
Toward Scalable Performance Visualization withJumpshot�Omer Zaki, Ewing Lusk, William Gropp, and Deborah SwiderMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439fzaki,lusk,gropp,swiderg@mcs.anl.govAbstractJumpshot is a graphical tool for understanding the performance of parallel programs. Itis in the tradition of the upshot tool, but contains a number of extensions and enhancementsthat make it suitable for large-scale parallel computations. Jumpshot takes as input a new,more 
exible log�le format, and comes with a library for generating such log�les. An MPIpro�ling library is also included, enabling the automatic generation of such log�les from MPIprograms. Jumpshot is written in Java, and can easily be integrated as an applet into browser-based computing environments. The most novel feature of Jumpshot is its automatic detectionof anomalous durations, drawing the user's attention to problem areas in a parallel execution.This capability is particularly useful in large-scale parallel computations containing very manyevents.1 IntroductionJumpshot is a graphical tool for investigating the behavior of parallel programs. It is a \post-mortem" analyzer, taking as input a �le of time-stamped events, which we call here a log�le. The�le is written by the companion package CLOG, also described here. Jumpshot and CLOG are onlyloosely coupled by the format of the log�le and may be used independently.Jumpshot can present multiple views of log�le data. The primary view is a series of timelines,one for each process, showing with colored bars the state of each process at each time. This viewcan be zoomed and scrolled for close examination of speci�c times. Other views include histogramsof state durations and a \mountain range" view showing the aggregate number of processes in eachstate at each time.Jumpshot is implemented in Java. Advantages of this approach include portability and networkcapability (the ability to run as a applet in a Web browser). The choice of Java was also anexperiment in exploring the features and capabilities of current Java environments, and we reporthere on our experiences.Log�le-based tools similar to Jumpshot have a rich history. Commercial tools include Time-Scan [2] and Vampir [3], and academic tools that are distributed for use by others include Para-�This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram ofthe O�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.1



Graph [12, 11], TraceView [17], XPVM [15], XMPI [4], and Pablo [19]. Each of these shares somefeatures with Jumpshot, but it is unique in its particular combination of features.Jumpshot is freely available and is packaged with the MPICH portable implementation of MPI.MPICH can be obtained from http://www.mcs.anl.gov/mpi/mpich. The distribution includesthe CLOG logging facility and an MPI pro�ling library for use with MPI programs. Jumpshot isparticularly easy to use with MPICH's compiling and linking scripts [6].This paper is organized as follows. In Section 2 we give a synopsis of the history of Jumpshot andthe requirements that drove its development. In Section 3 we present a walkthrough of Jumpshotfeatures. Section 4 presents the logging package that accompanies Jumpshot and writes the �lesJumpshot reads. We present Java-related issues in Section 5. Section 6 shows a few interestingspeci�c log�les and illustrates the kinds of insights that can be obtained with such a tool. Weconclude with a discussion of opportunities for future research in this area.2 BackgroundIn this section we give a brief history of the developments that led to Jumpshot, culminating in alist of requirements.2.1 HistoryJumpshot traces its history back to the original version of gist, a program that was deliveredwith, and only ran on, the BBN Butter
y parallel computer. Gist is still available as part of theTotalView c
 debugging environment, although it is now known as TimeScan. The original versionof upshot [13] was written to provide the most useful feature of gist, its zoomable and scrollabletimeline window, in a color version (gist was black-and-white only) that was non-proprietary andwould run on any workstation supporting X-windows. (Upshot gets its name from gist, for whichit is a synonym [5].) Over the years upshot expanded to include a number of other features aswell [14]. The enhancements were motivated by the development of an application whose highlyirregular and input-dependent behavior made an analysis tool of this type indispensable [16]. Thelog�le generation library developed along with upshot was called ALOG, for Argonne logging.Upshot originally was written in X (with the Athena widget set). Because it was cumbersometo expand and maintain, we completely rewrote it in the Tcl scripting language, using the Tkcompanion graphics package [18]. This approach made for extremely rapid development, but theinterpreted nature of the language made the graphics component slow when log�les were large. Todeal with this problem, we rewrote the main graphics component of upshot in C, using Tcl's Cinterface. This rewrite solved the performance problem but introduced a dependency on an unstablepart of Tcl itself, as the C interface changed right after the publication of [18]. This version, callednupshot (for new upshot), can still be used, however, if one obtains an earlier version of Tcl/Tk.Until recently, nupshot has been our main performance analysis tool. Upshot, in pure Tcl/Tk, isalso still available, but also requires an old version of Tcl. This instability of Tcl/Tk encouraged usto �nd an alternative.A few years ago, we rewrote the logging library to improve in multiple ways on ALOG. Therewas also an intermediate library called BLOG. For historical continuity, therefore, the new packagehad to be called CLOG (pronounced see-log). It is described in detail in Section 4.2



