relation and part a of the
theorem, there exists a neighborhood V,(#*) on which the b of the theorem holds,
after eventually replacing 3 with % a

The techniques from [2] can be used to ensure that if ¢ is large enough, 2* is a
stationary point of ¢(z). However, to secure local convergence of the SQP to «*, one
would need to guarantee that z* is a local minimum of the penalty function.

The following theorem gives an alternative proof of this fact for the degenerate case
considered in this paper, provided that the constraint qualification and second-order
sufficiency condition hold as specified in Section 1.1. Note, however, that the theorem
does not claim that z* is an isolated stationary point, which is established later.

Corollary 2.4 Let ¢ be such that
B
i=1 JjEB
for some (A*, u*) € M(x*). Then there exists a neighborhood W(x*) of x* such that
¢(x) = ¢(%) = f(z) + cP(z) = f*) > Bl — 2°|I%,

where 3 is the constant from Theorem 2.1.



Proof By Theorem 2.1, there exists a neighborhood V(z*) and w > 0 such that
for all # € V(z*) we have

Blle = 2*|1” < fla) = F(&") + ) h(z) + (1) g(2) (57)
+w(llh(@)]” + ' Y. o @P+ Z 97" (&)%) (58)

By continuity, there exists a neighborhood W(x*) such that for all z € W(z*) and
i € B we have v > w|g;(x)] > 0 and

m

> Y (N1 Hwlhi(@)]) + Y (15 +wgf (2)).

i=1 JjEB

With this choice of W(2*) it follows that, for all # € W(z*), (1 —wg; (z)) > 0,
whenever i} > v and, since g;(z) = g7 (z) — g7 (2),

cPlx) > Z(|/\*| + wlhi(z)[)|hi(z)] +Z(ﬂ? +wgi (x))gi (=)
> Z(|/\*|+w|h( )|)|hz’(l‘)|+' ST (—uf +wgr (2)g (x) (59)
+ > —u?gf(l‘)+Z(u?+wgf’(l‘))g;’(l‘)~

The conclusion follows by using inequality (59) in (58), since ufg(x) = uf (g% (z) —
97 (x)). O

Note Using the same line of proof, we can prove Corollary 2.4 even when the
second-order sufficient conditions (7-10) hold for just one Lagrange multiplier. In
that case, Lemma 2.3, can be used instead of Theorem 2.1, because its proof does not
rely on satisfying the second-order sufficient conditions for all Lagrange multipliers.
Therefore, Corollary 2.4 could constitute an alternative proof of the fact that, if (6)
and (7-10) are satisfied for one Lagrange multiplier, #* is a local minimum for the
original problem [5] and that a penalty function can be defined that has z* as an
unconstrained strict local minimizer [8].

An important consequence of the Mangasarian-Fromowitz constraint qualification
(6) is that the solution of (18-20) is continuous with respect to # and H.

Lemma 2.5 For any € > 0 there exists a neighborhood Ve(x*) of * such that V& €
Ve(x*), H satisfying (15), we have ||d(H,x)|| < e. In addition, there exists ey such
that, Yo € Ve, (2*) and v € M(H, ),

min

d —
L hin (Il + ]z = 2=[]).

Proof Since Condition (6) holds at #* for (1-2), it also holds in a neighborhood
V(x*) for all quadratic programs (18-20). Therefore, d(H, z) is a continuous function
on V(z*) x H, from [12, Corollary 4.3], since the second-order sufficient conditions
(7-10) are satisfied at all points (the matrix H is positive definite).

Thus, the function

5) = max ||d(H, )| (60)
Hen||lx — x*||<s

10



is a continuous function on some interval [0, A], A > 0. ¢(0) = 0, since d(H,z*) =
0,VH € H. By the continuity of ¢, it follows that, Ve;, there exists d; such that

VH € H Ve, such that|le — z*|| < d = d(H, z) <e. (61)
We now define the following perturbed quadratic program:

minimize (Vf(z)+ f5)Tw+ %wTw (62)
subject to  hi(z) + Vhi(z)Tw =0 i=1,...,m (63)
g;(z) + Vg (z)Tw <0 j=0,1,...r (64)

At z* and for fs = 0, (62-64) satisfies the Mangasarian-Fromowitz constraint
qualifications and the second-order sufficiency conditions. We regard fs and z — z*
as perturbations. The sensitivity results from [12] therefore apply to this case: There
exist €g, €3 such that whenever ||f5]| < e, ||t — 2*|| < €2, we have

min u—ut|| <e + ||z — ¥
u*eM(mll Il < es(llfsll +1] 1)
for any u a Lagrange multiplier of (62-64). By inspection it follows that, if f5 =
(H — I)d(H,z), then d(H,z) and M(H, ) are the solution andthe set of Lagrange

multipliers of (62-64), respectively. If we choose §; and € in (61) such that (2T +
1)er < €9, it follows that, for all z such that || — #*|| < 1 and u € M(H, z) we have

