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Abstract� We show that the quadratic growth condition and the Mangasarian�Fromowitz
constraint quali�cation imply that local minima of nonlinear programs are isolated station�
ary points� As a result� when started su�ciently close to such points� an L� exact penalty
sequential quadratic programming algorithm will induce at least R�linear convergence of the
iterates to such a local minimum�We construct an example of a degenerate nonlinear program
with a unique local minimum satisfying the quadratic growth and the Mangasarian�Fromowitz
constraint quali�cation but for which no positive semide�nite augmented Lagrangian exists�
We present numerical results obtained using several nonlinear programming packages on this
example� and discuss its implications for some algorithms�

�� Introduction

Recently� there has been renewed interest in analyzing and modifying sequential
quadratic programming �SQP� algorithms for constrained nonlinear optimiza�
tion for cases where the traditional regularity conditions do not hold �������
	
�	�� This research has been motivated by the fact that large�scale nonlin�
ear programming problems tend to be almost degenerate �have large condition
numbers for the Jacobian of the active constraints� It is therefore important
to establish to what extent the convergence properties of the SQP methods are
dependent on the ill�conditioning of the constraints In this work� we term as
degenerate those nonlinear programs �NLPs� for which the gradients of the ac�
tive constraints are linearly dependent In this case there may be several feasible
Lagrange multipliers

Many of the previous analysis and rate of convergence results for degenerate
NLP are based on the validity of second�order conditions These are essentially
equivalent to the condition in unconstrained optimization that� for a critical
point of a function f�x� to be a local minimum� fxx � 
 is a necessary condition
and fxx � 
 is a su�cient condition Here � is the positive semide�nite ordering
The place of fxx in constrained optimization is taken for these conditions by Lxx�
the Hessian of the Lagrangian� which is now required to be positive de�nite on
the critical cone for one or all of the Lagrange multipliers ���	��
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This work di�ers from previous approaches in that we assume only that

� At a local solution x� of the constrained nonlinear program� the �rst�order
Mangasarian�Fromowitz constraint quali�cation holds

	 The quadratic growth condition �QG� ������ is satis�ed�

f�x� � f�x�� � �jjx� x�jj� ���

for some � � 
 and all x feasible in a neighborhood of x�
� The data of the problem are twice continuously di�erentiable

These assumptions are equivalent to a weaker form of the second�order su�cient
conditions ������ which do not require the positive semide�nitenes of the Hessian
of the Lagrangian on the entire critical cone

We prove that these conditions guarantee that x� is the only local stationary
point ��� of the nonlinear program This is an important issue because it guar�
antees that descent�like algorithms will not stop arbitrarily close to x�� except
at x� This extends a result from �	�� that required some second�order su�cient
conditions to be satis�ed for all multipliers In particular� our work implies that
if MFCQ holds and the second�order su�cient conditions hold for one multiplier�
then x� is a strict local minimum and an isolated stationary point

We also show that� under the same assumptions� the L� exact penalty se�
quential quadratic program �SQP� induces at least Q linear convergence ���� of
the penalized objective to f�x�� and R�linear convergence of the iterates Finally�
we provide an example of a nonlinear program that satis�es our assumptions for
which it is not possible to construct an augmented Lagrangian such that x� will
be an unconstrained local minimum This may present an adverse case to algo�
rithms based on this assumption� such as Lagrange multiplier methods However�
we show that it is possible to construct a nondi�erentiable function that has x�

as its minimum� namely the L� penalty function �which can also be inferred
from the results in ���� We describe our computational experience with sev�
eral nonlinear programming packages applied to this example and discuss the
expected and observed behavior of Lagrangian multiplier methods

Our convergence analysis for the L� exact penalty function suggests that it is
possible to construct a convergence theory with much more general second�order
conditions This may result in algorithms with superior robustness� because their
properties depend on signi�cantly fewer assumptions

���� Previous Work� Framework� and Notations

We deal with the NLP problem

min
x

f�x� subject to g�x� � 
� �	�

where f � IRn � IR and g � IRn � IR
m are twice continuously di�erentiable

We call x a stationary point if the following conditions hold for some � � IR
m�

Lx�x� �� � 
� � � 
� g�x� � 
� �Tg�x� � 
� ���
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Here L is the Lagrangian function

L�x� �� � f�x� � �Tg�x�� ���

If certain regularity conditions hold �discussed below�� then a local solution
x� of �	� is a stationary point In that case ��� are referred to as the KKT
�Karush�Kuhn�Tucker� conditions

Since our analysis will be limited to a neighborhood of a point x� that is a
strict minimum� we will assume that all constraints are active at x�� or g�x�� �

 Such a situation can be obtained by simply dropping the constraints i for
which gi�x

�� � 
� since this relationship holds in an entire neighborhood of x�
This does not reduce the generality of our results� but it simpli�es the notation
because now we do not have to refer separately to the active set

The regularity condition� or constraint quali�cation� ensures that a linear ap�
proximation of the feasible set in the neighborhood of x� captures the geometry
of the feasible set Often in local convergence analysis of constrained optimiza�
tion algorithms� it is assumed that the constraint gradients rgi�x��� i � ���m
are linearly independent� so that the Lagrange multiplier in ��� is unique We
assume instead the Mangasarian�Fromowitz constraint quali�cation �MFCQ��

rgi�x
��Tp � 
� for all i and some p � IR

n ���

It is well known ��� that MFCQ is equivalent to boundedness of the set M�x��
of Lagrange multipliers that satisfy ���� that is�

M�x�� def
� f� � 
 j �x�� �� satisfy ���g� ���

Note that M�x�� is certainly polyhedral in any case
The critical cone at x� is ���		�

C � fu � IR
njrgi�x

��Tu � 
� i � �� � � � �m� rf�x��Tu � 
g ���

We brie�y review the some of the second�order conditions in the literature�
although they are not an assumption for our analysis but only a basis for com�
parison In the framework of ���� the second�order su�cient conditions for x� to
be an isolated local solution of �	� are�

��� �M�x��� �� � 
 such that vTLxx�x
�� ���v � �kvk��� 	v � C� ���

If these conditions hold at x� for some ��� then the quadratic growth condition
is satis�ed� irrespective of the validity of the �rst�order constraint quali�cation
����� However� this does not imply that x� is an isolated stationary point� as
shown by a simple example �	��� which may prevent an optimization algorithm
that uses only �rst derivative information from reaching x� even when started
arbitrarily close to x�

In �	�� it is shown that if MFCQ holds� and the relation ��� is satis�ed for
all �� � M�x�� then x� is an isolated stationary point and a minimum of �	�
Also� with these conditions� the exact solution is Lipschitz stable with respect
to perturbations By compactness of M�x��� we can choose � independently of
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�� in this case In ��� it is proven that� under these assumptions� the L� exact
penalty SQP will converge Q�linearly to f�x��� when the descent direction is
computed by a QP using only �rst�order information

