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AbstractWe analyze the convergence of the sequential quadratic programming (SQP)method for nonlinear programming for the case in which the Jacobian of theactive constraints is rank de�cient at the solution and/or strict complementaritydoes not hold for some or any feasible Lagrange multipliers. We use a nondi�eren-tiable exact penalty function, and we prove that the sequence generated by theSQP is locally R-linearly convergent if the matrices of the quadratic programare uniformly positive de�nite and bounded, provided that the Mangasarian-Fromowitz constraint quali�cation and some second-order su�ciency conditionshold.Keywords: Linear Convergence, Nondi�erentiable Exact Penalty, DegenerateNonlinear Program.1 IntroductionRecently, there has been renewed interest in analyzing and modifying sequentialquadratic programming (SQP) algorithms for constrained nonlinear optimization forcases where the traditional regularity conditions do not hold [7, 11, 13]. This researchhas been motivated by the fact that large-scale nonlinear programming problems tendto be almost degenerate (large condition numbers for the Jacobian of the active con-straints). It is therefore important to establish to what extent the convergence prop-erties of the SQP methods are dependent on the ill-conditioning of the constraints.To this end in this paper we relax both traditional regularity assumptions [5]: thatthe gradients of the active constraints are linearly independent and that there existsa choice of Lagrange multipliers that satis�es strict complementarity. To ensure goodglobal convergence properties, we use a nondi�erentiable exact penalty function as a�Mathematics and Computer Science Division, Argonne National Laboratory. The work of thisauthor was supported by the Mathematical, Information and Computational Sciences Division sub-program of the O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy, underContract W-31-109-Eng-38. 1



measure of the progress of the SQP algorithm [2]. Previous work has shown that,if certain su�cient conditions are satis�ed for one feasible choice of the Lagrangemultipliers, an exact penalty function can be de�ned that has an unconstrained localminimum at a solution x� of the nonlinear program [8]. However, in order to obtaingood convergence properties, it is desirable to ensure that x� is an isolated stationarypoint of the penalty function. Otherwise, the SQP could stop at a stationary pointdi�erent from x�, no matter how close to x� it was initialized. In [4] it is proventhat if, among other conditions, x� is a solution and an isolated local minimum ofthe nonlinear program, it is an isolated local minimum of the penalty function. In[12] it is shown that, if the conditions from [8] hold at x� for any feasible choice ofLagrange multipliers, x� is an isolated local minimum of the nonlinear program underconsideration. As a consequence of [4], x� is an isolated local minimum of the penaltyfunction, for some choice of the penalty parameter.In this paper we provide an alternative proof of the fact that the second-order suf-�cient conditions from [12] result in the existence of an L1 penalty function for whichx� is a strict local minimum and an isolated stationary point. The advantage of ourproof is that we can estimate the decrease of the penalty function at each step of thealgorithm as a function of the distance to x�. This guarantees that nondi�erentiableexact penalty SQP algorithms with uniformly positive de�nite and bounded matricesof the quadratic programs achieve at least linear convergence even in the presence ofdegeneracy, provided that the weaker conditions from [12] hold. The result provenhere is equivalent to the linear convergence of descent methods of unconstrained op-timization that use directions making acute (bounded away from 90 degrees) angleswith the gradient [9].In our developments, an important part is played by a function that is an extensionof the usual augmented Lagrangian (Theorem 2.1). The novelty of our approachconsists in the fact that the augmentation is di�erent for zero and nonzero multipliers.This new object is just once continuously di�erentiable and has, because of the second-order su�cient conditions from [12] being satis�ed at x�, a strictly monotone gradientnear x� for all feasible Lagrange multipliers.1.1 Background and AssumptionsFor details on the results of this section, see [1, 2, 12]. The nonlinear program (NLP)to be solved is minimize f(x) (1)subject to h(x) = 0; g(x) � 0; (2)where h(x) = (h1(x); :::; hm(x)) and g(x) = (g1(x); :::; gr(x)). In this paper, we assumethat f , gi, and hj are twice continuously di�erentiable functions from Rn to R. Wedenote by x� a solution of the nonlinear program (1{2).The Lagrangian function of (1{2) isL(x; �; �) = f(x) + mXi=1 �ihi(x) + rXi=1 �jgj(x) = f(x) + �Th(x) + �T g(x); (3)where � 2 Rm and � 2 Rr are the Lagrange multipliers.When a constraint quali�cation condition holds (see discussion below), there exist��, �� � 0 at x� such that the �rst-order conditionsrxL(x�; ��; ��) = 0; h(x�) = 0; g(z�) � 0; (��)T g(z�) = 0 (4)2



