
Terascale Spectral Element Algorithms and ImplementationsH. M. Tufo1 and P. F. Fischer2August 6, 1999AbstractWe describe the development and implementation of an e�cient spectral element code formultimillion gridpoint simulations of incompressible 
ows in general two- and three-dimensionaldomains. Key to this e�ort has been the development of scalable solvers for elliptic problemsand a stabilization scheme that admits full use of the method's high-order accuracy. We reviewthese and other recently developed algorithmic underpinnings that have resulted in good paralleland vector performance on a broad range of architectures and that, with sustained performanceof 319 GFLOPS on 2048 nodes of the Intel ASCI-Red machine at Sandia, readies us for themultithousand node terascale computing systems now coming on line at the DOE labs.1 IntroductionOne of the primary motivations driving high-performance computing is to augment scienti�c exper-iments as a means of investigation. To this end, we are working with several collaborators on thedevelopment and use of a spectral element code for comparative numerical and experimental studieson challenging problems in 
uid mechanics and heat transfer. As illustrated in Fig. 1, these problemsinclude the generation of hairpin vortices resulting from the interaction of a 
at-plate boundary layerwith a hemispherical roughness element [25, 26]; 
ow in a carotid artery; Rayleigh-Taylor instabili-ties [28]; forced convective heat transfer in grooved and grooved-
at channels [12]; and modeling thegeophysical 
uid 
ow cell (GFFC) space laboratory experiment of buoyant convection in a rotatinghemispherical shell [14]. This paper presents a brief overview of the critical algorithmic and imple-mentation features of our numerical approach that have led to e�cient simulation of these problemson modern parallel architectures.Our simulations are based on numerical integration of the unsteady incompressible Navier-Stokesequations, @u@t + u � ru = �rp+ 1Rer2u�r � u = 0;coupled with appropriate boundary conditions on the velocity, u. Temporal discretization is basedon stable, high-order, operator-splitting formulations that permit large time steps (typ. a convec-tive CFL of 1{5). Spatial discretization is based on spectrally convergent, high-order, weightedresidual techniques employing tensor-product polynomial bases on deformed quadrilateral or hex-ahedral elements. The resultant symmetric systems are solved using conjugate gradient iterationwith scalable Jacobi and additive Schwarz preconditioners. For the latter, we have developed a fastparallel coarse-grid solver that readily scales to thousands of processors. The tensor-product baseslead to matrix-free operator evaluations having favorable storage and work estimates of O(KNd)and O(KNd+1), respectively, for discretizations in lRd involving K elements of order N . Moreover,the tensor-product-based operator evaluation can be cast as matrix-matrix products, implying thatthe work complexity estimate has an extremely low constant on modern cache-based architectures.Because the weighted residual formulation requires only C0 continuity, the use of boundary-minimal1Center on Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637.2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.1
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Figure 1: Recent spectral element simulations. Clockwise from top left: hairpin vortex generationin wake of hemispherical roughness element (Re� = 700); 
ow in a carotid artery; two-dimensionalRayleigh-Taylor instability; temporal-spatial evolution of convective instability in heat-transfer aug-mentation simulations; spherical convection simulation of the geophysical 
uid 
ow cell (GFFC) atRa = 1:1� 105, Ta = 1:4� 106.bases implies that the stencil depth does not increase with order, and interprocessor communicationcosts are consequently equivalent to standard low-order formulations.Our production code runs on a number of di�erent platforms, including the Cray T3E, the SGIOrigin2000, the IBM SP, networks of workstations, and the ASCI-Red machine at Sandia. Thecode handles general axisymmetric, two-dimensional, and three-dimensional 
ow con�gurations;supports a broad range of boundary conditions for hydrodynamics and multiple-species transport;and is currently being used for a variety of applications, as illustrated in Fig. 1. For performancebenchmarking, we consider the �rst of these, the interaction of a 
at-plate boundary layer withan isolated hemispherical roughness element, at Reynolds number Re� = 1600. Simulations of thehairpin vortex problem have been run on 2048 333 MHz nodes of ASCI-Red in both in single- anddual-processor mode, with sustained performance of 319 GF being achieved for the latter.The paper is organized as follows. Section 2 provides an overview of the spectral element method.Section 3 discusses matrix-free operator evaluation. Section 4 gives a brief outline of the timeadvancement scheme. Section 5 describes the principal components of the linear solvers. Section 6discusses implementation and tuning issues. Performance results for simulations on ASCI-Red arepresented in Section 7. A brief conclusion is given in Section 8.2
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Figure 2: Spectral element discretization in lR2 showing gl nodal lines for (K;N ) = (3; 4).2 Spectral Element DiscretizationThe spectral element method is a high-order weighted residual technique developed by Patera andcoworkers in the '80s that couples the tensor product e�ciency of global spectral methods with thegeometric 