A re�nement of the second�order conditions was introduced in ���� In the
presence of MFCQ� those conditions require that

	u � C� ��� �M�x��� such that uTrxxL�x
�� ���u � 
� ���

Further analysis shows that� in presence of MFCQ� these conditions are necessary
and su�cient for the quadratic growth condition to hold ���������		� Also� the
exact solution is Lipschitz stable with respect to certain classes of perturbations
�		�� though not to any perturbation �see an example in ��
� p�
��� In this
paper we assume only the quadratic growth condition and MFCQ� and thus we
do not use the perturbation results

If the condition ��� holds� but ��� does not� then there is no positive semidef�
inite augmented Lagrangian� as we will show with an example This is an in�
teresting aspect since it invalidates the usual working assumption of Lagrange
multiplier methods ���

Finally� we review some of the facts concerning the L� nondi�erentiable
exact penalty function�

P �x� � maxf
� g��x�� ���gm�x�g� ��
�

We are looking for an unconstrained minimum of the function

��x� � f�x� � c�P �x��

where c� is a su�ciently large constant Descent directions d of ��x� at the point
x can be obtained by solving the following quadratic program �QP� ����

minimizerf�x�T d� �
�d

THd� c��
subject to gj�x� �rgj�x�

Td � �� j � 
� �� 	���m�
����

where H is some positive de�nite matrix and g��x� � 
 In this paper the analysis
will be restricted to the case H � I� although the same results apply for any
other positive de�nite matrix

At the current point xk of an iterative procedure that attempts to determine
x�� the QP ���� generates the descent direction dk The next iterate is x�k��� �
xk�	kdk� where 	k is obtained by a line search procedure Usual stepsize rules
are the minimization rule� the limited minimization rule� and the Armijo rule
��� For these rules� any limit point of fxkg is a stationary point of ��x�� and the
descent procedure is therefore globally convergent in this sense ���

If� in addition�

c� �

mX
j��

��j ��	�



Degenerate Nonlinear Programming with a Quadratic Growth Condition �

for some �� �M�x��� then x� is a stationary point of ��x� �	� A suitable value
for c� is not available in the early stages of the algorithm� but a good estimate
can be found via an update scheme �	� Here we assume that c is constant and

c� �

mX
j��

��j � 	
 ����

for all �� �M�x��� where 
 is some prescribed safety factor

Consider the quadratic program

minimize rf�x�Td� �
�d

Td
subject to gj�x� �rgj�x�

Td � 
 j � 
� �� 	���m�
����

We denote the unique solution of this program by d�x� and the set of its mul�
tipliers by M�x� At x� ���� has the same multiplier set as �	�� which are both
denoted byM�x�� Since MFCQ is satis�ed at x�� this QP is feasible in a neigh�
borhood of x� The KKT conditions for this QP require

d�x� �rf�x� �rg�x�� � 

� � 
� g�x� �rg�x�Td�x� � 
� �T �g�x� �rg�x�Td�x�� � 
�

����

With these notations� d�x�� � 
 If the QP ���� were unconstrained� then its
solution would be d�x� � �rf�x� We name a descent�like algorithma sequential
quadratic program that solves instances of the above QP

At x�� the QP ���� satis�es MFCQ and some second�order su�cient con�
ditions From �	�� there exists cd such that� in a neighborhood of x� we have
jjdjj � cdjjx� x�jj and� 	� �M�x�� there exists �� �M�x�� such that

jj�� ��jj � cdjjx� x�jj� ����

Therefore� from the de�nition of c�� there exists a neighborhood of x� such that

c� � 
 �
mX
i��

�i ����

for all multipliers � � M�x� For such x� it can be veri�ed by inspection that
�d�x�� � � 
� is a solution of ���� �	� p ���� We therefore concentrate on the
QP ����� because� if c� is large enough and we are su�ciently close to x�� it
generates the same descent direction as ����� thus sharing its global convergence
property

For some function h � IR
n � IR

k we denote by c�h� c�h bounds depending
on the �rst and second derivatives of h The positive and negative parts of h�x�
are h��x� � maxfh�x�� 
g and respectively� h��x� � maxf�h�x�� 
g� both taken
componentwise With this notation h�x� � h��x�� h��x�
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	� Stationary Points of NLPs Satisfying MFCQ

In this section� we assume that x is in a su�ciently small neighborhood of x��
whose size or properties are speci�ed in each of the following results In particular
the standing assumptions hold on all neighborhoods considered here and

rgi�x�
Tp � ���� for all i and x �W �x��� ����

Here p with jjpjj � � is one of the vectors satisfying ���� �� � 
 and W �x�� is a
suitable neighborhood of x�

Lemma �� There exist �	P � 
� cP � 
� and a neighborhood W �x�� such that

g�x� � 
� gi�x� � 
 for some i� � � i � m
 P �x� 	p� � cP	� 		 � �
� �	P ��

Here P �x� is the usual L� penalty function �����

Proof� We have by Taylor�s theorem

gi�x� 	p� � �	rgi�x�
Tp� c�g	

� � 	�� � 	�c�g

We choose

�	P �
��
	c�g

� ����

For 
 � 	 � 	P we have

gi�x� 	p� � 	�� � c�g	
� � 	��� � 	c�g� � 	

��
	
�

The claim follows after choosing cP � ��
� 

The proof of the following lemma can be inferred from ��� We include it here
for completeness

Lemma 	� There exists a c� such that

f�x� � c�P �x�� f�x�� �
�

	
jjx� x�jj� �	
�

for all x in a neighborhood of x��

Proof� Let r � 
 be such that B�x�� r� � W �x�� We choose r� �
r
� such that

	 � P �x�
��

� minf�	P � r�	g for x � B�x�� r�� This is always possible because

P �x�� � 
 We then have that� for any x � B�x�� r���

jjx� 	p� x�jj � jjx� x�jj� 	 �
r

	
�
r

	
� r �	��

and thus x � 	p � B�x�� r� By the intermediate value theorem� we have that
gi�x� 	p� � gi�x� � 	rgi�x � 	�p�Tp� where 
 � 	� � 	 and thus x� 	�p �
B�x�� r�� implying in turn that rgi�x� 	�p�Tp � ��� Therefore gi�x� 	p� �
gi�x�� 	�� � gi�x�� P �x� � 
 Therefore x� 	p is feasible
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Take now
	� � minf�	 � 
 j g�x� �	p� � 
g� �		�

If x is infeasible� then 	� � 
 and there exists i such that gi�x�	�p� � 
 Since
x� 	�p is feasible� and 
 � 	� � �	P � Lemma � applies to give