are satis�ed. A point x satisfying (4) is called a stationary point of the NLP. Theseare the well-known Karush-Kuhn-Tucker (KKT) conditions. The active set at x� isde�ned by B = fi = 1; : : : ; rjgi(x�) = 0g: (5)We assume that the Mangasarian-Fromowitz constraint quali�cation (MFCQ) holdsat the local minimumx� of (1{2): The gradients of the equality constraints, rxhj(x�); j =1 : : : ;m, are linearly independent and9d 2 Rn such that rxhj(x�)Td = 0; j = 1; : : :m rxgi(x�)Td < 0; i 2 B: (6)This ensures that the set of multipliers ��; �� � 0, for which (4) is satis�ed isnonempty and bounded [6]. We denote this set byM(x�).In this paper we assume the following second-order su�cient condition: Thereexists a � > 0 such that for all (��; ��) 2M(x�)wTrxxL(x�; ��; ��)w > �kwk2 (7)8w such that rxhi(x�)Tw = 0; i = 1; : : : ;m (8)rxgi(x�)Tw = 0; i 2 B; ��i > 0 (9)rxgi(x�)Tw � 0; i 2 B; ��i = 0: (10)We denote the set of w's satisfying (8{10) as F(x�; ��; ��). This ensures that x�is a strict local minimum and an isolated stationary point of (1{2) [5, 12]. The tra-ditional second-order su�ciency condition assumes that the gradients of the equalityconstraints and active inequality constraints ( i 2 B) are linearly independent andthat at least one of the ��'s has positive ��i ; i 2 B (strict complementarity) [5]. In thispaper these conditions are replaced by the more general MFCQ (6) and (7{10).The nondi�erentiable penalty function considered here isP (x) = maxf0; jh1(x)j; : : : ; jhm(x)j; g1(x); : : : ; gr(x)g: (11)We are looking for unconstrained minima of the function�(x) = f(x) + cP (x);where c is a su�ciently large constant. Descent directions d of �(x) at the point xcan be obtained by solving the following quadratic program [2]:minimize rf(x)Td+ 12dTHd+ c� (12)subject to �� � hi(x) +rhi(x)Td � � i = 1; : : : ;m (13)gj(x) +rgj(x)Td � � j = 0; 1; : : : ; r (14)where H is some positive de�nite matrix and g0(x) = 0. The matrices H consideredhere satisfy 0kxk2 � xTHx � �0kxk2; 8x 2 Rn: (15)We de�ne H to be the set of matrices satisfying (15).At the current point xk of an iterative procedure that attempts to determine x�,(12{14) generate the descent direction dk. H can change over the iterations; its currentvalue is denoted byHk at each iteration. The next iterate is x(k+1) = xk+�kdk, where�k is obtained by a line search procedure. Usual stepsize rules are the minimizationrule, the limited minimization rule and the Armijo rule [2]. For these rules, any limit3



point of fxkg is a stationary point of �(x), and the descent procedure is thereforeglobally convergent in this sense [2].If, in addition, c > mXi=1 j��i j+ rXj=1��j (16)for some (��; ��) 2M(x�), then x� is a critical point of �(x) [1].A suitable value for c is not available in the early stages of the algorithm. Hence,it is common to choose [1]ck+1 = maxfck;  + mXi=1 j�ki1 � �ki2j+ rXj=1 �kjg; (17)where �i1 and �i2 correspond, respectively, to the left and right inequality constraintsin (13).  is a prescribed safety factor.Consider the quadratic programminimize rf(x)T d+ 12dTHd (18)subject to hi(x) +rhi(x)T d = 0 i = 1; : : : ;m (19)gj(x) +rgj(x)Td � 0 j = 0; 1; : : :r: (20)We denote the solution d of this program by d(H;x) and the set of its multipliersbyM(H;x). With these notations, d(H;x�) = 0 and M(H;x�) = M(x�), for anyH satisfying (15). At x = xk and H = Hk we denote the solution of (18{19) bydyk; �yk; �ykm . If ck = c >  + mXi=1 j�yki j+ rXj=1�ykj (21)(for at least one set of multipliers (�yk; �yk)), then (dyk; �k = 0) is a solution of (12{14),if H = Hk [1, p. 195]. We therefore concentrate on the quadratic program (18{20),since, if ck is large enough and we are su�ciently close to x�, it generates the samedescent direction as (12{14), thus sharing its global convergence property.2 Properties of the Nondi�erentiable Exact PenaltyFunction for the Degenerate CaseTheorem 2.1 constructs an object that is similar to the augmented Lagrangian. Theaugmentation is, however, di�erent for the zero and nonzero multipliers correspond-ing to the active inequalities. This new function has one but not two continuousderivatives, and the Hessian is not de�ned. However, we prove that its gradient isa monotone mapping, and this su�ces to ensure the right descent properties of thepenalty function �(x).Theorem 2.1 There exists a neighborhood V(x�) and � > 0, � > 0, ! > 0, such that8(��; ��) 2M(x�) and x 2 V(x�)a) L!(x; ��; ��) �L!(x�; ��; ��) � �kx� x�k2,b) (x� x�)TrxL!(x; ��; ��) � �kx � x�k2;where L!(x; ��; ��) = f(x) + (��)Th(x) + (��)Tg(x)+ !(kh(x)k2 + Xi2B; ��i>� jg�i (x)j2 +Xi2B jg+i (x)j2) (22)4



and g+i (x) = maxf0; gi(x)g, g�i (x) = maxf0;�gi(x)g are the nonnegative and non-positive part of the constraint gi(x), respectively.Lemma 2.2 We have thata) limx!x� L(x; ��)�L(x�; ��)� 12 (x� x�)rxxL(x�; ��)(x� x�)kx� x�k2 = 0 (23)b) limx!x� L(x; ��)�L(x�; ��)� 12rxL(x; ��)T (x� x�)kx� x�k2 = 0 (24)uniformly as �� = (��; ��) 2 M(x�). Here L(x; ��) = L(x; ��; ��) is the Lagrangianfunction de�ned in (3).Proof As a consequence of the fact that (6) is satis�ed,M(x�), the set of the optimalmultipliers, is bounded, convex, closed, and polygonal. Let ��j = (��j ; ��j); j =1; : : : ; p be the set of its vertices. For each �� = (��; ��), there exists a set of numbers0 � uj � 1; j = 1; : : : ; p, such that Ppj=1 uj = 1 and �� = Ppj=1 uj��j. Sincef(x); g(x); h(x) are twice continuously di�erentiable, so is L(x; ��). By the de�nitionof di�erentiability, we have that, for all �� 2M(x�),limx!x� L(x; ��)�L(x�; ��)� 12 (x� x�)rxxL(x�; ��)(x� x�)kx� x�k2 = 0 (25)because rxL(x�; ��) = 0; 8�� 2 M(x�), by the KKT conditions (4). Since L(x; ��) isan a�ne mapping with respect to the variable ��, we have thatL(x; ��) �L(x�; ��) � 12 (x� x�)rxxL(x�; ��)(x� x�)kx� x�k2 = (26)pXj=1ujL(x; ��j)� L(x�; ��j) � 12 (x� x�)rxxL(x�; ��j)(x� x�)kx� x�k2 (27)for some uj > 0; j = 1; : : : ; p, where Ppj=1 uj = 1. ThusjL(x; ��)�L(x�; ��)� 12 (x� x�)rxxL(x�; ��)(x� x�)jkx� x�k2 � (28)pXj=1 jL(x; ��j)�L(x�; ��j)� 12(x� x�)rxxL(x�; ��j)(x� x�)jkx� x�k2 : (29)Since the right-hand side is independent of �� and its limit is zero as x ! x�, theconclusion of part a follows. Part b is proved in an identical manner, after we notethat limx!x� L(x; ��) �L(x�; ��) � 12rxL(x; ��)T (x� x�)kx� x�k2 = 0for all �� 2M(x�), by part a and sincelimx!x� krxL(x; ��) �rxxL(x�; ��)(x� x�)kkx� x�k = 0by de�nition of di�erentiability. 25