exibility of �nite elements [18, 21]. Locally, the mesh is structured, with the solution,data, and geometry expressed as sums of N th-order tensor product Lagrange polynomials, based onthe Gauss or Gauss-Lobatto (GL) quadrature points. Globally, the mesh is an unstructured arrayof K deformed hexahedral elements and can include geometrically nonconforming elements. Thediscretization is illustrated in Fig. 2, which shows a three-element mesh in lR2 with the GL grid forthe case N = 4. Also shown is the reference (r; s) coordinate system used for all function evaluations.Functions in the mapped coordinates are of the formu(xk(r; s))��
k = NXi=0 NXj=0 ukijhNi (r)hNj (s) ; (1)where ukij is the nodal basis coe�cient; hNi is the Lagrange polynomial of degree N based on theGL quadrature points, f�Nj gNj=0; and xk(r; s) is the coordinate mapping from the reference domain,
̂ := [�1; 1]d, to 
k. The use of the GL basis for the interpolants leads to e�cient quadrature forthe weighted residual schemes and greatly simpli�es operator evaluation in the case of deformedelements.For problems having smooth solutions, such as the incompressible Navier-Stokes equations, ex-ponential convergence is obtained with increasing N , despite the fact that only C0 continuity isenforced across element interfaces. This is demonstrated in Table 1, which shows the error in com-puted growth rates when a small-amplitude Tollmien-Schlichting wave is superimposed on planePoiseuille channel 
ow at Re = 7500, following [9, 20]. The amplitude of the perturbation is 10�5,implying that the nonlinear Navier-Stokes results can be compared with linear theory to about �vesigni�cant digits. From Table 1, it is clear that doubling the number of points in each spatial di-rection yields several orders of magnitude reduction in error, implying that just a small increase inresolution is required for very good accuracy. The signi�cance of this is underscored by the factTable 1: Spatial and temporal convergence, Orr-Sommerfeld problem, K = 15�t = 0:003125 N = 17 2nd Order 3rd OrderN � = 0:0 � = 0:2 �t � = 0:0 � = 0:2 � = 0:0 � = 0:27 0.23641 0.27450 0.20000 0.12621 0.12621 171.370 0.020669 0.00173 0.11929 0.10000 0.03465 0.03465 0.00267 0.0026811 0.00455 0.01114 0.05000 0.00910 0.00911 161.134 0.0004013 0.00004 0.00074 0.02500 0.00238 0.00238 1.04463 0.0001215 0.00010 0.00017 0.01250 0.00065 0.00066 0.00008 0.000083
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Figure 3: Vorticity contours for high Reynolds number simulations of shear layer roll-up at di�erent (K;N)pairings: (a{d) \thick" shear layer, � = 30, Re = 105, contours from -70 to 70 by 140/15; (e{f) \thin" shearlayer, � = 100, Re = 40; 000, contours from -36 to 36 by 72/13 (cf. Fig. 3c in [4]).that, in three dimensions, the e�ect on the number of gridpoints scales as the cube of the relativesavings in resolution.While accuracy is important for simulation it is equally necessary to have stability. We haverecently developed a �lter-based stabilization procedure for spectral element methods that greatlyimproves their performance in high-Reynolds number applications [11]. The �lter is applied onceper timestep and only requires (inexpensive) local interpolation to suppress the N th mode in eachelement. The parameter � in Table 1 re
ects the strength of the �lter, with � = 0 implying no�ltering and � = 1 implying complete suppression of the N th mode. The results in Table 1 showthat the �lter slightly degrades spatial accuracy, but that exponential convergence is nonethelessattained. More remarkable are the temporal convergence results, which show that O(�t2) andO(�t3) convergence is attained for the �ltered case, despite the fact that the third-order schemeon its own (� = 0) is unstable. In this case, the stability provided by the �lter permits the use ofhigher-order temporal schemes, thereby allowing a larger timestep for a given accuracy.The bene�ts of the stable high-order schemes are perhaps best demonstrated by results in Fig. 3for the high Reynolds number shear layer roll-up problems studied in [3, 4]. Doubly periodic bound-ary conditions are applied on 
 := [0; 1]2, with initial conditionsu = � tanh(�(y � 0:25)) for y � 0:5tanh(�(0:75� y)) for y > 0:5 ; v = 0:05 sin(2�x) :Each case consists of a 16 � 16 array of elements, save for (e), which is 32� 32. The timestep sizeis �t = :002 in all cases, corresponding to CFL numbers in the range of 1 to 5. Without �ltering,we are unable to simulate this problem at any reasonable resolution. In (a), we see the results justprior to blowup for the un�ltered case with N = 16, corresponding to an n � n grid with n = 256.Un�ltered results for N = 8 (n = 128) and N = 32 (n = 512) are similar. Filtering with � = 0:3yields dramatic improvement for n = 256 (b) and n = 128 (d). Although full projection (� = 1) isalso stable, it is clear by comparing (c) with (d) that partial �ltering (� < 1) is preferable. Finally,(e) and (f) correspond to the di�cult \thin" shear layer case [4]. The spurious vortices in (e) areeliminated in (f) by increasing the order to N = 16 at �xed resolution (n = 256). We note that theconverged result in (f) was unattainable by the second- or fourth-order schemes considered in [4] atresolutions of n = 512 or n = 256, respectively. 4