P �x� � cP	�� �	��

If x is feasible� then 	� � 
 and P �x� � 
� and the previous bound still applies
From the quadratic growth assumption ��� and the feasibility of x�	�p� we

must have that

f�x � 	�p�� f�x�� � �jjx� x� � 	�pjj
�

or
f�x� � f�x�� � �jjx� x� � 	�pjj

� � �f�x � 	�p�� f�x��� �	��

By �	�� and Taylor�s theorem we have

f�x � 	�p�� f�x� � c�f	� �
c�f
cP

P �x� �	��

Choose

c� �
c�f
cP

�
��	P
cP

Then by �	��

c�P �x� �
c�f
cP

P �x� �
��	P
cP

P �x� �
c�f
cP

P �x� � ��	P	� �
c�f
cP

P �x� � �	�
�� �	��

Using �	��� �	�� and �	�� we get

f�x��f�x���c�P �x� � �jjx�x��	�pjj
���	�

� � �jjx�x��	�pjj
���jj	�pjj

��

The conclusion follows� because

�jjx� x� � 	�pjj
� � �jj	�pjj

� �
�

	
jjx� x�jj�

from the Cauchy�Schwartz inequality

We can assume that c� from the previous lemma satis�es ����� or otherwise
we replace it with the right�hand side of ���� and the conclusion of the lemma
still holds for the new c�

To prove the following results� we will use the results from ��	� concerning
sets de�ned by linear inequalities�

P � fx � IR
njaTi x� bi � 
� i � ���m� jjaijj � �g� �	��

For such a set� denote by d�x�P� the distance from a point x � IR
n to the set P

Also� denote by dP�x� the maximum value of the infeasibility�

dP�x� � maxf
� aT� x� b�� ���a
T
mx� bmg �	��
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Then there exists a number ���P� � 
 such that


 � ���P�d�x�P� � dP�x� � d�x�P�� 	x � IR
n� �	��

If we have equality constraints� we recast them as two inequality constraints
The following lemma uses the fact that M�x�� is polyhedral and can thus be
expressed in the form �	��

Lemma 
� Let I be an index set such that there exists a multiplier �� �M�x��
with �lambdaI � 
� Then there exists a constant cI such that 	� � M�x�� there
exists a �� �M�x�� with ��I � 
 and such that jj�� ��jj � cI jj�Ijj��

For a vector � we have denoted by �I the restriction of the vector to the index
set I

Proof� Let MI�x�� be the set of all �� � M�x�� such that ��I � 
 Then
 �MI�x�� satis�es Pm

j��rgj�x
��j � �rf�x��� ��
�

I � 
� ����

 � 
� ��	�

From our assumptions�MI�x�� is not empty By eventually rescaling the x space�
we can assume� without loss of generality� that the vectors de�ning the equality
constraints in ��
� are of norm �� otherwise� if all entries are 
� we remove that
row� and the feasible � set remains unchanged MI can be described in the
following� alternative� way�Pm

j��rgj�x
��j �rf�x�� � 
� ����Pm

j���rgj�x
��j �rf�x�� � 
� ����

I � 
� ����

�I � 
� ����

 � 
� ����

where each row is described by a unit vector� which puts the set in the form
�	�� Thus from ��	� there exists a ���MI� � 
 such that

���MI�d���MI� � dMI
���� ����

However� since � � M�x�� is a valid multiplier set� we have that only the con�
straints �I � 
� ����� are violated Thus dMI

� jj�Ijj� The conclusion follows
from ���� by taking cI � �

���MI�
 The proof is complete

We de�ne
c� � max

I�f�����mg
cI � for feasible MI�x��� ����

Lemma �� There exists a neighborhood W of x� such that� 	x �W�� �M�x��
�I � 
 implies that there exists a �� �M�x�� with ��I � 
�
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Proof� Assume the contrary Then there exists a sequence xk � x� such that
there exists �k � M�x� and an index set I for which �I � 
� but ��I �� 
�
	�� � M�x�� Since there is only a �nite set of index sets� we can extract an
in�nite subsequence for which the above happens for a �xed set I By extracting
another subsequence� we can assume that �k is convergent� from ���� and the
fact that M�x�� is compact

But then �k � �� � M�x�� and ��I � 
� a contradiction

From here on we will use extensively that� for h twice continuously di�eren�
tiable� we have

jjh�x��h�x���
�rh�x� �rh�x���T

	
�x�x��jj � ��h�jjx�x�jj�jjx�x�jj�� ��
�

where ��h�z� � IR � IR is a continuous function with ��h�
� � 
 Indeed by
Taylor�s theorem we have that there exist continuous functions ��

�h�z� � IR� IR

and ��
�h�z� � IR� IR with ��

�h�
� � ��
�h�
� � 


jjh�x�� h�x���rxh�x
��T �x � x���

�

	
�x� x��Trxxh�x

���x � x��jj

� ��
�h�jjx� x�jj�jjx� x�jj��

and

jj
�rxh�x� �rxh�x���T

	
�x� x���

�rxh�x�� �rxh�x���T

	
�x� x�� �

�

	
�x� x��Trxxh�x

���x� x��jj � ��
�h�jjx� x�jj�jjx� x�jj��

The relation ��
� now follows by comparing the last two equations

Theorem �� There exists a constant c� � 
 such that in a neighborhood of x�

we have that
jjdjj�� P �x� � �Tg��x� � c�jjx� x�jj�� ����

where �d� �� is the solution of the QP �����

Proof� From ����� there exists a �� �M�x�� such that jj�� ��jj � cdjjx� x�jj
Let I be the set of indices i for which �i � 
 We have jj��Ijj� � jj��I ��I jj� �

cdjjx � x�jj From ���� and Lemmas � and � there exists a �� � M�x�� with
��I � 
 and jj��� ��jj � c�jj�

�
Ijj� � c�cdjjx� x�jj As a result

jj�� ��jj � jj�� ��jj� jj�� � ��jj � �cd � cdc��jjx� x�jj ��	�

and �i � 
 
 ��i � 
 The important consequence of this fact� using the com�
plementarity relations from ����� is that

��i � ��i�gi�x� � 	�ig�x� � ���i � �i�g�x� �

����i � �i�rgi�x�Td� 	�igi�x� 	i� � � i � m�
����
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Indeed� �i � 
 implies gi�x��rgi�x�Td � 
� whereas �i � 
 implies ��i � 
 and
all the above equalities are 


From Lemma 	 we have that

�
�
jjx� x�jj� � f�x� � f�x�� � c�P �x� � ����

��f �jjx� x�jj�jjx� x�jj� � �
� �rf�x� �rf�x

����x � x�� � c�P �x� � ����

��f �jjx� x�jj�jjx� x�jj� � c�P �x�� ����
�
���d �rg�x���rg�x

�����T �x � x��� ����

Here �d� �� is a solution of ����� and �� � M�x�� satis�es ��� We also used
��
� We now employ the identity ab � cd � �

���a � c��b � d� � �a � c��b � d���
��	�� and Taylor�s theorem for rg�x� to get� by continuing from the previous
equation�

�
� jjx� x�jj� � ��f �jjx� x�jj�jjx� x�jj� ����

��
���d �

�
� �rg�x� �rg�x

����� � ��� ����

��
� �rg�x��rg�x

����� � ����T �x� x�� � c�P �x� � ��
�

���f �jjx� x�jj� � c�gcd�� � c��jjx� x�jj�jjx� x�jj�� ����

c�P �x�� �
�d

T �x� x��� �
	 ��rg�x� �rg�x

����� � ����T �x� x��� ��	�

We denote

�� � max
���M�x��

max
i����m

��i � ����

From ���� jj� � ��jj� � 	�� for x su�ciently close to x� By using ��� ��
��
���� and ��	�� we get

��
	 ��rg�x� �rg�x

����� � ����T �x� x�� � ����

��
	 �x� x��T ��rg�x� �rg�x����� � ���� � ����

	����g�jjx� x�jj�jjx� x�jj� � �
� ��� ���Tg�x� � ����

	����g�jjx� x�jj�jjx� x�jj�� �
��
�� � ��Trg�x�Td� �T g�x� � ����

	����g�jjx� x�jj�jjx� x�jj� � c�g�cd � cdc��jjx� x�jjjjdjj� �Tg��x�� ����

since ��T g�x� � �Tg��x� � �Tg��x� Using the above bound in ��	�� together
with �dT �x� x�� � jjdjjjjx� x�jj� we get

�
� jjx� x�jj� � ���f �jjx� x�jj� � c�gcd�� � c��jjx� x�jj� ����

	�����g�jjx� x�jj��jjx� x�jj�� ��
�

c�P �x� � jjdjjjjx� x�jj� c�g�cd � cdc��jjx� x�jjjjdjj� �Tg��x� � ����

c�P �x� � �Tg��x� �Bjjx� x�jjjjdjj� ��jjx� x�jj�jjx� x�jj�� ��	�

where B � �
� � c�g�cd � cdc�� and ��jjx � x�jj� � ���f �jjx � x�jj� � c�gcd�� �

c��jjx� x�jj� 	�����g�jjx� x�jj��
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We can now choose a su�ciently small neighborhood of x� such that ��jjx�
x�jj� � �

	 and subtract the last term of the last relation from the lower bound
�
� jjx � x�jj� We take A � �Tg��x� � c�P �x�� and with this new notation� we
get that

�

�
jjx� x�jj� � A �Bjjdjjjjx� x�jj� ����

We treat jjx � x�jj as a variable and� by using the formulas for the quadratic
equation� we get that

jjx� x�jj �
	

�
�Bjjdjj�

p
B�jjdjj�� A��� ����

By using the arithmetic�quadratic mean inequality� we get that

jjx� x�jj� � 

��

�	B�jjdjj�� A�� � ��
��
B�jjdjj�� 


�
��T g��x� � c�P �x�� ����

� maxf ��
��
B�� 


�
� 

�
c�g�jjdjj

�� P �x� � �T g��x��� ����

Choosing

c� �
�

maxf ��
��
B�� 


�
� 

�
c�g

����

we prove the claim

Corollary �� x� is an isolated stationary point�

Proof� Let x be another stationary point of the NLP in the neighborhood of x�

where the above theorem holds Therefore there exists a � � M�x� satisfying
��� Hence �d � 
� �� is a solution of ���� and d � 
 is the unique solution of the
strictly convex QP ���� Since d � 
� x is feasible from ���� and P �x� � 
 or
g � �g��x� Now from the complementarity conditions in ���� we get �T g� �
��T g � 
 From the previous theorem we get x � x�� which proves the claim

Corollary 	� If the second�order su	cient condition �
� is satis�ed for one
multiplier� and if MFCQ holds at x�� then x� is an isolated stationary point�

Proof� Since x� is satis�es the quadratic growth condition ��� under these as�
sumptions ����� and MFCQ holds� Corollary � applies


� An Example Without a Locally Convex Augmented Lagrangian

Consider the matrix

Q �

�
� 


 �	

�
� ����

Take u � �
p
�
�
� �
�
� We then have that uTQu � �

	
and jjujj� � � Since the vector

u� � ��� 
� corresponds to the positive eigenvalue� we have that for any u at an
angle of at most 	

� from u�� uTQu �
�
	 jjujj

� Consider now the rotation matrix

Uk �

�
cos�k		 � sin�k		 �
� sin�k		 � cos�k		 �

�
� ����
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De�ne Qk � UT
k QUk� for k � 
� ����We then have Q��Q� � Q��Q� � �I��

since Q� and Q� have the same axes of symmetry� but with the eigenvalues
switched Also� for any u � IR

�� there exists a k such that uTQku �
�
	 jjujj

�� since
the 	

� wide cones centered at the axis of the positive eigenvalues of Qk now sweep

the entire IR
�

Consider now the optimization problem

minz subject to z � �x y�Qk�x y�
T k � 
����� ��
�

By the previous observation� we have that z � �
	 �x

��y�� on the feasible set�

thus z � 
 Clearly� the only solution of the problem is �
� 
� 
� Since z � z�

	 � if

 � z � �� we have that z � �


�x
��y��z��� for all x� y� z feasible and 
 � z � �

Therefore at x� � �
� 
� 
� the quadratic growth condition is satis�ed for the
above NLP� with constant �


  Obviously� MFCQ holds at �
� 
� 
�� and a simple
calculation shows that

P
k����� �k � �� for �k a multiplier of ��
� In particular�

at least one multiplier has to be positive Also� at �
� 
� 
�� all constraints are
active and their gradients are �
� 
���� for any of them As a result� the linear
constraints in ��� now become either z � 
 or z � 
� with at least one being
z � 
 Therefore the critical cone at x� is C � f�x� y� z� � IR

�jz � 
g Also� from

���� if � �M�x��� then
P	

i�� �i � �
Assume that there is a choice � � M�x�� such that Lxx� the Hessian of the

Lagrangian� is positive semide�nite on the critical cone�

�x y z�

�P
k������kQk 



 


���x
y
z

�
A � 
� 	�x� y� z�� such that z � 
� ����

This is equivalent to X
k�����

�kQk � 
� ��	�

Since our construction is invariant to rotations with 	
	 �UT

� Q�U� � Q��� it follows
that the positive semi�de�niteness holds for any circular permutation � of this
multiplier set� X

k�����

���k�Qk � 
� ����

We denote by Ac��� the set of circular permutations of four elements Since the
set of positive de�nite matrices is a convex cone� andX

��Ac�	�

���k� � �� ����

we must have


 
�

�

X
��Ac�	�

X
k�����

���k�Qk �
�

�

X
k�����

Qk

X
��Ac�	�

���k� �
�

�

X
Qk �

��

	
I��

����
which is impossible Therefore Lxx cannot be positive semide�nite on the critical
cone for any choice � � M�x�� Hence the second�order conditions from ���	��
will not hold for any choice of the multipliers
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���� Augmented Lagrangian Approaches