2.2 Requirements for a New SystemMore than ten years of experience with similar tools gave us a clear set of requirements that ournext-generation performance analysis tool should meet.� It is expected to have a long lifetime and to be the foundation for our future research inperformance analysis. It should therefore be implemented in a stable and widely supportedprogramming environment.� The tool must be portable to all the types of workstations that parallel programmers wouldwant to use. Although the use of X made previous tools portable within the Unix universe,portability to Microsoft-based environments is now required.� It must be able to deal with large log�les in a scalable way. While �ltering of very large log�lescan be expected to take place either within the application program itself or in an intermediatepreprocessing step, in order to be a practical tool, performance needs to be maintained in thepresence of many thousands of graphical objects being displayed, zoomed, and scrolled.� The display package (the Jumpshot part) must not be too tightly integrated with the loggingpackage (the CLOG part), for the sake of 
exibility within each.� Support for nested and overlapping states is needed, although nested states occur far moreoften than overlapping ones, because of the natural nesting of subroutine calls in programs.� Support for MPI concepts, such as communicators, is required. At the same time, it is overlyrestrictive to tie the tool to the message-passing model of parallel computation.� It must be relatively easy to manipulate the display, turning speci�c states on and o�, changingcolors, and so forth.� The ability to create printable versions of displays is crucial, for inclusion in documents.� A desirable feature is to help the user �nd the \interesting" parts of what might be a largeand confusing display. This is a research topic we are only beginning to explore.� Multiple types of display are useful for looking at the behavior of a program from many pointsof view:{ process timelines with zooming and scrolling{ histograms of state durations and message data{ \mountain ranges" for aggregating state data� It must be possible for the user to de�ne states that are meaningful in the context of theapplication, not just the system.� It must be possible to query speci�c states and events for details.� The log�le format needs to be 
exible, to account for unanticipated types of events and states,summary data, and entirely new concepts.� It is desirable that an event can be connected back to the source code that generated it.Jumpshot currently makes some compromises in attempting to meet these requirements. Thesecompromises are expected to be temporary. 3



3 Using JumpshotIn this section we give a walkthrough of using Jumpshot to view a very simple parallel program. Wedefer to Section 6 the viewing of more interesting examples. Jumpshot can be used either in stand-alone mode by running the jumpshot command or, when properly installed, from a Web browser, inwhich case it will run as an applet. In either case it begins with a simple opening window, as shownin Figure 1. The \look and feel" of Jumpshot is by default \metal", the default appearance of theFigure 1: Initial Jumpshot screenSwingset class library. In the System Optionsmenu it can be changed to have a Motif, Windows95,or MacOS appearance. Figure 2 shows the di�erence between Metal and Motif looks.
Figure 2: Two looks for picking a log�le to viewThe log�le-selection menu allows one to browse in the �le system for a log�le, produced in anyof the ways described in Section 4. Then the main window appears, as shown in Figure 3. Sincereading the log�le and drawing the initial screen may take some time, depending on the size of thelog�le, a \progress" window appears while the log�le is being loaded. The initial display providesthe primary view of log�le data, together with access to other views.3.1 Timeline DisplayThe primary view of log�le data is the \timeline window" in which time (in seconds) is indicated fromleft to right and MPI process ranks are shown from top to bottom. Colored rectangles spanningsections of the timelines indicate that a particular process was in a particular state during theindicated time interval. These states are de�ned by the logging library and typically consist of MPIfunction call durations and the durations of user-de�ned states. Clicking with the mouse on sucha rectangle pops up a small window containing detailed information (state name, precise duration,etc.) Arrows show messages, and details about a particular message (length, tag, etc.) appear whenone clicks on the small circle appearing near the origin of an arrow.As the user moves the mouse in this window, its position along the time axis is dynamically4