As a result of Lemma 2.2, we can writeL(x; ��)�L(x�; ��)� 12(x� x�)rxxL(x�; ��)(x � x�) = o(kx� x�k2);where o(kx� x�k2) denotes a quantity whose ratio to kx� x�k2 tends to zero asx! x�, uniformly for all �� 2M(x�).Lemma 2.3 There exists a neighborhood V2(x�) and ! > 0 such that 8x 2 V2(x�)and (��; ��) 2M(x�)L�!(x; ��; ��) �L�!(x�; ��; ��) � �8 kx� x�k2;where � is the constant appearing in (7) andL�!(x; ��; ��) = f(x) + (��)Th(x) + (��)Tg(x)+!(kh(x)k2 + Xi2B; ��i>0(g�i (x))2 +Xi2B(g+i (x))2): (30)Note The di�erence between the de�nitions (30) and (22) resides in the terms(g�i (x)) that are considered for summation. Only terms corresponding to ��i > � aresummed in (22).Proof We have, by (7{10), thatwTrxxL(x�; ��; ��)w � �kwk2whenever w 2 F(x�; ��; ��). It follows that there exists �1 > 0 such that, for all(��; ��) 2M(x�), (w)TrxxL(x�; ��; ��)(w) � �2kwk2 (31)8w such that ��1kwk � rxhi(x�)Tw � �1kwk; i = 1; : : : ;m (32)��1kwk � rxgi(x�)Tw � �1kwk i 2 B; ��i > 0 (33)rxgi(x�)Tw � �1kwk i 2 B; ��i = 0: (34)We denote the set of w's satisfying (32{34) as F�1(x�; ��; ��). This can be provedby a continuity and compactness argument, using the fact that the set of Lagrangemultipliers is bounded. Note that the bound in (7) is independent of the particularmultiplier (��; ��) 2M(x�). Let�2 = maxi=1;:::;m;j2Bfkrxxhi(x�)k; krxxgj(x�)kg:Let V1(x�) be a neighborhood of x such that2�2 � maxi=1;:::;m;j2Bfkrxxhi(x)k; krxxgj(x)kg:Also, let V2(x�) be the intersection between V1(x�) and the ball centered at x� ofradius �14�2 . Now x 2 V2(x�) such that x� x� =2 F�1(x�; ��; ��). Then at least one ofthe constraints from (32{34) is violated, say, rgi(x�)T (x � x�) � �1kx� x�k, wherei 2 B and ��i = 0. Then, by Taylor's remainder theorem,gi(x) = gi(x�) +rgi(x�)T (x� x�) + �3k(x� x�)k2;6



where j�3j � 2�2. Thereforegi(x) = rgi(x�)T (x� x�) + �3kx� x�k2 � �12 kx� x�k;since �3kx� x�k � 2�2kx� x�k � �12 ; and thus g+i (x) = gi(x) � �12 kx� x�k. Hence,(�12 )2kx� x�k2 � kh(x)k2 + Xi2B; ��i>0 jgi(x)j2 + Xi2B; ��i=0 jg+i (x)j2: (35)With the same argument if another constraint from (32{34) is violated, it follows that(35) holds whenever x 2 V2(x�) and x� x� =2 F�1(x�; ��; ��). Now�4 = max(��;��)2M(x�) krxxL(x�; ��; ��)k (36)is �nite because M(x�) is bounded. Choose!1 = �4 + �4(�12 )2 : (37)It follows that, if x 2 V2(x�) and (��; ��) 2 M(x�), we have that either x � x� 2F�1(x�; ��; ��) and then by (31{34) it follows that�4 kx� x�k2 � 12(x� x�)TrxxL(x�; ��; ��)(x� x�); (38)or x� x� =2 F�1(x�; ��; ��) and then by (36) and (35)!1(kh(x)k2 +Pi2B; ��i>0 jgi(x)j2 +Pi2B; ��i=0 jg+i (x)j2) �!1(�12 )2kx� x�k2 � �4kx� x�k2 + �4kx� x�k2 ��4kx� x�k2 � 12 (x� x�)TrxxL(x�; ��; ��)(x� x�): (39)As a result of (38) and (39), we have that for all (��; ��) 2M(x�) and x 2 V2(x�)�4 kx� x�k2 � 12(x� x�)TrxxL(x�; ��; ��)(x� x�)+!1(kh(x)k2 + Xi2B; ��i>0 jgi(x)j2 + Xi2B; ��i=0 jg+i (x)j2): (40)By Lemma 2.2, part a, and (40) we have thatL�!1(x; ��; ��)�L�!1(x�; ��; ��) = (x� x�)TrxxL(x�; ��; ��)(x� x�) (41)+o(kx� x�k2) + !1(kh(x)k2 +Pi2B; ��i>0 jgi(x)j2 +Pi2B; ��i=0 jg+i (x)j2) (42)� �4kx� x�k2 + o(kx� x�k2); (43)where o(kx� x�k2) denotes a quantity whose ratio to kx� x�k2 tends to zero uni-formly for all (��; ��) 2M(x�). We can therefore choose a neighborhood V3(x�) of x�in which the quantity in (43) is bounded below by �8kx� x�k2, for all ��; �� 2M(x�).For all x 2 V3(x�) we haveL�!1(x; ��; ��) �L�!1(x�; ��; ��) � �8 kx� x�k2; (44)7