Here we discuss the expected behavior of augmented Lagrangian techniques when
applied to this example For these methods� the inequalities of the NLP �	� are
converted into equalities ����� The feasible set can be represented as ���

gi�x� � ti � 
� ti � 
 for i � �� � � � �m�

The NLP is replaced by a bound�constrained optimization problem The equality
constraints are incorporated in the objective function based on an estimate � of
the multipliers and a penalty term�

min f�x� �
P	

i����i�gi�x� � ti� �
�
�
�gi�x� � ti�

��

subject to ti � 
� i � �� � � � �m�
����

Here � is the barrier parameter The objective function in ���� is the augmented
Lagrangian The problem is subjected to an additional trust�region constraint
��� to enforce global convergence

The desired outcome is to have � bounded away from zero and the trust�
region inactive as � approaches M�x�� and the solution of the above problem
approaches x�

If that happens for our example� then� by a continuity argument following
the lower boundedness of �� �x�� t � 
� should be a solution of ���� for an
appropriate choice of �� � Since ���� has linearly independent gradients of the
constraints� both the �rst and second order necessary conditions must hold ���
The �rst order necessary condition results in

rf�x� � �rg�x� � 
 ��  � 
  � 
�

where � with components i � 
� are the multipliers associated with the vari�
ables ti As a result � � M�x�� The second order necessary conditions require
that

r�x�t��x�t�Lj�x���� �

�
Fxx �

P	
i����iGxx �

�
�
rgi�x��rgi�x��T � �

�
rg�x��

�
�
rg�x��T �

�
I	

�

be positive semide�nite� at least on the subspace of ��x� �t� with �t � 
 This
results in


  Fxx �
	X

i��

��iGxx �
	

�
rgi�x

��rgi�x��T � �
�P	

i�� �iQi 


 


�

�
����

or


 

�P	
i�� �iQi 



 

�
�

�
����

We proved that the last matrix cannot be positive semide�nite for our ex�
ample and we thus get a contradiction This shows that� either the trust region
will be active arbitrarily close to x�� or �� 
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This also shows that the Hessian of the augmented Lagrangian of the equality
constrained problem

Fxx �
	X

i��

��iGxx �
	

�
rgi�x

��rgi�x��T �

is not positive semide�nite and thus the augmented Lagrangian of the equality
constrained problem cannot be locally convex

�� Linear Convergence of the SQP with Nondi�erentiable Exact
Penalty P x�

The points x considered in thus subsection are assumed to be su�ciently close
to x� The notation d and � �M�x� will refer to the solutions of ���� and ����
Also� P �x� is the L� penalty function ��
� and ��x� � f�x� � c�P �x�

���� Proof of the Technical Results

Lemma ��

P �x� 	d� � ��� 	�P �x� � c�g	
�jjdjj�� 		 � �
� ���

Proof� Since d is a feasible point of ����� we have that rgi�x�T d � �gi�x�� 	i �
f�� � � � �mg By Taylor�s remainder theorem

gi�x� 	d� � ��� 	�gi�x� � c�g	
�jjdjj�� 		 � �
� ��� 	i � �� � � � �m�

Hence

max
��i�m

fgi�x� 	d�g � ��� 	� max
��i�m

fgi�x�g� c�g	
�jjdjj�

� ��� 	�P �x� � c�g	
�jjdjj�� 		 � �
� ���

This completes the proof

Lemma �� There exist �	� 
 � �	 � �� and c� � 
 such that� for some ��� �
M�x�

��x� 	d�� ��x� � �	�
� ��d�

Td� 
P �x� � �T g��x�� �
�c�	�jjdjj�� P �x� � �T g��x��� 		 � �
� �	��

Proof� Writing the KKT conditions for ����� we obtain

d�rf�x� �
X
i���m

�irgi�x� � 


and� hence�

�d�Td�rf�x�T d�
P

i���m �irgi�x�
T d � 


�d�T d�rf�x�Td�
P

i���m �igi�x� � 
�
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since� by the complementarity conditions satis�ed by the solution of ����� �Trg�x�Td �
��T g�x�� 	i � ��m Therefore� since gi�x� � g�i �x� � g�i �x��

rf�x�T d � ��d�Td�
P

i���m �i�g
�
i �x�� g�i �x�� �

��d�T d� P �x��
P

i���m �i�� �T g��x� � ����

��d�Td� �c� � 
�P �x�� �Tg��x�

by ��
�� ���� By Taylor�s remainder theorem�

f�x � 	d� � f�x� � 	rf�x�Td� c�f	
�jjdjj��

Hence� for 	 � �
� ���

f�x � 	d� � c�P �x� 	d� � f�x� � 	rf�x�T d� c�f	
�jjdjj��

��� 	�c�P �x� � c�c�g	
�jjdjj� � f�x� � ��� 	�c�P �x��

	���d�Td� �c� � 
�P �x� � �T g��x�� � �c�c�g � c�f �	�jjdjj� �

f�x� � c�P �x�� 	��d�Td� 
P �x� � �T g��x�� � �c�c�g � c�f �	�jjdjj�

from ���� and Lemma � Therefore� for 	 � �
� ���

��x� 	d�� ��x� � �	��d�Td� 
P �x� � �T g��x�� � �c�c�g � c�f �	
�jjdjj��

The result of the statement follows by choosing �	 � minf�� �
��c�c�g�c�f �

g and

c� �
�
�
minf
� �g

Lemma �� There exists a constant c� such that� 	��� �M�x��

��x�� ��x�� � c��P �x� � jjx� x�jj� � �Tg��x� � jjdjj���

Proof� From ���� and the de�nition of the Lagrangian ��� it follows� using Tay�
lor�s theorem� that� for a su�ciently small neighborhood of x�

L�x� ��� �L�x�� ��� � �jjx� x�jj� 	���� �M�x���

where � � maxfc�f � c�c�gg Also� by ����� we can choose �� �M�x�� such that

jg�x�T ��� � ��j � c�gcdjjx� x�jj��

Since L�x�� ��� � f�x��� we have that

f�x� � f�x��� �jjx� x�jj� � ���T g�x� � ��
�

��� ���T g�x� � c�gcd�jjx� x�jj�� ����

and� thus

f�x� � f�x�� � �� � c�gcd�jjx� x�jj� � ���Tg�x� ��	�

� �� � c�gcd�jjx� x�jj� � �T g��x�� ����

Therefore

f�x� � c�P �x�� f�x�� � �� � c�gcd�jjx� x�jj� � c�P �x� � �T g��x��

The conclusion of the lemma follows by choosing c� � maxf� � c�gcd� c�� �g
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��� Nondi�erentiable Exact Penalty Algorithms and the Linear Convergence
Theorem

The linearization algorithm ��� p��	� has the following form�

� Set k � 
� choose x�
	 Compute dk from ����
� Choose 	k from a line search procedure� and set x�k��� � xk � 	kdk
� Set k � k � � and return to Step 	

The stepsize 	k is chosen by one of the following procedures ��� p��	�

�a� Minimization rule Here 	k is chosen such that

��xk � 	kdk� � min

��

f��xk � 	dk��g

�b� Limited minimization rule Here a �xed scalar s � 
 is selected� and 	k is
chosen such that