Figure 3: A simple ring programtracked in the box labeled \Pointer" at the upper left of the frame. If the user presses the \t" key,the origin of the \Elapsed Time" �eld is set wherever the cursor is, and elapsed time is set to 0,enabling very precise measurements of time intervals with the mouse.If the \z" key is pressed with the mouse cursor in the window, the zooming origin is set, and the\In" and \Out" buttons cause the display to expand and contract horizontally. When the displayis zoomed in, the scrollbar along the bottom allows the user to scroll the view back and forth. Anumber of techniques, such as drawing portions of the display into memory even when they are notvisible, smooth the action of the scrolling, even at high zoom factors. \Reset" returns the displayto its original con�guration. \Options" presents a menu of system con�guration options, such asthe default zoom factor, \Print" allows for printing a Postscript version of the display, and \Close"exits. One of the options is to show a \mountain range" view of the data, which agglomerates statesto show the number of processes in each state at each time. Figure 4 shows a trace from the cpilogprogram distributed with MPICH, with both timeline and mountain range data shown in coupledscrollable windows. This program computes the value of � by numerical integration and consistsof compute stages intermixed with global operations. It illustrates the use of user-de�ned states.Currently the mountain range view is not valid for nested states.3.2 The States SubwindowThe lower portion of the window contains buttons associated with states. By grabbing this sub-window's \handle" (the stippled area at the left) with the mouse, this subwindow can be \torn o�"and displayed in a separate window. This feature is convenient when there are very many di�erentstates, as in the PETSc example in Section 6.The check-boxes selectively turn on and o� the display of state rectangles and arrows. Thisfeature can be important when the display gets complicated. The colored rectangles that are labeledwith state names are themselves buttons, each of which brings up a histogram window for thatparticular state.3.3 Histogram WindowsA histogram window for the cpi example is shown in Figure 5.5



Figure 4: Timeline and mountain range views for the cpilog programThe histogram view is, like the timeline view, highly interactive. The panel at the top leftdescribes the total histogram data, such as the range of values and the number of values. The topright panel describes the data that is presented in the histogram window itself. The number of binsfor the histogram can be varied with the slider control, which dynamically changes the shape of thehistogram. The histogram window can be zoomed and scrolled to select a particular set of stateinstances, and the \Blink states" button causes those states to blink on and o� in the timeline viewso that they can be easily located. We have found this to be an e�ective method for locating speci�cstate instances even in a very busy display.The most novel feature of this display is the method used to �nd states that last \too long."It makes the (not always true) assumption that each instance of a particular state should lastapproximately the same length of time, and therefore the state durations are liable to have a normaldistribution. (This can be viewed as an application of the Central Limit Theorem of statistics.)Under this assumption, one can calculate the high and low cuto� that would identify particularpercentages of the states durations. If the states truly last nearly all the same length of time, thenthis method of identifying the top 1%, say, of the states will �nd none at all. Thus we can attemptto �nd states with \anomalous" lengths, not just the longest and shortest durations. Clicking on thevarious percentage buttons selects a particular set of state instances, which easily can be identi�edin the timeline display when the user clicks on \Blink states".This technique is admittedly crude. One of our research tasks over the next few years is to developa sophisticated set of techniques for drawing the user's attention to that part of the computationwhere tuning can bring performance bene�ts.The \Resize to �t" button raises the height of the histogram bars if the selection is such that theyhave become inconveniently short. The \Selected Regions" button allows one to selectively turn o�the blinking of selected sets of state durations, the \Print" button prints the histogram window inPostscript, and \Close" exits. 6