3 Operator EvaluationThe computational e�ciency of spectral element methods derives from their tensor product bases(1). To illustrate, we express the sti�ness matrix for an undeformed element k in lR2 as a tensorproduct sum of one-dimensional operators,Ak = bBy 
 bAx + bAy 
 bBx ; (2)where bA� and bB� are the one-dimensional sti�ness and mass matrices associated with the respectivespatial dimensions. If uk = ukij is the matrix of nodal values on element k, then a typical matrix-vector product required of an iterative solver takes the form(Akuk)lm = NXi=0 NXj=0( bBy;mj bAx;liukij + bAy;mj bBx;liukij) (3)= bAxuk bBTy + bBxuk bATy :The latter form illustrates how the tensor product basis leads to matrix-vector products (Au) beingrecast as matrix-matrix products, a feature central to the e�ciency of spectral element methods.Similar forms result for other operators and for complex geometries. For example, evaluation ofthe discrete Laplacian for a deformed hexahedral element in lR3 takes the formAkuk = 0@ DrDsDt 1AT0@ Grr Grs GrtGrs Gss GstGrt Gst Gtt 1A0@ DrDsDt 1Auk ; (4)where Dr = (I 
 I 
 D̂), and so forth, and the Gij's are diagonal matrices of order (N + 1)3 thatcombine the quadrature weights with the Jacobian and metrics associated with the transformationfrom the physical to computational domain. The total work per element for the evaluation of (4)is 12N4 + 15N3. As the main memory to cpu bandwidth on modern cache-based architectureslags processor performance, an important criterion in algorithm selection is the number of requiredmemory references. The total number of such references is 7N3 per element, which is on par withstandard low-order schemes. Note that Ak in (4) is full, implying that the work and storage wouldbe O(N6) if it was explicitly computed and stored. Similar storage and memory access requirementshold for the other operator evaluations.4 Time AdvancementThe Navier-Stokes time advancement is based on the second-order operator-splitting methods de-veloped in [2, 19]. The convective term is expressed as a material derivative, and the resultant formis discretized via a stable second-order backward-di�erence formula:~un�2 � 4~un�1 + 3un2�t = S(un) ;where S(un) is the linear symmetric Stokes problem to be solved implicitly, and ~un�q is a velocity�eld at time step n � q that is computed as the explicit solution to a pure convection problem.The subintegration of the convection term permits values of �t corresponding to convective CFLnumbers of 1{5, thus signi�cantly reducing the number of (expensive) Stokes solves.The Stokes problem is of the form� H �DT�D 0 �� unpn � = � Bf0 �and is also treated by second-order splitting, resulting in subproblems of the formHuni = f i ;5