for all (��; ��) 2M(x�). This completes the proof of the lemma. 2Proof of Theorem 2.1 As a consequence of the fact that (6) is satis�ed,M(x�), the set of the optimal multipliers, is bounded, convex, closed, and polygonal.Let ��j = (��j ; ��j); j = 1; : : : ; p be the set of its vertices. For each �� = (��; ��),there exists a set of numbers 0 � uj � 1; j = 1; : : : ; p, such that Ppj=1 uj = 1 and�� = Ppj=1 uj��j. With this representation of M(x�), uj = 0 whenever ��i = 0 and��ji > 0. For each ��, we choose u(��) to be the unique solution of the followingquadratic programming problem. minkuk2 (45)such that �� =Ppi=1 uj��j (46)Ppi=1 ui = 1 ui � 0; 1 � i � p: (47)Since quadratic programs can be recast as linear complementarity problems [3],they share sensitivity properties, in particular that the solution set satis�es the upperLipschitz property, with �� regarded as the parameter. Since u(��) is uniquely de�ned,that upper Lipschitz property reduces to the usual Lipschitz property, which impliesthat u(��) is a continous function.Therefore, from Lemma 2.3 applied to each vertex ��j , and since the Lagrangiansare linear with respect to the multipliers, we have that 8x 2 V3(x�),pXi=1 ui(��)(L�!1(x; ��i) �L�!1(x�; ��i)) � pXi=1 ui(��)�8 kx� x�k2 = �8 kx� x�k2: (48)Since L�!1(x�; ��) = f(x�), 8�� 2 M(x�), and Ppj=1 uj(��) = 1, we have that thelast inequality can be rewritten as�8 kx� x�k2 � f(x) � f(x�) + (��)Th(x) + (��)Tg(x) (49)+ !1(kh(x)k2 +Xi2B jg+i (x)j2 +Xi2B  i(��)jg�i (x)j2); (50)where  i(��) = Xj=1;:::;p; ��ji >0uj(��): (51)Since ui(��) are continuous functions, so is  i(��). From (46) it follows that, if ��i = 0,then uj(��) = 0, whenever ��ji > 0. Therefore, if ��i = 0, then  i(��) = 0. Also, from(47),  i(��) � 1; 8�� 2M(x�) and i 2 B. Now �i (�) = max��i<�; ��2M(x�) i(��); i 2 B:Since M(x�) is a compact set, it follows that  �i (�) is a continuous function and �i (0) = 0. Let C be such that jgi(x)j2 � Ckx� x�k2; 8x 2 V3(x�); i 2 B and � > 0the largest one for which maxi2B f �i (�)g � �16Cr!1 ;where r is the total number of inequalities in (1{2). With this choice of � it followsfrom  (��) � 1 thatPi2B  i(��)jg�i (x�)j2 =Pi2B; ��i��  i(��)jg�i (x�)j2 (52)8



+Pi2B; ��i<�  i(��)jg�i (x�)j2 �Pi2B;��i�� jg�i (x�)j2 (53)+Pi2B;��i<�  �i (�)jg�i (x)j2 �Pi2B;��i�� jg�i (x�)j2 (54)+rCkx� x�k2maxi2B  �i (�) �Pi2B;��i�� jg�i (x�)j2 + �16!1kx� x�k2 (55)If we majorize with this inequality in (50), taking �16kx� x�k2 to the right-hand sideand use the de�nition (22), the claim of part a follows by taking � = �16 , V(x�) =V3(x�), � = �, and ! = !1.b) Let Lxy;!(x; ��; ��) = f(x) + (��)Th(x) + (��)T g(x) + !(kh(x)k2+ Xi2B; ��i��;gi(xy)<0 jgi(x)j2 + Xi2B;gi(xy)>0 jgi(x)j2): (56)Then both Lxy;!(x; ��; ��) and its gradient coincide with L!(x; ��; ��) and its gra-dient, respectively, at xy and x. Also, Lxy;!(x�; ��; ��) = L(x�; ��; ��) = f(x�) andLxy;! has at least two continous derivatives. We then have, by an argument similarto part b of Lemma 2.2,jLxy;!(x; ��; ��) �Lxy;!(x�; ��; ��)� 12rxLxy;!(x; ��; ��)T (x� x�)j = o(kx� x�k2)for all (��; ��) 2 M(x�). Therefore, by taking the previous relation at x = xy andreplacing xy with x and Lxy;! with L!, we getjL!(x; ��; ��)� L!(x�; ��; ��)� 12rxLT! (x; ��; ��)(x� x�)j = o(kx� x�k2);where o(kx� x�k2) again denotes a quantity that converges to zero as x ! x� uni-formly with respect to (��; ��) 2 M(x�). From the last relation and part a of thetheorem, there exists a neighborhood V4(x�) on which the b of the theorem holds,after eventually replacing � with �2 . 2The techniques from [2] can be used to ensure that if c is large enough, x� is astationary point of �(x). However, to secure local convergence of the SQP to x�, onewould need to guarantee that x� is a local minimum of the penalty function.The following theorem gives an alternative proof of this fact for the degenerate caseconsidered in this paper, provided that the constraint quali�cation and second-ordersu�ciency condition hold as speci�ed in Section 1.1. Note, however, that the theoremdoes not claim that x� is an isolated stationary point, which is established later.Corollary 2.4 Let c be such thatc > mXi=1 j��i j+Xj2B��ifor some (��; ��) 2M(x�). Then there exists a neighborhood W(x�) of x� such that�(x)� �(x�) = f(x) + cP (x)� f(x�) � �kx� x�k2;where � is the constant from Theorem 2.1.9