1 —u¥|| < H—-DNd(H —z*||).
e in u—w”|| < es(]|( Jd(H, z)|| + |l — ™))
The conclusion now follows by taking ¢, = (I'o 4+ 1)ez and € = €3. m|

A stronger version of this result is proved in [12] where the right hand side in the
conclusion of Lemma 2.5 does not contain a term involving ||d|[, for a given QP matrix
H. The difference, however, is that the above bound is independent of H €H .

The following theorem is the main result of this section. It establishes a connection
between the size of the direction generated by (18-20) and the distance from the
current point x*.

Theorem 2.6 There exist a neighborhood W(x*) and a constant oy such that, Ya €
W(x*),

ld(H, )|[* + P(2) + n" g™ (2) > o1||lz — =],
Y such that (A p) € M(H,d) for some A.

Proof Let (A p) € M(H,x),and let (X", p*) € M(x*) such that ||(A, p) — (A, p*)|| <
eu(|lz — x*|| + ||d|]). By part b of Theorem 2.1 we have, for all # in a neighborhood
V(z*),

(x = &) (Vf(z) + (\)Vh(x) + (1) g(x) + 20V (h(2)) " h(2) (65)
+2w ZieB,u,>y 9; (2)Vygi(z) + 2w ZieB g;l—(l’)ng(l’)) > fBlle — QE*HZ

Since d(H, z) is a solution of (18-20) it follows, by the first-order necessary condi-
tions, that
Vix)=—-Hd- Vh(x)T/\ — Vg(a:)Tu.

Replacing this relation in (65), we get
(v — )T (CHd + Th(a)T (V — N) + V() (1 — ) + 209 (h(x) () (66)
+2w ZiEB,u,>V 9; (z)Vygi(x) + 2w ZiEB g;l—(l‘)Vgl(l‘)) > 0|z — $*||2 (67)
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Since [|(A, 1) — (A%, 19)|| < eu(]|z — =*||+]||d]]), by Lemma 2.5, and h(zx) = Vh(z)T (z—
)+ O(||lx — J:*||2) as well as g;(z) = Vg;(z)T (x — 2*) + O(J|x — x*||2), Vj € B, we
have that
(15— 15)Vg5(x)" (x = 2") = (5 — 15)g; + O(|d[[]x — 2*||"), Vj B
(A= N)'Vh(@)" (x - 27) = (A = X)h(2) + O(llz — 2" |I>) + O(|ld|[[|+ — =*||*).
Also, since |g;(z)| < C||z — z*||,¥j € B, we have that

g (@) Vgi(e)" (@ —27) = (g (2))* + O(lle — | "),
g7 (#)Vgi(@)" (¢ —2%) = (g7 (2))* + O(lle — | ).

By replacing the last four relations in (66-67) we get, after eventually restricting the
neighborhood V(2*) to get the terms O(||z — 2*||*) and O(||d||||x — *||*) = o(||x — «*||*)
sufficiently small, that for all x € V(2*),

—(z = 2")T Hd + h(z)" (A" = A) + g(2)" (1" = ) + 20| |h(2)]”
20 e o (97 (2))7 4+ 20 Yo (2))? 2 Glle — 27|, (68)

Since g(z) = g7 (z) — g~ (x) , we have that

g(e)" (u* = p) <pgle)” + (W) (g(2)T = g(2)7).

There exists a neighborhood W(z*) such that ng_(x) <uv,Vje B On W(z*) we
have that

0> —pg (2)+w Z gj_(x)z.
JEB,u;2v
Therefore, on W(z*) NV (2*) we have, by using the previous relations and Lemma 2.5
in (68), as well as the boundedness of the multipliers as a result of (6), that

—(w— 2T Hd+ CP(z) + pTg™ (x) > ng‘—l‘*Hz (69)

for some constant C'. From our construction, it results that the bounds and neigh-
borhood restrictions are uniform with respect to H. Using that —(z — 2*)Hd <
||z — =*||||Hd|| and denoting A = ||z — z*||, B = ||Hd||, and D = CP(z) + ug~ (),
we can write the previous inequality as

AB+ D> §A2.