��xk � 	kdk� � min

��� s�

f��xk � 	dk�g�

�c� Armijo ruleHere �xed scalars s� � � and � with s � 
� � � �
� ��� and � � �
� ���
are chosen and we set 	k � �mks� where mk is the �rst nonnegative integer
m for which

��xk� � ��xk � �msdk� � ��ms�dk�Tdk�

It can be shown that the Armijo rule yields a stepsize after a �nite number of
iterations

The following theorem establishes the convergence properties of the lineariza�
tion algorithm The global convergence properties� established in �	� Prop �����
are also stated here for completeness

Theorem 	� Let xk be a sequence generated by the linearization algorithm�
where the stepsize 	k is chosen by the minimization rule� limited minimiza�
tion rule or the Armijo rule� Then any accumulation point of the sequence xk

is a stationary point of ��x� � f�x� � c�P �x�� If xk � x�� where x� is a strict
local minimum of the problem �� satisfying the local quadratic growth ��� and
the Mangasarian�Fromowitz constraint quali�cation ���� then ��xk� � ��x��
Q�linearly and xk � x� R�linearly�

Proof� The �rst part is an immediate consequence of �	� Prop ���� We prove
the linear convergence statement only for the Armijo rule� the proof being similar
for the other stepsize selection mechanisms By Lemma �

��xk� � ��xk � 	dk� � 	�
���d

k�Tdk � �
�P �xk� � ��k�T g��xk�

� 	�
��d

k�T dk � �	�dk�Tdk
����

for all 	 � �
� �	� Since mk is the smallest integer m for which



Degenerate Nonlinear Programming with a Quadratic Growth Condition ��

��xk� � ��xk � �msdk� � ��ms�dk�T dk�

it follows that �ms � � �	 This therefore ensures that the stepsize is at least � �	
for k su�ciently large As a result of Lemma �� we have that

��xk�� ��x�k���� � c�� �	�jjd
kjj� � P �xk� � ��k�Tg��xk��� ����

On the other hand� by Lemma � we have that

��xk�� ��x�� � c��P �xk� � jjxk � x�jj� � jjdkjj�� ��k�Tg��xk���

By Theorem ��� and the previous relation it follows that there exists c� �
c��� � c�� such that

��xk� � ��x�� � c����k�Tg��xk� � P �xk� � jjdkjj�� � ����
c�

� �
c�
���xk�� ��xk���� � ����xk�� ��xk���� � ����

����xk� � ��x���� ����x�k����� ��x���� ����

by using Lemma � and where � � c�
� �
c�

 After some obvious manipulation� it
follows that

����x�k����� ��x��� � �� � �����xk� � ��x����

which proves the Q�linear convergence ���� of the sequence ��xk� to ��x�� with
a linear rate of at most ��


 Therefore

lim sup
k��

k
q
��xk� � ��x�� �

� � �

�
�

From Lemma 	

��xk�� ��x�� � �jjxk � x�jj��

Therefore

lim sup
k��

k
q
jjxk � x�jj � �

� � �

�
�
�
� �

which proves the R�linear convergence ���� to 
 of the sequence xk � x� The
proof is complete

Following the techniques from ���� we can extend the result for the case where
the matrix H of the QP is not I but changes from iteration to iteration The
only condition is that the sequence of strictly convex Hk be uniformly upper
and lower bounded
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Iteration ��xk����x��

��xk������x� �

� ��		
� ��		
�� ����
�� ����
�� ��		
�� ��		

Table �� Rates of convergence for the L� penalty algorithm

Iteration �New� Penalty Parameter Trust Region Radius jjjj�
�
 �e�� ��� e�	�
�� �e�� ��� e�	�
� �e�
 ���� e�	�
��� �e� ���� e�	�
�	� �e��	 ��� e�	

��� �e��� ���	 e�	

�
 �e��� ����
�� �e��
 ���� e	�
��� �e�� ���� e	�
��
 STOP

Table �� Reduction of the penalty parameter � for LANCELOT

�� Numerical Experiments with Degenerate NLP

We experimented with several nonlinear programming packages on the exam�
ple from Section � Certainly� comparing the behavior of NLP algorithms on a
unique degenerate example cannot result in a complete characterization Nev�
ertheless� it may be of interest to determine whether methods using augmented
Lagrangians will really encounter problems when solving an example without
a positive semide�nite augmented Lagrangian We also desire to validate the
theoretical conclusions of the preceding sections

We have shifted the origin for our example� to avoid one step convergence of
algorithms that start at 
� 
� 
 by default The algebraic form of the example is

minz
sbjto� g��x� y� z� � �x� ��� � 	�y � ��� � z � 


g��x� y� z� � ��
�
��x� ��� � �y � ���� � ��x� ���y � ��� z � 


g��x� y� z� � �	�x� ��� � �y � ��� � z � 

g��x� y� z� � ��

�
��x� ��� � �y � ���� � ��x� ���y � ��� z � 
�

����

From our analysis� we have that w� � ��� �� 
� is a minimum satisfying the
quadratic growth condition ��� with z � 
 � �


 ��x � ��� � �y � ��� � z�� for
feasible �x� y� z� near w� The feasible set is described in Figure � In the lateral
view� the quadratic growth at ��� �� 
� is fairly obvious from the curvature of the
ridges that appear at the intersection of two constraints From the shape of the
feasible set it is also clear that ��� �� 
� is the unique stationary point of the NLP

Among the solvers we used� MINOS ���� and SNOPT ���� use quasi�Newton
methods that do not require second�order derivatives of the constraints They
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Feasible set: view from above. Center: (1,1,0)
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Feasible set: lateral view.

Fig� �� Feasible set of the nonlinear program ��� �����	� is the local minimum satisfying the
quadratic growth condition ���� The jagged edges in the lateral view are a meshing e�ect�

also use an augmented Lagrangian as a merit function DONLP	 �	�� solves a
linear system instead of a Quadratic Program at each iteration and uses an L�

penalty function LANCELOT ��� uses an augmented Lagrangian technique in
conjunction with a trust�region FilterSQP ��� also uses a trust region approach
but with a special classi�cation of the relative merits of the iterates instead of
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Nonlinear solver jjxfinal � x�jj� Iterations Message at termination
DONLP� ����e��
 � Success
FilterSQP ���
e�	� � Convergence
LANCELOT �
�e�	� ��
 Step size too small
LINF ��	�e�	 � Step size too small
LOQO ��
	e�	� �		 Iteration limit
LOQO ���	e�	� �			 Iteration limit
MINOS ���
e�	
 �� Current point cannot be improved
SNOPT ����e�	� � Optimal Solution Found