Proof By Theorem 2.1, there exists a neighborhood V(x�) and ! > 0 such thatfor all x 2 V(x�) we have�kx � x�k2 � f(x) � f(x�) + (��)Th(x) + (��)T g(x) (57)+!(kh(x)k2 + Xi2B; ��i>� jg�i (x)j2 +Xi2B jg+i (x)j2): (58)By continuity, there exists a neighborhood W(x�) such that for all x 2 W(x�) andi 2 B we have � � !jgi(x)j � 0 andc > mXi=1(j��i j+ !jhi(x)j) +Xj2B(��j + !g+j (x)):With this choice of W(x�) it follows that, for all x 2 W(x�), (��i � !g�i (x)) � 0,whenever ��i > � and, since gi(x) = g+i (x)� g�i (x),cP (x) � mXi=1(j��i j+ !jhi(x)j)jhi(x)j+Xi2B(��i + !g+i (x))g+i (x)� mXi=1(j��i j+ !jhi(x)j)jhi(x)j+ Xi2B; ��i>�(���i + !g�i (x))g�i (x) (59)+ Xi2B; ��i�����i g�i (x) +Xi2B(��i + !g+i (x))g+i (x):The conclusion follows by using inequality (59) in (58), since ��i g(x) = ��i (g+(x) �g�(x)). 2Note Using the same line of proof, we can prove Corollary 2.4 even when thesecond-order su�cient conditions (7{10) hold for just one Lagrange multiplier. Inthat case, Lemma 2.3, can be used instead of Theorem 2.1, because its proof does notrely on satisfying the second-order su�cient conditions for all Lagrange multipliers.Therefore, Corollary 2.4 could constitute an alternative proof of the fact that, if (6)and (7{10) are satis�ed for one Lagrange multiplier, x� is a local minimum for theoriginal problem [5] and that a penalty function can be de�ned that has x� as anunconstrained strict local minimizer [8].An important consequence of the Mangasarian-Fromowitz constraint quali�cation(6) is that the solution of (18{20) is continuous with respect to x and H.Lemma 2.5 For any � > 0 there exists a neighborhood V�(x�) of x� such that 8x 2V�(x�), H satisfying (15), we have kd(H;x)k � �. In addition, there exists �0 suchthat, 8x 2 V�0 (x�) and u 2M(H;x),minu�2M(x�) ku� u�k � �u(kdk+ kx� x�k):Proof Since Condition (6) holds at x� for (1{2), it also holds in a neighborhoodV(x�) for all quadratic programs (18{20). Therefore, d(H;x) is a continuous functionon V(x�) � H, from [12, Corollary 4.3], since the second-order su�cient conditions(7{10) are satis�ed at all points (the matrix H is positive de�nite).Thus, the function  (�) = maxH2H;kx� x�k�� kd(H;x)k (60)10



is a continuous function on some interval [0;�], � > 0.  (0) = 0, since d(H;x�) =0; 8H 2 H. By the continuity of  , it follows that, 8�1, there exists �1 such that8H 2 H 8x; such thatkx� x�k � �1 ) d(H;x) � �1: (61)We now de�ne the following perturbed quadratic program:minimize (rf(x) + f�)Tw + 12wTw (62)subject to hi(x) +rhi(x)Tw = 0 i = 1; : : : ;m (63)gj(x) +rgj(x)Tw � 0 j = 0; 1; : : :r (64)At x� and for f� = 0, (62{64) satis�es the Mangasarian-Fromowitz constraintquali�cations and the second-order su�ciency conditions. We regard f� and x � x�as perturbations. The sensitivity results from [12] therefore apply to this case: Thereexist �2; �3 such that whenever kf�k � �2, kx� x�k � �2, we haveminu�2M(x�) ku� u�k � �3(kf�k+ kx� x�k)for any u a Lagrange multiplier of (62{64). By inspection it follows that, if f� =(H � I)d(H;x), then d(H;x) and M(H;x) are the solution andthe set of Lagrangemultipliers of (62{64), respectively. If we choose �1 and �1 in (61) such that (2�0 +1)�1 � �2, it follows that, for all x such that kx� x�k � �1 and u 2M(H;x) we haveminu�2M(x�) ku� u�k � �3(k(H � I)d(H;x)k+ kx� x�k):The conclusion now follows by taking �u = (�0 + 1)�3 and �0 = �1. 2A stronger version of this result is proved in [12] where the right hand side in theconclusion of Lemma 2.5 does not contain a term involving kdk, for a given QP matrixH. The di�erence, however, is that the above bound is independent of H 2H .The following theorem is the main result of this section. It establishes a connectionbetween the size of the direction generated by (18{20) and the distance from thecurrent point x�.Theorem 2.6 There exist a neighborhood W(x�) and a constant �1 such that, 8x 2W(x�), kd(H;x)k2 + P (x) + �T g�(x) � �1kx� x�k2;8� such that (�; �) 2M(H; d) for some �.Proof Let (�; �) 2M(H;x), and let (��; ��) 2 M(x�) such that k(�; �)� (��; ��)k ��u(kx� x�k + kdk). By part b of Theorem 2.1 we have, for all x in a neighborhoodV(x�), (x� x�)T (rf(x) + (��)Trh(x) + (��)Tg(x) + 2!r(h(x))Th(x) (65)+2!Pi2B;�i>� g�i (x)rgi(x) + 2!Pi2B g+i (x)rgi(x)) � �kx� x�k2:Since d(H;x) is a solution of (18{20) it follows, by the �rst-order necessary condi-tions, that rf(x) = �Hd�rh(x)T� �rg(x)T�:Replacing this relation in (65), we get(x� x�)T (�Hd+rh(x)T (�� � �) +rg(x)T (�� � �) + 2!r(h(x))Th(x) (66)+2!Pi2B;�i>� g�i (x)rgi(x) + 2!Pi2B g+i (x)rgi(x)) � �kx� x�k2: (67)11