L = 0L = 26 L = 0L = 26�Figure 4: Iteration count (left) and residual history (right) with and without projection for a1,658,880 degree-of-freedom pressure system associated with spherical convection problem of Fig. 1.for the each velocity component (i = 1; : : : ; 3), andEpn = gn :Here, H is a diagonally dominant Helmholtz operator representing the parabolic component of themomentum equations and is readily treated via Jacobi-preconditioned conjugate gradients; E :=DB�1DT is the Stokes Schur complement governing the pressure; and B is the (diagonal) massmatrix in the velocity space. E is a consistent Poisson operator and is e�ectively preconditioned byusing an overlapping additive Schwarz procedure based on low-order Laplacians [9, 10].5 SolversE�cient solution of the Navier-Stokes equations in complex domains depends on the availability offast solvers for sparse linear systems. For unsteady incompressible 
ows, the pressure operator isthe leading contributor to sti�ness, as the characteristic propagation speed is in�nite. Our pressuresolution procedure involves two stages. First, we exploit the fact that we are solving similar problemsfrom one step to the next, by projecting the current solution onto a subspace of previous solutions.The remaining component is then computed using a scalable domain-decomposition-based iterativesolver.As shown in [7], when solving unsteady problems with iterative methods, signi�cant computa-tional savings can be realized by �rst projecting the solution at time level n onto the space of lprevious solutions (1 � l � L � 25, typ.) and solving only for the perturbation. For the pressureproblem, this amounts to computingE�pn = gn � E�pn; �pn := argminq2V 