Table �� Runs with various nonlinear solvers on the problem ���

a penalty or merit function LOQO �	�� is an interior�point approach Finally�
LINF is an ad hoc Matlab implementation of the L� exact penalty function
described in the preceding section� with an Armijo rule The latter algorithm is
started at �
� 
� 
� All runs� except for the L� penalty and FilterSQP algorithms�
were done on the NEOS server ����� where additional documentation can be
found for all of the above solvers

For such a small example the time of execution is not relevant in comparing
the behavior of the solvers Since the solution of the problem is known� we chose
as a criteria for comparison the best achievable solution We set all relevant
tolerances to �e� ��� via the AMPL interface of NEOS Smaller tolerances may
interfere with the machine precision� though most of the solvers gave comparable
answers even when the tolerances are set to �e� 	
 Larger tolerances ��e� �	�
�e���� again resulted in very similar results Whenever allowed� we also changed
other limiting parameters until an intrinsic stopping decision was issued The
only exception was DONLP	 which converged to all digits in the mantissa with
the default settings

Table � shows the ratios ��xk����x��
��xk������x�� at various iterations for our imple�

mentation LINF All are close to ��

� which is consistent with the Q�linear
convergence claim for ��x�

Table 	 shows that LANCELOT decreases succesively the value of the penalty
parameter �by �� orders of magnitude�� until it stops with the message �Step size
too small� This was indeed one of the alternatives allowed by our analysis in
Subsection �� �� � 
� This is an undesirable outcome since the subproblems
���� may become harder to solve

The results for all runs are illustrated in Table � It can be seen that the
solvers that use augmented Lagrangians MINOS� SNOPT� LANCELOT exhibit
an error of at least one order of magnitude larger compared to all other algo�
rithms However� one would expect that SNOPT and MINOS would have had
at least as good a behavior as LINF if they would use a di�erent merit function�
since the nature of the QP solved is very similar to ���� Increasing the iteration
limit in LOQO did not result in a better outcome It is interesting to note that
the outcome in FilterSQP and LINF di�er by only a factor of 	 in the same
number of iterations� though FilterSQP uses second�order information whereas
LINF does not Both LINF and FilterSQP solve quadratic programs at each
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iteration DONLP	 has a remarkable behavior� though further investigation is
necessary to determine whether this has some general implications

It is impossible to draw a general conclusion from one example However�
there seems to be an adverse bias for methods using augmented Lagrangians on
degenerate NLPs as the one above We are not advocating the use of LINF on
general NLP� since its similarity to steepest descent makes it very sensitive to
ill�conditioning But the fact that it gives an outcome comparable to the one of
solvers using second�order information shows that� for better results� a di�erent
way of incorporating second�order derivatives may be necessary

�� Conclusions

In this work we analyze the behavior of nonlinear programs in presence of con�
straint degeneracy� linear dependence of the gradients of the active constrains
The problems of interest exhibit minima with a quadratic growth property that
satisfy the Mangasarian�Fromowitz constraint quali�cation The novelty of our
approach is that� while studying the SQP convergence properties� we do not
assume the positive semide�niteness of the Hessian of the Lagrangian on the
critical cone for any of the feasible Lagrange multipliers Our conditions are
equivalent to a weak second�order su�cient condition ����		�

We prove that� under these assumptions� if the data of the problem are twice
continuously di�erentiable� the target minimum will be an isolated stationary
point of the NLP We also show that� when started su�ciently close to the
minimum� the L� exact penalty SQPs induce Q�linear convergence of the values
of the penalized objective ��x� � f�x�� c�P �x� and R�linear convergence of the
iterates This shows that such methods are robust with respect to constraint
degeneracy

We give an example of a nonlinear program with a unique minimum that
satis�es our conditions for which the Hessian of the Lagrangian is not positive
semide�nite on the critical cone for any feasible choice of the multipliers The
direct consequence of this fact is that there is no augmented Lagrangian that
will be positive semide�nite at the solution Therefore� Lagrange multipliers
algorithms will have to drive the penalty parameter to zero for such examples
unless the trust region is active even at convergence

We provide our computational experience with this small nonlinear program
As a criteria for comparison we used the best achievable solution� which was ob�
tained after tuning the parameters of the algorithms We observed that� for
this example� algorithms that use augmented Lagrangians resulted in errors of
one order of magnitude or larger when compared to the other approaches The
Lagrange multiplier package that we used �LANCELOT ����� was con�ned to de�
crease substantially the value of the penalty parameter ��� orders of magnitude��
which is one of the outcomes allowed by our analysis The linear convergence
results concerning the L� penalty function were also validated by our experi�
ments
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Undoubtedly� such a small experiment is insu�cient to draw any conclusions�
especially about the approaches for which we have no theory under these assump�
tions� such as interior�point algorithms However� both from our theory and our
experiments� it does appear that methods that use augmented Lagrangians are
less robust with respect to constraint degeneracy when compared to SQP

We believe that attempting to develop a convergence theory in absence of the
usual second�order conditions is interesting because it may result in algorithms
that are more robust by virtue of the fact that their properties depend on fewer
assumptions However� how to improve on the current results� and especially
how to de�ne reliable variants of the Newton method �if possible� for this case�
is a subject of future research
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A� Other runs with degenerate LCP

This section will not appear in the journal submission

A��� Limited Validity of Second Order Conditions

The example used here is

minz
subject to� g��x� y� z� � �x� ��� � 	�y � ��� � z � 


g��x� y� z� � �c�x� ��� � �y � ��� � z � 

g��x� y� z� � ��x� ��� � �y � ��� � z � 
�

��
�

The last constraint is redundant If c � 
��� the problem has a unique solution
and a unique stationary point� ��� �� 
� in the feasible region Also� at the optimal
point there is a speci�c choice of multipliers that makes the Hessian matrix
positive de�nite on the null space of the gradients of the active constraints This
choice is �

���
��� 
� 
� with 
 of appropriate value � 
 � 	� What is particular

about this problem is that the size of the multipliers that satisfy the second�
order su�cient conditions is small compared with the size of the multiplier set
�if c � 
��� no multiplier satis�es the second�order su�cient conditions�

The di�culty of the problem resides in the geometry of the feasible set This
consists of two linear �in projection on the �x� y� plane � ridges with steep walls�
but with slow descent� as shown in Figure A� The slope of the descent along
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this ridges is controlled by c If c � 
��� that slope becomes 
 Thus the danger
is that an optimization algorithm will get stuck in the ridge and� unless the
ratio of the constrained gradient to the curvature is evaluated correctly� a stop�
optimality decision may be issued by the NLP solver before reaching the true
minimum Note that along the ridge the objective function is convex quadratic�
thus� one Newton step �of the equality�constrained problem de�ning the ridge�
would get any point on the ridge to ��� �� 
�� the true solution

The problem becomes increasingly ill�conditioned as c � 
�� However� to
demonstrate that the di�culty of the problem lies with the description of the
feasible primal�dual set �as done by most NLP solvers� and not with the size
of the curvature� we construct what we call the convexi�ed problem Convexi�
�cation involves replacing all constraints with a single constraint generated by
adding all constraints with weights that are proportional to a set of multipliers
satisfying the second�order su�cient condition ���� 
� 
���

minz
subject to� g��x� y� z� � 
g��x� y� z� � 
�

����

The performance of the algorithm on this problem is arguably a good estimate
of the performance of the method when a set of multipliers that satis�es the
second�order su�cient conditions is chosen� since the curvature of the convexi�ed
problem is now close to the one in the ridges The results of the algorithms on
this problem are reported in the result tables under  Convexi�ed!