Figure 5: Histogram for the \compute" state4 Producing Log�lesThe ALOG library used to write log�les to be displayed with upshot and nupshot has served us wellover the years, but has a number of limitations. The most signi�cant is its �xed record format. AnALOG record contains 6 integers and a 12-character string. The �xed format means that the recordsare easy to traverse in memory and to parse from �les, but also means that it is cumbersome, ifnot impossible, to add new �elds, particularly �elds that pertain to only one type of record. TheASCII format in �les is excellent for portability and human readability of the �les, but awkward forcontaining binary data. CLOG is more 
exible: it contains a variety of prede�ned record formats,together with a \raw" record format that can be used for special cases. It is also relatively easy toextend with new record types without impacting the usefulness of existing log�les.4.1 How It WorksA log�le-creation library for parallel programs has a number of requirements. Meeting these require-ments is eased by assuming that MPI is available, and we do make that assumption.� Logging must be so e�cient that it does not materially a�ect the behavior of the program.This means that I/O should be carried out only after the program �nishes.� It is convenient if at the end of the program there is only one log�le, rather than one for eachprocess.� Timestamps cannot, in general, be assumed to be synchronized among processes. On somemachines this assumption can be made, such as on certain SMPs or if the switch clock onthe IBM SP is being used, but in general some postprocessing is needed to synchronize thetimestamps.� The data in the log�le should be self-describing to some extent, for the convenience of thedisplay tool. 7



CLOG makes a number of compromises in meeting these requirements.� To obtain a timestamp, CLOG calls MPI Wtime, which returns a 
oating-point number ofseconds since some time in the past. The assumption is that MPI Wtime is reasonably e�cienton any MPI implementation, although this particular format may not be the most e�cientway to get a timestamp on a given machine. We choose this approach for portability.� When a log record is to be written, a subset of its content is stored in a relatively large bu�erin memory. When this bu�er �lls up, another one is malloc'd from the system. An alternativewould be to write the full bu�er to disk and reuse the space, but the I/O might perturb thecomputation. Of course calling malloc also causes some perturbations in the computation,but not as much as I/O would. We are planning to make this mechanism scalable to largerlog �les by periodically dumping to disk.� At the end of the computation, the bu�ers are processed to add information that is the samefor all records in the bu�er (process id, for example). At this time the timestamps are adjusted.A relatively straightforward algorithm is used to �nd relative clock o�sets. Process 0 requestsa local time value from each of the other processes, and assumes that other processes readtheir own clocks midway between the sending of this request and receiving the answer. Therequest is repeated several times, and the result with lowest error (shortest round-trip time)is used. More accurate but more complicated algorithms are known; our algorithm correctsonly for displacement, not for dilation, but so far it has proved adequate. As a last resort,Jumpshot itself has a method for �ne tuning the displacement of the events in a given processat display time by dragging an individual time line.At the end of the run, all processes participate in merging the records by timestamp to create asingle log�le. After the last log record is written and postprocessing of local bu�ers is complete, eachprocess has a linked list of bu�ers, each containing a large number of log records. The processesform themselves into a binary tree, with (MPI) Process 0 at the root. The processes at the leavesbegin by sending their bu�ers to their parents. Each nonleaf process performs a three-way merge ofits own bu�er with the bu�ers arriving from its children. When a merged bu�er has been �lled, itis sent to its parent. At the root, merged, �lled bu�ers are written to the log�le. MPI is used forall communication. The �le is in MPI's \external-32" portable format [7], which is the same formatused by Java for portability of �les, and which makes it portable, but requires byte-swapping onsome machines for some �elds in the log records.The post mortem processing, although it makes collection of the log�les less intrusive, makesjumpshot less useful for debugging, since the log�le is only fully assembled when the program ter-minates normally. This underscores the fact that Jumpshot is a performance debugging tool ratherthan a correctness debugging tool.4.2 The MPI Pro�ling InterfaceThe easiest way to write CLOG log�les is automatically, using the MPI pro�ling interface. (SeeSection 8.1 of [20] and Section 7.6 of [10].) The MPI standard speci�es a mechanism by which allMPI calls may be intercepted by the user, who can de�ne a pro�ling library containing his ownversions of the MPI functions. Distributed with the MPICH portable implementation of MPI [6, 9]is such a pro�ling library to write CLOG records, logging the start time and end time of all MPIcalls, thus logging a state for Jumpshot for the time a process is executing an MPI call. The pro�lingversion of MPI Finalize causes the local logs to be merged and the log�le to be written as describedin Section 4.1. In order to cause this to happen, one need only link the pro�ling library in front ofthe MPI library one is using. In MPICH, this is conveniently accomplished by using MPICH scriptsfor linking, which have 
ags to link in various pro�ling libraries. For example,8