p� q

E ; V := fpn�1; : : : ; pn�lg :This projection procedure requires two matrix-vector products in E per timestep. It can be shownin general that the magnitude of the perturbation is O(�tl)+O(�), where � is the iteration tolerance[7]. Typical performance gains for this technique are illustrated by the buoyancy-driven sphericalconvection problem of Fig. 1, computed with K = 7680 elements of order N = 7 (1,658,880 pressuredegrees of freedom). Figure 4 shows the reduction in residual and iteration count versus timestepwhen L = 26. In this case, the iteration count is reduced by a factor of 2.5 to 5 over the unprojected(L = 0) case, and the residual prior to iteration is reduced by two-and-one-half orders of magnitude.The pressure preconditioner is based upon the additive overlapping Schwarz method introducedby Dryja and Widlund [5]. The spectral element implementation summarized here was developed6
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" are set to zero by Rk. HomogeneousDirichlet boundary conditions are applied on @ ~
k.in [9, 10]. The preconditioner is expressed asM�1o := RT0A�10 R0 + KXk=1RTk ~A�1k Rk :It requires a local solve for each (overlapping) subdomain ( ~A�1k ), plus a coarse-grid solve (A�10 ) basedon the spectral element vertex mesh. The operators Rk and RTk are simply Boolean restriction andprolongation matrices that map data between the global and local representations, while R0 andRT0 map between the �ne and coarse grids. The method has a natural parallel aspect in that thesubdomain problems can be solved independently. Parallelization of the coarse-grid component isless trivial and is discussed below. The local subdomain solves exploit the tensor product basis ofthe spectral element method. Elements are extended by a single gridpoint in each of the directionsnormal to their boundaries, and a low-order �nite element Laplacian, ~Ak, is constructed on theextended domain, ~
k, using a form identical to (2). Fig. 5 contrasts a two-dimensional example of thedomain extension with an earlier unstructured approach based on the �nite element method (FEM)[9]. With the tensor product-based construction, it is possible to exploit the fast diagonalizationmethod (FDM) [17], in which the inverse of ~A�1k (2) is expressed as~A�1k = (Sy 
 Sx)[I 
 �x + �y 
 I]�1(STy 
 STx ) ;where S� is the matrix of eigenvectors and �� the diagonal matrix of eigenvalues solving the gen-eralized eigenvalue problem ~A�z = � ~B�z. The tensor product forms involving S� can be appliedvia fast matrix-matrix products as in (3). A signi�cant advantage of the tensor product basis is thecomplexity for the local solves, which is of the same order as the matrix-vector product evaluation,O(KN3) storage and O(KN4) work in lR3, with signi�cantly smaller constants because the Lapla-cian is simpler than the consistent Poisson operator, E. While the tensor product form (2) is notstrictly applicable to deformed elements, it su�ces for preconditioning purposes to build ~Ak on arectilinear domain of roughly the same dimensions as 
k [10].Table 2 shows the performance of the FDM-based overlapping Schwarz procedure for the two-dimensional model problem of start-up 
ow past a cylinder at ReD = 5000 considered in [9]. TheTable 2: Additive Schwarz for cylinder problem, N = 7, � = 10�5FDM No = 0 No = 1 No = 3 A0 = 0K iter cpu iter cpu iter cpu iter cpu iter cpu93 67 4.4 121 10 64 5.9 49 5.6 169 19372 114 37 203 74 106 43 73 39 364 1931488 166 225 303 470 158 274 107 242 802 17987
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1 4 16 64 256 1024Figure 6: ASCI-Red solve times for a 3969 (left) and 16129 (right) d.o.f. coarse grid problem.polynomial degree is N = 7, and the meshes are obtained through two rounds of quad-re�nementfrom an initial mesh having K = 93 elements. The results are contrasted with the FEM-basedlocal solves of varying overlap, with No = 0 corresponding to block-Jacobi preconditioning (nooverlap) and No = 1 corresponding to the standard minimal overlap case (one-point extension).The importance of the coarse-grid component is illustrated by the A0 = 0 case, which shows aneightfold increase in iteration count over the corresponding case of No = 3 with a coarse-grid solve.As noted in [9], the increase in iteration count with K is due to the presence of high aspect ratioelements in this model problem. In practice, this e�ect is mitigated by the fact that low wavenumber modes that degrade the performance are removed by the projection procedure describedabove. Table 2 shows that the FDM is competitive with the FEM in terms of iteration count,but is faster overall because of the speed of local solves. In three dimensions, the unstructuredFEM approach is not competitive with the tensor product approach due its higher computationalcomplexity.As the example of Table 2 illustrates, a fast coarse-grid solver is central to the e�ciency of anycode addressing physics that is governed by elliptic problems. The coarse-grid problem, x0 = A�10 b0,is a well-known source of di�culty on large distributed-memory architectures [6, 13]. The problemarises because the solution and data are distributed vectors, and A�10 is completely full, implying theneed for an all-to-all communication. Moreover, because there is very little work on the coarse grid(typ. O(1) d.o.f. per processor), the problem is communication intensive. We have recently developeda fast coarse-grid solution algorithm that readily extends to thousands of processors [8, 24]. It isbased on �nding a sparse A0-conjugate basis, X := (x1; : : : ; xn), xTi A0xj = �ij , and computing theprojection of x0 onto this basis, �x = XXTx0. The parallel solution is thus cast as a pair of fullyconcurrent matrix-vector products. Because the range of X is lRn, the projection yields the exactsolution, and XXT constitutes a (quasi-) sparse factorization of A�10 . For n-point grid problemshaving compact stencils in lR3, it can be shown that the required communication volume on a P -processor machine is bounded by 3n 23 log2 P , a clear gain over the O(n) or n log2P cost incurred byother commonly employed approaches.The performance of the XXT scheme on ASCI-Red is illustrated in Fig. 6 for a (63 � 63)and (127 � 127) point Poisson problem (n = 3069 and n = 16129, respectively) discretized by astandard �ve-point stencil. Also shown are the times for the commonly used approaches of redundantbanded-LU solves and row-distributed A�10 . The latency�2 logP curve represents a lower-bound onsolution time, assuming that the required all-to-all communication uses a contention-free fan-in/fan-out binary tree routing. We see that the XXT solution time decreases until the number of processorsis roughly 16 for the n = 3969 case, and 256 for the n = 16129 case. Above this, it starts to track thelatency curve, o�set by a �nite amount corresponding to the bandwidth cost, which is bounded by8