Since k(�; �)� (��; ��)k � �u(kx� x�k+kdk), by Lemma2.5, and h(x) = rh(x)T (x�x�) + O(kx� x�k2) as well as gj(x) = rgj(x)T (x � x�) + O(kx� x�k2), 8j 2 B, wehave that(�j � ��j )rgj(x)T (x� x�) = (�j � ��j )gj +O(kdkkx� x�k2); 8j 2 B(�� ��)Trh(x)T (x� x�) = (� � ��)h(x) +O(kx� x�k3) +O(kdkkx� x�k2):Also, since jgj(x)j � Ckx� x�k; 8j 2 B, we have thatg+i (x)rgi(x)T (x� x�) = (g+i (x))2 +O(kx� x�k3);g�i (x)rgi(x)T (x � x�) = (g�i (x))2 +O(kx� x�k3):By replacing the last four relations in (66{67) we get, after eventually restricting theneighborhood V(x�) to get the termsO(kx� x�k3) andO(kdkkx� x�k2) = o(kx� x�k2)su�ciently small, that for all x 2 V(x�),�(x� x�)THd+ h(x)T (�� � �) + g(x)T (�� � �) + 2!kh(x)k2+2!Pi2B;�i>�(g�i (x))2 + 2!Pi2B(g+i (x))2 � �2kx� x�k2: (68)Since g(x) = g+(x)� g�(x) , we have thatg(x)T (�� � �) � �Tg(x)� + (��)T (g(x)+ � g(x)�):There exists a neighborhood W(x�) such that !g�j (x) � �; 8j 2 B. On W(x�) wehave that 0 � ���g�(x) + ! Xj2B;�j�� g�j (x)2:Therefore, onW(x�)\V(x�) we have, by using the previous relations and Lemma 2.5in (68), as well as the boundedness of the multipliers as a result of (6), that�(x� x�)THd+ CP (x) + �Tg�(x) � �2 kx� x�k2 (69)for some constant C. From our construction, it results that the bounds and neigh-borhood restrictions are uniform with respect to H. Using that �(x � x�)Hd �kx� x�kkHdk and denoting A = kx� x�k; B = kHdk, and D = CP (x) + �T g�(x),we can write the previous inequality asAB +D � �2A2:From the quadratic formula, we have thatA2 � (B +qB2 + 4D �2�2 )2 � 4�2 (B2 + B2 + 4D�2 )and, therefore, by an appropriate choice of a majorizing constant,kx� x�k2 � C1(�T g�(x) + P (x) + kd(H;x)k2):12



since kHdk � �0kdk by (15). The conclusion follows by choosing �1 = 1C1 . 2The following corollary establishes that a nondi�erentiable penalty for the problem(1{2) can be de�ned for which x� is a strict minimumand an isolated stationary pointin an appropriate neighborhood. This fact can also be established based on [12] and[4], but our developments also give an upper bound of the constant c that makes thepenalty function �(x) = f(x) + cP (x) exact.Corollary 2.7 There exists a neighborhood W1(x�) such that x� is the unique sta-tionary point of �(x) = f(x)+cP (x), where c >Pmi=1 j��i j+Pi2B ��i for all (��; ��) 2M(x�).Proof We takeW1(x�) to be the intersection between W(x�) (from the previoustheorem) and the set where c > mXi=1 j�ij+Xi2B �for all (�; �) 2M(x). By Lemma 2.5,W1(x�) contains an open set centered at x�.Assume that x 2 W1(x�) is another stationary point of �(x). Then, d(H;x) =0, since the solutions of (18{20) and (12{14) are identical under our assumptionsconcerning c. Hence, P (x) = 0, since d(H;x) is a feasible point of (18{20). Then�Tg�(x) = �T g(x) = ��TrgTd, by complementarity, and therefore �T g�(x) = 0.By Theorem 2.6, x = x�, which proves our claim. 23 Linear Convergence of the SQP with Nondi�er-entiable Exact Penalty P (x)In this section we assume that xk ! x� under the condition stated in Section 1.1.From the update rule (17) and Lemma 2.5, it follows that the update in (17) can betriggered only a �nite number of times, or otherwise M(x�) cannot be bounded. Wecan therefore assume, without loss of generality, that (21) is satis�ed at all steps kand that dk is obtained from the quadratic program (18{20). For this section, weintroduce the following notation:M (�; x) =Xi2B �ig�i (x): (70)3.1 Outline of the ProofThe proof consists of two major steps (each statement is made for k su�ciently large).Step 1 There exist �; � � 1, and a constant c2 such that, for some (�k; �k) 2M(Hk; xk)�(xk + �dk)� �(xk) � �c2�(kdkk2 + P (xk) +M (�k; xk)); 8� 2 [0; �]: (71)The major accomplishment of this step is that it connects the decrease of �(x) withthe value of the penalty function P (x). Previous analyses concerning nondi�erentiablepenalty functions bound the decrease only by (dk)THkdk [2].Step 2 There exists a constant c3 such that�(xk) � �(x�) � c3(M (�k; xk) + P (xk) + kdkk2 + kxk � x�k2):13