mpicc -mpilog -o myprog myprog.cwill cause the pro�ling library for CLOG logging to be automatically linked in. When myprog is runwith mpirun -np 64 myproga CLOG log�le will automatically be produced, suitable for viewing with Jumpshot.The MPI Pcontrol function, when used with this pro�ling library, can be used to turn loggingon and o� dynamically in the program. This can be used, for example, to collect logging data for asingle iteration of a complex loop that is executed many times.4.3 The MPE InterfaceFor greater control, a user may log events directly, using the MPE library. MPE comprises usefultools that forms a companion library for enhancing MPI programs. It was originally designed foruse with MPICH, but now is independent of MPICH and can be used with any implementation ofMPI. It contains non-MPI synchronization functions (for serialization), graphics routines (see [8]),and logging functions. It is these logging routines that are called by the pro�ling library describedin Section 4.2, rather than CLOG directly.The usefulness of using this library to prepare log�les for Jumpshot is that a user (or anotherlibrary) can log events and states that are directly related to the application or library independentlyof the MPI calls made. One can use the MPE logging functions either without any automated loggingat all or in conjunction with it. A large-scale example of use with a library is given in Section 6.4.4.4 The CLOG InterfaceThe lowest level way to create log�les is with the CLOG interface, which logs the various eventtypes and manages the activities described in Section 4.1. The change from ALOG to CLOG log�leformats was accomplished by re-implementing the MPE logging library in terms of CLOG calls,without changing the MPE interface. In addition, the transition from ALOG format to CLOGformat has been eased for MPICH users by providing a CLOG-to-ALOG translator, so that theolder tools, upshot and nupshot, can still be used with the newer CLOG �le format. This wasimportant for the period between the adoption of the CLOG format and the implementation ofJumpshot.5 Experiences with JavaUsing Java for this fourth generation of our basic performance analysis tool was an experiment. The�rst part of the experiment was to determine whether the graphics performance of Java would beadequate. Although Jumpshot does not display complex views as quickly as did nupshot ( withits direct X interface) we �nd it adequate for our purposes. The increasing signi�cance of Java islikely to cause performance to improve over time as well. The functionality of the graphics interface,considered against Jumpshot's rather modest needs, is also adequate, and also getting better.The second, nontechnical, part of the experiment was to determine whether the only reallynew bene�t conferred on the project by the use of Java, namely the ability for Jumpshot to9



run as a Web application, would be worth the e�ort. This capability turned out to be moreuseful than we anticipated, for two reasons. First, running Jumpshot from the Web browseron one's laptop connected to the network turned out to be useful for demonstrations and lec-tures, as well as in allowing others to try it over the net. (The Jumpshot applet can be viewedat http://www.mcs.anl.gov/~lusk/aptest/lib/jumpshot.) Second, the environment portabil-ity problems described below are greatly ameliorated by using the Web interface, with no loss inperformance.The main drawback to the use of Java was the lack of portability of Java environments. Weuse the JDK (Java Development Kit) for portability. Although the Jumpshot program's Java codeitself is portable, the way Java is locally installed on Sun, SGI, and IBM workstations, and un-der Windows95 or NT, can be critical. Running Java programs typically involves setting certainenvironment variables, which can con
ict with settings required for other applications (e.g., Webbrowsers). Since we would like users to use all our tools in the same way in all environments, thiscan be frustrating. Again, we expect the situation to improve over time.Java libraries are rapidly evolving, and this caused considerable discomfort as JDK 1.1.2 evolvedinto 1.1.6, which is the level Jumpshot currently requires. With the acceptance of the Swing GUI,which Jumpshot uses now, and the upcoming release of JDK 1.2, we expect these problems to lessen.At any rate, the overall verdict on the use of Java for this project is positive, and we expect tocontinue to use it as Jumpshot evolves.6 Interesting Examples
Figure 6: MPI-2 independent (Unix-like) writesIn this section we describe and illustrate the use of Jumpshot with more interesting examples.10