3n 12 logP in the two-dimensional case. We note that XXT approach is superior to the distributedA�1 approach from a work and communication standpoint, as witnessed by the substantially lowersolution times in each of the work- and communication-dominated regimes. Further performanceresults and analysis of the XXT algorithm are presented in [24].6 Implementation and TuningOur parallel implementation follows the standard message-passing-based SPMD model [15] in whichcontiguous groups of elements are distributed to processors and computation proceeds in a looselysynchronous manner. The code is constructed from 
exible and e�cient C and Fortran modules.The computational kernel is built from optimized basic linear algebra subroutines (blas) (primarilylevel 3). Our communication routines are built on top of the NX or MPI message-passing libraries.For a given polynomial degree N de�ne N1 := N+1 and N2 := N�1. Then the local subdomainsolves, ( ~A�1k ), and application of the derivative,D�, Helmholtz,H, and pressure, E, operators requirematrix-matrix products of form (n1 � n2) � (n2 � n3), where n1 = N1; N21 ; N2, or N22 , n2 = N1 orN2, and n3 = N1; N21 ; N2, or N22 . In addition, mapping from (to) the pressure mesh to (from) thecoarse grid requires matrix-matrix products of form (2 � N2) � (N2 � 2) and (N2 � 2) � (2 � N2),respectively.As matrix-matrix products account for over 90% of the 
ops in a simulation, maximizing dgemmperformance is paramount. Table 3 shows performance �gures, obtained on one 333 MHz node ofASCI-Red in single-processor mode, for the matrix-matrix product calling con�gurations (n1; n2; n3)encountered in an order N = 15 simulation. On ASCI-Red we have several versions of dgemm tochose from: the standard version obtained with the -lkmath link option (lkm); the version jointlydeveloped by Sandia and Intel obtained with the -lcsmath link option (csm); and a version beingdeveloped for matrices with n2 � 20 by Greg Henry at Intel (ghm). In addition to the libraryroutines, we tested two hand-unrolled versions, both of which unroll the n2 loop completely. The�rst, f2, has n3 control the outer loop while the second, f3, has n1 control the outer loop. We notethat all data in the matrix-matrix product timings is noncached. Unfortunately, no single methodwas superior across all cases. For the performance study in Section 7, we selected one set from thebest of the table (which we label as perf. in the results section) and one set without the new library(which we label as std.).Table 3: mflops for (n1�n2) � (n2�n3) matrix-matrix product kernel on ASCI-Redn1 n2 n3 lkm ghm csm f3 f214 2 14 23 20 25 41 432 14 2 29 23 21 77 6816 14 16 100 113 114 130 11916 14 196 107 95 95 89 110256 14 16 85 100 100 105 6714 16 14 78 74 74 106 9916 16 16 82 138 83 105 10216 16 256 113 147 93 97 118196 16 14 91 192 147 122 105256 16 16 90 105 148 111 69Since iterative solvers are used, the principal communication kernel is the gather-scatter operationrequired for the residual vector assembly procedure. Because data is always stored on an element-by-element basis, the gather-scatter procedure required for residual evaluation is combined intoa single communication phase wherein nodal values which are shared by adjacent elements areexchanged and summed. This is a single local-to-local transformation, rather than separate gatherand scatter phases common to many �nite element implementations. Communication overhead isfurther reduced through use of a recursive spectral bisection based element partitioning scheme tominimize the number of vertices shared amongst processors [22].9