The problem was solved by the same nonlinear programming packages The
results are reported in the following tables� indexed by the value of c� for all
solvers except the L� penalty algorithm Although convergence to the correct
solution was observed for c � 
��� and c � 
����� the number of iterations to
reach a precision of �e � � was in the thousands for this algorithm� because of
the absence of scaling with second�order derivatives Although the theoretical
results are con�rmed� this algorithm would fail if the stop criteria from the other
solvers were to be applied

All other algorithms reported success � optimal solution found  � This
problem seems to have the biggest impact on SNOPT While the e�ect de�
scribed above is at a moderate level� c � 
���� SNOPT gives almost 	" relative
error� while on the convexi�ed problem the solution is exact to almost all digits
reported At c � 
������ the error is almost ��"� while on the convexi�ed prob�
lem� again� the result is correct to all reported digits Similar e�ects are seen
with MINOS and� to a smaller extent� LANCELOT and DONLP	 For MINOS
and SNOPT the result is expected to a certain extent because none of them uses
second�order derivative information� which is important if the algorithm is to
advance correctly from one of the ridges

At the time of this experiment� it was not possible to change the toler�
ance from within the NEOS server This is another reason why it is di�cult
to judge the relative performance of the solvers However� we note that LOQO
and FilterSQP proved more robust for the following reason For a given ideal
algorithm the expectation is that maintaining the tolerance level but worsening
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Solver Type x� x� x� ITERATIONS
True Solution ��	 ��	 	�	
DonLP� ������ ��			�
 ��������E��� 
LANCELOT ��				� ��				� �
�
��	�e�	� �
LOQO 	�����	� 	�����	� ���	��e��� ��
MINOS 	������
 	������ �������e��� ��
SNOPT 	����� 	������ �������e��� 

FilterSQP 	������� 	������� 	 ��

Convexi�ed with � � ��	�
MINOS � 	������� �����
e���
SNOPT ��				� � ������
e�	�

Table �� Example ��	� with c � 	���

Solver Type x� x� x� Iterations
True Solution ��	 ��	 	�	
DONLP� ������� ������� �
��
�
E��	 
LANCELOT 	������ 	���� ������e�	� �
LOQO 	�����	� 	������� ���	���e��� �

MINOS 	������� 	���
	 ����	
��e�� ��
SNOPT 	��

�� 	���
��� �����	�e��� 

FilterSQP 	������� 	������� 	 ��

Convexi�ed with � � ��		�
MINOS ��				� ��				� ������	�e��	
SNOPT ��				� � ����
���e�	

Table �� Example ��	� with c � 	����

Solver Type x� x� x� Iterations
True Solution ��	 ��	 	�	
DONLP� ������� ����	� ���
����E��	 
LANCELOT 	����
�� 	������ 
���
�
e�	
 �	�
LOQO 	����� 	�����
� �����
e��� ��
MINOS 	����� 	����	� ����	��e��� ��
SNOPT 	�
�
 	��	��	� 
������e��� 

FilterSQP 	������� 	������� 	 ��

Convexi�ed with � � ��			�
MINOS 	������� 	������� ������e���
SNOPT � � �������e�	

Table 	� Example ��	� with c � 	�����

the conditioning of the problem will result in more iterations� but comparable
accuracy �at least in the initial stages� when the e�ect of errors in the data is
not visible� However� SNOPT and DONLP	� and to a lesser extent MINOS
and LANCELOT� had a small variation in the number of iterations� but large
variations in the accuracy of the outcome On the other hand� FilterSQP and
LOQO had a substantial increase in the number of iterations� but produced it�
erates of similar quality Because of the complexity of the packages� it is hard to
pinpoint the reason for this behavior� however� it is probably related to the fact
that DONLP	� MINOS� LANCELOT� and SNOPT use only approximations of
the second�order derivatives of the constraints
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Solver Type x� x� x� Iterations
True Solution ��	 ��	 	�	
DONLP� �	������� 	����	�
 �����e�	
 �
LANCELOT 	��
�� 	�
����� ��	�
	�e�	
 ��
LOQO 	�����	� 	������� ��	����e��
 ��
MINOS 	�
���� 	��	�	

 ��	���
e�	� ��
SNOPT 	������� 	�	���� 
�
��
�e��� �
FilterSQP 	������� 	������� 	 ��

Convexi�ed with � � ��				�
MINOS ��		�
� ��		��
 ����
	�e��	
SNOPT ��		��� 	������� �����	�
e�	�

Table �� Example ��	� with c � 	������

Solver Type x� x� x� Iterations
True Solution ��	 ��	 	�	
DONLP� �	������� 	����	
� �����e�	� �
LANCELOT �	������ 	��	���� ������e�	
 �	
LOQO 	������
 	�����	� ���
���e��� ���
MINOS �	����� 	����	� ���
��e�	� �
SNOPT �	���	�� 	������� �����e�	� 

FilterSQP 	������� 	������� 	 ��

Convexi�ed with � � ��					�
LOQO� ��			�� ��		�� ��

	��e�	
MINOS 	������� 	 ���
�	�e�	�
SNOPT �e�	
 	 ������e�	�

Table 
� Example ��	� with c � 	�������

A�� Discussion

Figures � and A� show that the feasible set is contained in a strictly convex
rotation paraboloid and� at least for the �rst example� is reasonably well behaved
� f�x��f�x�� � �


 jjx�x
�jj� for x feasible in a neighborhood of x� Therefore both

examples have a simple� strictly convex relaxation that has the same solution
point as the original one If that constraint were added to the problem� in the
case of the �rst example the second�order su�cient condition would hold for at
least one choice of multipliers

The approach that seems to work robustly for both examples is the one pro�
vided by LOQO However� given their initial scope� MINOS and SNOPT have
also shown fairly robust behavior� since� as opposed to interior�point approaches�
they are designed to work for relatively high tolerances DONLP	� FilterSQP
and LANCELOT drift far away of the region of interest for ����� although Fil�
terSQP has proven very stable to the ill�conditioning of the second problem
The availability of second�order derivative information has resulted in substan�
tially better stability of the end results Finally� the L� algorithm analyzed in
this paper has con�rmed the theoretical results� although it cannot compete for
ill�conditioned problems� as expected from its similarity to the steepest descent
algorithm of unconstrained optimization The results of some algorithms on the
convexi�ed problem seem to indicate that there would be a real computational
bene�t in identifying the multipliers for which second�order su�cient conditions
hold