This step is proven by making use of the properties of the Lagrangian function de�nedin Theorem 2.1.As a result of Theorem 2.6, there is a constant c4 such thatkxk � x�k2 � c4(kdkk2 + P (xk) +M (�k; xk)): (72)As a result of Step 2, there exists a constant c6 such that�(xk)� �(x�) � c6(M (�k; xk) + P (xk) + kdkk2):Assuming that the length of the step is at least �1 � � at each iteration, we havefrom Steps 1 and 2 that�(x(k+1))� �(xk) � �c2�1(kdkk2 + P (xk) +M (�k; xk)) � (73)� c2�1c6 (�(xk)� �(x�)): (74)Adding �(xk) � �(x�) to both sides, we obtain�(x(k+1) � �(x�)) � (1� c2�1c6 )(�(xk)� �(x�));which proves linear convergence with a rate of at most (1 � c2�1c6 ): Procedures thatensure that the stepsize is bounded below are described in Section 3.3.3.2 Proof of the Technical ResultsAll statements made in this section assume either that x is in a su�ciently smallneighborhood of x� or that k in xk is su�ciently large.Lemma 3.1 P (xk + �dk) � (1� �)P (xk) + c1�2kdkk2; 8� 2 [0; 1]:Proof Since dk is a feasible point of (18{20), we have that rgi(xk)Tdk � �gi(xk); 8i 2B. By Taylor's remainder theoremgi(xk + �dk) � (1 � �)gi(xk) + di�2kdkk2; 8� 2 [0; 1]for some nonnegative constants di; i 2 B. Similarly, rhi(xk)Tdk = �hi(xk); 8i =1; : : : ;m and hi(xk + �dk) = (1� �)hi(xk) + �2O(kdkk2):Therefore, jhi(xk + �dk)j � (1� �)jhi(xk)j+ ei�2kdkk2; 8� � 1;for some nonnegative constants ei; i = 1; : : : ;m. Hencemaxfjh1(x)j; : : : jhm(x)j; g1(x); : : : gr(x)g � (1 � �)max1�i�m;j2Bfjhi(xk)j; gi(xk)g+�2kdkk2max1�i�m;j2Bfdi; ejg � (1� �)P (xk) + c1�2kdkk2; 8� 2 [0; 1]:This completes the proof. 2Lemma 3.2 There exist �, 0 < � � 1, and c2 > 0 such that, for some (�k; �k) 2M(Hk; xk)�(xk + �dk) � �(xk) � ��12((dk)THkdk + 2P (xk) +M (�k; xk)) ��c2�(kdkk2 + P (xk) +M (�k; xk)); 8� 2 [0; �]:14



Proof Writing the KKT conditions for (18{20), we obtainHkdk +rf(xk) +Xi2B �kirgi(xk) + mXj=1 �kjrhj(xk) = 0and, hence,(dk)THkdk +rf(xk)Tdk +Pi2B �kirgi(xk)Tdk +Pmj=1 �kjrhj(xk)Tdk = 0(dk)THkdk +rf(xk)Tdk �Pi2B �ki gi(xk)�Pmj=1 �kjhj(xk) = 0;since, by the complementarity conditions satis�ed by the solution of (18{20), �krg(xk)T dk =��kg(xk); 8i 2 B and rh(xk)T dk = �g(xk); 8i = 1; : : : ;m. Therefore, since gi(xk) =g+i (xk) � g�i (xk),rf(xk)Tdk = �(dk)THkdk +Pi2B �ki (g+i (xk)� g�i (xk)) +Pmj=1 �kjhj(xk)T ��(dk)THkdk + P (xk)(Pi2B �ki +Pmj=1 j�kj j)�M (�k; xk) � (75)�(dk)THkdk + (c� 2 )P (xk) �M (�k; xk)for su�ciently large k, by (11), (21), (70). By Taylor's remainder theorem,f(xk + �dk) � f(xk) + �rf(xk)Tdk + c2�2kdkk2:Hence, for � 2 [0; 1],f(xk + �dk) + cP (xk + �dk) � f(xk) +rf(xk)Tdk + c2�2kdkk2+(1� �)cP (xk) + cc1�2(dk)2 � f(xk) + (1 � �)cP (xk)+�(�(dk)THkdk + (c� 2 )P (xk)�M (�k; xk)) + (cc1 + c2)�2kdkk2 =f(xk) + cP (xk)� �((dk)THkdk + 2P (xk) +M (�k; xk)) + (cc1 + c2)�2kdkk2from (75) and Lemma 3.1. Therefore, for � 2 [0; 1],�(xk + �dk)� �(xk) � ��((dk)THkdk + 2P (xk) +M (�k; xk)) + (cc1 + c2)�2kdkk2:Since (dk)THkdk � 0kdkk2, the result of the statement follows by choosing � =minf1; 02(cc1+c2)g and c2 = 12 minf0; 2 ; 12g. 2Lemma 3.3 There exists a constant c5 such that, 8k � k0 and 8(�k; �k) 2M(Hk; xk),�(xk) � �(x�) � c5(P (xk) + kxk � x�k2 +M (�k; xk) + kdkk2):Proof Let p be the number of elements of B, the active set. From (4) it follows,using Taylor's theorem, that, for a su�ciently small neighborhood of x,L(x; ��; ��)� L(x�; ��; ��) � �kx� x�k2 8(��; ��) 2M(x�);where � = max(��;��)2M(x�)fkrxxL(x; ��; ��)kg. Also, by Lemma 2.5, there exists aconstant �1 such that, 8(�k; �k) 2 M(Hk; xk), there exists a (��; ��) 2 M(x�) suchthat jh(xk)T (�� � �k) + g(xk)T (�� � �k)j � �1(kdkk+ kxk � x�k)kxk � x�k:15