The gather-scatter operation is implemented by using a stand-alone MPI/NX-based message-passing utility that supports a vector mode for problems having multiple degrees-of-freedom pervertex as well as a general set of commutative/associative operations [27]. The easy-to-use interfacerequires only two calls:handle=gs-init(global-node-numbers,n) and ierr=gs-op(u,op,handle),where global-node-numbers() associates the n local values contained in the vector u() with theirglobal counterparts, and op denotes the reduction operation performed on shared elements of u().Each node on ASCI-Red consists of two Zeon 333 MHz Pentium II processors with 128 megabytesof shared memory that can be run in a message-passing (internode)/SMP (intranode) mode. Thefact that we employ nonoverlapping storage for elements and have loops over blocks that exhibit littleor no data dependence implies that we can easily gain additional, intranode, parallelism by splittingthe loops and spawning additional threads. To achieve this, we use the -Mconcur compiler optionand directives. Currently, we have cast the three most time-consuming routines into dual-processormode: the matrix-vector product routines for the pressure operator, E; the Helmholtz operator, H;and the local subdomain solves, ~A�1k . This approach was su�cient to attain 82% dual-processore�ciency.
Figure 7: Pro�le (top) and planform (bottom) views of hairpin and secondary vortices generatedin a boundary layer by a hemispherical roughness element for ReR = 850. The spectral elementparameters are (K;N ) = (1021; 11).7 Performance ResultsWe have run our spectral element code on a number of distributed-memory platforms, includingthe Intel Paragon at Caltech, the Cray T3E-600 at NASA Goddard, the SGI Origin 2000 and IBMSP at Argonne, the SGI ASCI-Blue machine at Los Alamos, and the Intel ASCI-Red machine atSandia. For this paper we concentrate on recent timing results for the hairpin vortex problemof Figs. 1 and 7. This problem is of interest in its own right because it provides a vehicle tostudy organized transition to turbulence [1, 16, 23]. For benchmarking considerations, we considerimpulsively started 
ow at Re = 1600, with an initial condition consisting of a Blasius pro�le withboundary layer thickness � = 1:2R. The mesh used for these simulations was obtained via an oct-10



se
co

nd
s

Step

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120

5 10 15 20 25

pressure

helmholtz

it
er

at
io

ns

Step

50

100

150

200

250

300

350

400

450

500

550

600

5 10 15 20 25Figure 8: P = 2048 ASCI-Red-333 dual-processor mode perf. results for the �rst 26 timestepsfor (K;N ) = (8168; 15): solution time per step (left) and number of pressure and (x-component)Helmholtz iterations per step (right).re�nement of the production mesh used for the transitional boundary layer/hemisphere calculationof Fig. 7 and contains K = 8168 elements of order N = 15 (27,799,110 gridpoints for velocity,22,412,992 for pressure).Performance results on ASCI-Red are presented for up to 2048 333 MHz nodes in single- and dual-processor mode. Total times are for the time-stepping portion of the runs only. During productionruns, usually 14 to 24 hours in length, our setup and I/O costs are typically in the range of 2{5%.To determine 
oating-point operation count, we access the hardware operation counters via calls tothe perfmon library. In addition, we have instrumented the code to provide various performancemetrics, including a per processor 
op count. The two methods yield results within 2% of eachother. Finally, all 
oating-point calculations were done in 64-bit precision.Figure 8 shows time per step for the �rst 26 timesteps (left) and the pressure and (x-component)Helmholtz iteration counts (right). The signi�cant reduction in pressure iteration count is due to thedi�culty of computing the initial transients and clearly shows the bene�ts gained from the pressureprojection procedure. In typical production runs the number of pressure iterations per timestepsettles in at between 30 and 50, which is consistent with the behavior exhibited in the iterationplot. We note that the average time per step for the last �ve steps of the 319 GF run is 17:5seconds. Table 4 presents total time for the 26 timesteps and sustained performance. We note thatadditional routines were dual-processor enabled subsequent to the creation of the std. half of Table4 which resulted in a 10% increase in e�ciency. Finally, the coarse grid for this problem has 10,142distributed degrees of freedom and accounts for 4.0% of the total solution time in the worst-casescenario of 2048 nodes in dual-processor mode. If the A�1 approach were use instead this wouldhave increased to 15%.Table 4: ASCI-Red-333: total time and gflops, K = 8168, N = 15.single (std.) dual (std.) single (perf.) dual (perf.)P time(s) gflops time(s) gflops time(s) gflops time(s) gflops512 6361 47 4410 67 5969 50 3646 811024 3163 93 2183 135 2945 100 1816 1632048 1617 183 1106 267 1521 194 927 31911
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