From the quadratic formula, we have that

B+ /B2 +4D% 4
2 24\2 2 2 B

2

and, therefore, by an appropriate choice of a majorizing constant,

lv = 2" < C1(n"g™ (2) + P(e) + |[d(H, 2)|[").
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since ||Hd|| < Tl|d|| by (15). The conclusion follows by choosing o1 = C% a

The following corollary establishes that a nondifferentiable penalty for the problem
(1-2) can be defined for which #* is a strict minimum and an isolated stationary point
in an appropriate neighborhood. This fact can also be established based on [12] and
[4], but our developments also give an upper bound of the constant ¢ that makes the
penalty function ¢(z) = f(x) + ¢P(x) exact.

Corollary 2.7 There exists a neighborhood Wy(x*) such that x* is the unique sta-
tionary point of ¢(x) = f(z)+cP(z), wherec > > it INF[ 2 e 15 for all (A, p™) €

Proof We take Wi (2*) to be the intersection between W(z*) (from the previous

theorem) and the set where
c>D N+ on
i=1 1€B

for all (A, p) € M(z). By Lemma 2.5, Wi (2*) contains an open set centered at z*.

Assume that # € W, (z*) is another stationary point of ¢(z). Then, d(H, z) =
0, since the solutions of (18-20) and (12-14) are identical under our assumptions
concerning e¢. Hence, P(z) = 0, since d(H,z) is a feasible point of (18-20). Then
prg=(z) = pPg(z) = —puT'VgTd, by complementarity, and therefore u% g~ (z) = 0.
By Theorem 2.6, = z*, which proves our claim. a

3 Linear Convergence of the SQP with Nondiffer-
entiable Exact Penalty P(x)

In this section we assume that #¥ — 2* under the condition stated in Section 1.1.

From the update rule (17) and Lemma 2.5, it follows that the update in (17) can be
triggered only a finite number of times, or otherwise M (2*) cannot be bounded. We
can therefore assume, without loss of generality, that (21) is satisfied at all steps &
and that d* is obtained from the quadratic program (18-20). For this section, we
introduce the following notation:

M(p,x) =Y pigi (x). (70)

1€B

3.1 Outline of the Proof

The proof consists of two major steps (each statement is made for k sufficiently large).
Step 1 There exist @, @ < 1, and a constant ¢ such that, for some (A%, p*) €
M(H* 2%)

o(a* + ad) = 6(a") < —esa(||d¥]]” + P() + M(i*,2%), Vaelo,a.  (71)

The major accomplishment of this step is that it connects the decrease of ¢(z) with
the value of the penalty function P(xz). Previous analyses concerning nondifferentiable
penalty functions bound the decrease only by (d*)% H*d* [2].
Step 2 There exists a constant cz such that
" 2 w2
(a") = 6 (2™) < ea(M(p*, &®) + P (&) + |[d¥|]” + ||l2* — 2= |").
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This step is proven by making use of the properties of the Lagrangian function defined
in Theorem 2.1.
As a result of Theorem 2.6, there is a constant c4 such that

e =27 I* < callld®|]* + P(¥) + M (¥, 2¥). (72)
As a result of Step 2, there exists a constant cg such that
o) = (a™) < ea(M (", *) + P(a*) +]|d*]").

Assuming that the length of the step is at least @; < @ at each iteration, we have
from Steps 1 and 2 that

(xFHD) — g(a%) < —comy (|d¥][" + P(%) + M (4¥, ) < (73)
— 20 (g (2) — p(z7)). (74)
Adding ¢(2*) — ¢(=*) to both sides, we obtain

P(zF ) — g(27)) < (1 -

which proves linear convergence with a rate of at most (1 — Ci@) Procedures that

ensure that the stepsize is bounded below are described in Section 3.3.

3.2 Proof of the Technical Results

All statements made in this section assume either that x is in a sufficiently small
neighborhood of #* or that k in 2* is sufficiently large.

Lemma 3.1
P(e* + ad®) < (1= )P (xx) + cro?||d*|”, Va €[0,1].

Proof Since d* is a feasible point of (18-20), we have that Vg;(z")Td* < —g;(2*),Vi €
B. By Taylor’s remainder theorem

gi(a* + ad®) < (1= a)gi(e") + dia?||d¥|*, Yo € [0, 1]
for some nonnegative constants d;, i € B. Similarly, Vh;(z*)Td* = —h;(2),Vi =
1,...,m and

hi(z* + ad®) = (1 — a)hi(z") + 20(|d*|)*).

Therefore,

|hi(2* + ad®)] < (1= a)hi(e")] + es0?|[d"|[, Yo < 1,
for some nonnegative constants e;,¢ = 1,...,m. Hence

max{|hi(z)], .| (2)], 91(2), . gr (2)} < (1 = @) maxi<i<m jes{|hi(@*)], gi(") }+
o2 ||d|[* maxi<icm jes{di, e} < (1= a)P(e*) + cra?|d¥|*,  Va € [0,1].