Since L(x�; ��; ��) = f(x�), we have thatf(xk)� f(x�) ��kxk � x�k2 + (�k)Th(xk) + (�k)Tg(xk) �(�k � ��)Th(xk) + (�k � ��)Tg(x) � �1(kxk � x�k2 + kxk � x�kkdkk)and, thus,f(xk)� f(x�) � (�+�1)kxk � x�k2+�1kxkkkdkk� (�k)Th(xk)� (�k)Tg(xk): (76)Since g(x) = g+(x)� g�(x), it follows that�(�k)Th(xk)� (�k)T (g+(xk)� g�(xk)) � cP (xk) +M (�k; xk):We therefore have thatf(xk)+cP (xk)�f(x�) � (�+�1)kxk � x�k2+�1kxk � x�kkdkk+2cP (xk)+M (�k; xk):The conclusion of the lemma follows by choosing c5 = maxf� + 2�1; 2c; 1g, since2kxk � x�kkdkk � kxk � x�k2 + kdkk2. 23.3 Nondi�erentiable Exact Penalty Algorithms and the Lin-ear Convergence TheoremThe linearization algorithm [2, p.372] has the following form:1. Choose c0 > 0 and x0.2. Compute dk from (12{14).3. Choose �k from a line search procedure, and set x(k+1) = xk + �kdk.4. Update ck using (17), and restart with Step 2.The stepsize �k is chosen by one of the following procedures [2, pp.372].(a) Minimization rule Here �k is chosen such that�(xk + �kdk) = min��0f�(xk + �dk):g(b) Limited minimization rule Here a �xed scalar s > 0 is selected, and �k is chosensuch that �(xk + �kdk) = min�2[0; s]f�(xk + �dk)g:(c) Armijo rule Here �xed scalars s, � , and � with s > 0, � 2 (0; 1), and � 2 (0; 12)are chosen and we set �k = �mks, where mk is the �rst nonnegative integer mfor which �(xk)� �(xk + �msdk) � ��ms(dk)THkdk:It can be shown that the Armijo rule yields a stepsize after a �nite number of iterations.The following theorem establishes the convergence properties of the linearizationalgorithm. The global convergence properties, established in [1, Prop. 4.3.3], are alsostated here for completeness. 16



Theorem 3.4 Let xk be a sequence generated by the linearization algorithm, where thestepsize �k is chosen by the minimization rule, limited minimization rule or the Armijorule. Assume that ck = c; 8k � k0 and that the sequence Hk satis�es (15). Then anyaccumulation point of the sequence xk is a stationary point of �(x) = f(x) + cP (x).If xk ! x�, where x� is a strict local minimum of the problem (1{2) satisfying thesecond-order su�cient properties (7{10) and the Mangasarian-Fromowitz constraintquali�cation 6, then �(xk)! �(x�) Q-linearly and xk ! x� R-linearly.Proof The �rst part is an immediate consequence of [1, Prop. 4.3.3]. We provethe linear convergence statement only for the Armijo rule, the proof being similar forthe other stepsize selection mechanisms. By Lemma 3.2�(xk)� �(xk + �dk) � �12 ((dk)THkdk + 2P (xk) +M (�k; xk)) ��12(dk)THkdk > ��(dk)THkdkfor all � 2 [0; �]. Since mk is the smallest integer m for which�(xk)� �(xk + �msdk) � ��ms(dk)THkdk;it follows that �ms � ��. This therefore ensures that the stepsize is at least �� for ksu�ciently large. As a result of Lemma 3.2, we have that�(xk)� �(x(k+1)) � c2��(kdkk2 + P (xk) +M (xk)): (77)On the other hand, by Lemma 3.3 we have that�(xk) � �(x�) � c5(P (xk) + kxk � x�k2 + kdkk2 +M (�k; xk)):By (72) and (77) it follows that there exists c6 such that�(xk) � �(x�) � c6(M (�k; xk) + P (xk) + kdkk2) � (78)c6��c2 (�(xk)� �(xk+1)) = �(�(xk)� �(xk+1)) = (79)�(�(xk) � �(x�))� �(�(x(k+1))� �(x�)); (80)where � = c6��c2 . After some obvious manipulation, it follows that�(�(x(k+1))� �(x�)) � (� � 1)(�(xk)� �(x�));which proves the Q-linear convergence [10] of the sequence �(xk) to �(x�) with a linearrate of at most ��1� . Thereforelim supk!1 kq�(xk)� �(x�) � � � 1� :From Corollary 2.4 �(xk)� �(x�) � �kxk � x�k2:Therefore lim supk!1 kqkxk � x�k � (� � 1� ) 12 ;which proves the R-linear convergence [10] to 0 of the sequence xk � x�. The proof iscomplete. 217



3.4 The Superlinear Convergence IssueThe algorithm described in the preceding section does not achieve superlinear con-vergence in general. Even when there is no degeneracy, a second-order correctionmay be necessary to ensure that a unit stepsize, which is necessary for superlinearconvergence, results in the decrease of the penalty function [1]. When degeneracy ispresent, the quadratic program (18{20) needs to be modi�ed to ensure Q-superlinearconvergence, even assuming that the step is acceptable for the penalty function [13].Whether the SQP can be modi�ed such as to achieve both global convergence andlocal superlinear convergence is a question for future research.4 ConclusionsIn this paper we have analyzed the impact of constraint degeneracy on the behav-ior of sequential quadratic programming with nondi�erentiable penalty function. Weproved that if the Mangasarian-Fromowitz constraint quali�cation as well as somesecond-order su�cient conditions hold, then at least linear convergence of SQP algo-rithms with exact penalty function is maintained. These conditions do not require theexistence of a Lagrange multiplier that satis�es strict complementarity.In our analysis we have shown that it is possible to de�ne an extension of theaugmented Lagrangian that can accommodate lack of strict complementarity, by usingdi�erent augmentations for zero and nonzero multipliers. The resulting object has onlyone continuous derivative, which is a strictly monotone map.A conclusion of this work is that SQPs with exact penalties are fundamentalyrobust, since global as well as linear local convergence can be secured under very mildassumptions.AcknowledgmentThanks to Jorge Mor�e and Stephen Wright for reading the manuscript and providingextremely valuable suggestions.References[1] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Aca-demic Press, New York, 1982.[2] D. P. Bertsekas, Nonlinear Programming, Athena Scienti�c, Belmont, Mas-sachusets, 1995.[3] R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem,Academic Press, Boston, 1992.[4] G. Di Pillo and L. Grippo, \Exact Penalty Functions in Constrained Optimiza-tion", SIAM Journal of Control and Optimization 27 (1989),1333{1360.[5] A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Pro-gramming, Academic Press, New York, 1983.[6] J. Gauvin, \A Necessary and Su�cient Regularity Condition to Have BoundedMultipliers in Nonconvex Programming",Mathematical Programming 12 (1977),136{138. 18
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