This completes the proof. a

Lemma 3.2 There exist @, 0 < @ < 1, and ¢z > 0 such that, for some (\* p*) €
M(H? 2F)

¢(e* + ad®) — ¢(2*) < —ag((d*)T HFd* + TP (%) + M (p¥, 2")) <
—csa(lld*||” + P(e*) + M(p*,2%)), Yo € [0,a).
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Proof  Writing the KKT conditions for (18-20), we obtain

HEdF 4+ V(%) + > pf V(o —I—Z/\’“Vh =0
iEB

and, hence,
(dk)Tdek—i—vf(xk)Tdk +ZzEB /’Lz v-gl( )Tdk—i_Z] 1A§Vh ( )Tdk = 0
()T H*d* + Vf(*)Td* =3 pigi(e®) = 3270 Nihy(2%) = 0,
since, by the complementarity conditions satisfied by the solution of (18-20), k BT gk —
, By p Yy Y Vg
—pkg(2*),Vi € B and Vh(z*)Td* = —g(2*),V¥i = 1,..., m. Therefore, since gl(a:k
g (&%) — g7 (2%),

)=

VI dF = ()T A 4 Y 18 (0 () — g7 (25)) + T, Aoy (a9)T <
(AT IR 4 P() (e + Y NG — M (%) < (75)
()T HEQE 4 (e~ 3)P() — M(F, o)

for sufficiently large &, by (11), (21), (70). By Taylor’s remainder theorem,
P +ad) < f(a*) + oV f(a*)Td* + 0| d ||
Hence, for a € [0, 1],
P+ ad®) + cP (e + ad®) < f(2¥) + V(") d* + T20?|[d¥]"+

(1 — a)eP(zg) + cera?(d®)? < f(z*) 4+ (1 — a)eP(zk)+

a(—=(d)T HE " + (e = 3)P(a") — M (g, 2")) + (cer +22)a?||d*||” =
J(@*) + P (") = a((d*)T H*d* + FP(a*) + M (", a*)) + (cer + T)a?(|d*||

from (75) and Lemma 3.1. Therefore, for a € [0, 1],
60 + ") = 6(4) < ~al(d)T H* " + L) + M (s 2)) + (ccr + 22)a? |

Since (d*)T H*d* > 'yo||dk||2, the result of the statement follows by choosing @ =
min{1, W} and ¢y = %min{'yo, %, %}

O

Lemma 3.3 There exists a constant cs such that, Yk > ko and V(\*, %) € M(H* | 2%),

(a") — o(a") < es(P(a®) + ||e* — 2| + M (", %) + ||d¥]).

Proof Let p be the number of elements of B, the active set. From (4) it follows,
using Taylor’s theorem, that, for a sufficiently small neighborhood of z,

Ll X p7) = L7 X7, 17) < Slle = ¥ V7)€ M),

where ¥ = maxxs yoyeme) 1| Vee L(x, A%, 1)} Also, by Lemma 2.5, there exists a
constant X; such that, V(A* u*) € M(H*, 2*), there exists a (\*, u*) € M(x*) such
that

AT (A = N5) 4 g ()T (" = )] < B (lla¥]] + [l — 2= Dle* = 27]].
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Since L(z*, A", pu*) = f(«*), we have that
P = ) = S|k — 2|+ ()T h(") + (u) g (*) <
(W = AYTR(R) + (1 — )T g(@) < Salle — 2| + le* — 8]

and, thus,

FER) = F@) < (B4 30 lle* — 27 |” + Sl J2*[[[[d¥]] — ()T (") = () g (). (76)
Since g(z) = g7 (z) — g~ (z), it follows that

—()Th(?) = (1) (g7 (F) — g7 (&) < eP (") + M (", 2").

We therefore have that
FER)4eP @)= F(27) < (S48l = 27 451 [2* — 27||[d¥]|+2eP (") + M (1", 2F).

The conclusion of the lemma follows by choosing ¢5 = max{¥ 4 2%, 2¢, 1}, since
X w2 2
20|a* — 2 |[[Jd" || < Jle* — 2]+ [|d*]]" o

3.3 Nondifferentiable Exact Penalty Algorithms and the Lin-
ear Convergence Theorem

The linearization algorithm [2, p.372] has the following form:

1. Choose ¢” > 0 and z°.

2. Compute d* from (12-14).

3. Choose o from a line search procedure, and set x*+1) = zF 4 o* d¥

4. Update c* using (17), and restart with Step 2.

k

The stepsize o is chosen by one of the following procedures [2; pp.372].

k

(a) Minimization rule Here o is chosen such that

$(a* + ofd") = min{(a" + ad") }

(b) Limited minimization rule Here a fixed scalar s > 0 is selected, and o* is chosen

such that
¢z +afd") = min {(a* +ad")}.

(c) Armijo rule Here fixed scalars s, 7, and & with s > 0, 7 € (0,1), and & € (0, %)
are chosen and we set o = s, where my, is the first nonnegative integer m
for which

o(x") — ¢(af + 1™ sd®) > or™s(d)T HE 4"

It can be shown that the Armijo rule yields a stepsize after a finite number of iterations.

The following theorem establishes the convergence properties of the linearization
algorithm. The global convergence properties, established in [1, Prop. 4.3.3], are also
stated here for completeness.
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Theorem 3.4 Let 2" be a sequence generated by the linearization algorithm, where the
stepsize o is chosen by the minimization rule, limited minimization rule or the Armijo
rule. Assume that cx = ¢, Yk > ko and that the sequence H* satisfies (15). Then any
accumulation point of the sequence x* is a stationary point of ¢(x) = f(z) + cP(z).
If z% — 2*, where =* is a strict local minimum of the problem (1-2) satisfying the
second-order sufficient properties (7-10) and the Mangasarian-Fromowitz constraint
qualification 6, then ¢(z*) — ¢(2*) Q-linearly and x* — * R-linearly.

Proof The first part is an immediate consequence of [1, Prop. 4.3.3]. We prove
the linear convergence statement only for the Armijo rule, the proof being similar for
the other stepsize selection mechanisms. By Lemma 3.2

¢(&*) = 6(a" + ad®) > ag (@) HFd" + TP(*) + M(p*, 2%)) >
al(d)T e o (d®)T HF

for all o € [0,@]. Since my is the smallest integer m for which
o(x") — ¢(af + 7 sd®) > o™ s(dM)T HE dF,

it follows that 7™s > 7. This therefore ensures that the stepsize is at least 7o for k
sufficiently large. As a result of Lemma 3.2, we have that

(a") — ¢(x"HV) > eora(||d¥|” + P(e¥) + M (2F)). (77)
On the other hand, by Lemma 3.3 we have that
(") — 6(x*) < es(P(a¥) + [[a* — | + ||d5|[* + M (", 2%)).

By (72) and (77) it follows that there exists cg such that

oz ) b() < (M (¥, ) + P(a*) +||d"|[) < (78)
= ((2") — ¢(l"“+1)) 3((x") — o(a*1)) = (79)
3(o(x*) — o(x7)) = 6(¢(x 1) — ¢(a7)), (80)
where § = T%‘;. After some obvious manipulation, it follows that

§((x* ) = o(x%)) < (0 = 1) (d(e") — 6(7)),

which proves the Q-linear convergence [10] of the sequence ¢(z*) to ¢(z*) with a linear
rate of at most 55—1. Therefore

(5 -1
lim sup” 4/ é(2*) —_—
k—o0 )

From Corollary 2.4
* *)12
6(x*) = o(x™) > Blle* — 2|

Therefore
limsup®y/||2" — 2*|| < ( %
k—o0
which proves the R-linear convergence [10] to 0 of the sequence z* — z*. The proof is
complete. a



3.4 The Superlinear Convergence Issue

The algorithm described in the preceding section does not achieve superlinear con-
vergence in general. Even when there is no degeneracy, a second-order correction
may be necessary to ensure that a unit stepsize, which is necessary for superlinear
convergence, results in the decrease of the penalty function [1]. When degeneracy is
present, the quadratic program (18-20) needs to be modified to ensure Q-superlinear
convergence, even assuming that the step is acceptable for the penalty function [13].
Whether the SQP can be modified such as to achieve both global convergence and
local superlinear convergence is a question for future research.

4 Conclusions

In this paper we have analyzed the impact of constraint degeneracy on the behav-
ior of sequential quadratic programming with nondifferentiable penalty function. We
proved that if the Mangasarian-Fromowitz constraint qualification as well as some
second-order sufficient conditions hold, then at least linear convergence of SQP algo-
rithms with exact penalty function is maintained. These conditions do not require the
existence of a Lagrange multiplier that satisfies strict complementarity.

In our analysis we have shown that it is possible to define an extension of the
augmented Lagrangian that can accommodate lack of strict complementarity, by using
different augmentations for zero and nonzero multipliers. The resulting object has only
one continuous derivative, which is a strictly monotone map.

A conclusion of this work is that SQPs with exact penalties are fundamentaly
robust, since global as well as linear local convergence can be secured under very mild
assumptions.
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