Toward Scalable Performance Visualization with
Jumpshot*

Omer Zaki, Fwing Lusk, William Gropp, and Deborah Swider
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

{zaki,lusk,gropp,swider}@mcs.anl.gov

Abstract

Jumpshot is a graphical tool for understanding the performance of parallel programs. It
is in the tradition of the upshot tool, but contains a number of extensions and enhancements
that make it suitable for large-scale parallel computations. Jumpshot takes as input a new,
more flexible logfile format, and comes with a library for generating such logfiles. An MPI
profiling library is also included, enabling the automatic generation of such logfiles from MPI
programs. Jumpshot is written in Java, and can easily be integrated as an applet into browser-
based computing environments. The most novel feature of Jumpshot is its automatic detection
of anomalous durations, drawing the user’s attention to problem areas in a parallel execution.
This capability is particularly useful in large-scale parallel computations containing very many
events.

1 Introduction

Jumpshot is a graphical tool for investigating the behavior of parallel programs. It is a “post-
mortem” analyzer, taking as input a file of time-stamped events, which we call here a logfile. The
file is written by the companion package CLOG, also described here. Jumpshot and CLOG are only
loosely coupled by the format of the logfile and may be used independently.

Jumpshot can present multiple views of logfile data. The primary view is a series of timelines,
one for each process, showing with colored bars the state of each process at each time. This view
can be zoomed and scrolled for close examination of specific times. Other views include histograms
of state durations and a “mountain range” view showing the aggregate number of processes in each
state at each time.

Jumpshot is implemented in Java. Advantages of this approach include portability and network
capability (the ability to run as a applet in a Web browser). The choice of Java was also an
experiment in exploring the features and capabilities of current Java environments, and we report
here on our experiences.

Logfile-based tools similar to Jumpshot have a rich history. Commercial tools include Time-
Scan [2] and Vampir [3], and academic tools that are distributed for use by others include Para-

*This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of
the Office of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

Graph [12, 11], TraceView [17], XPVM [15], XMPI [4], and Pablo [19]. Each of these shares some

features with Jumpshot, but it is unique in its particular combination of features.

Jumpshot is freely available and is packaged with the MPICH portable implementation of MPI.
MPICH can be obtained from http://www.mcs.anl.gov/mpi/mpich. The distribution includes
the CLOG logging facility and an MPI profiling library for use with MPI programs. Jumpshot is
particularly easy to use with MPICH’s compiling and linking scripts [6].

This paper is organized as follows. In Section 2 we give a synopsis of the history of Jumpshot and
the requirements that drove its development. In Section 3 we present a walkthrough of Jumpshot
features. Section 4 presents the logging package that accompanies Jumpshot and writes the files
Jumpshot reads. We present Java-related issues in Section 5. Section 6 shows a few interesting
specific logfiles and illustrates the kinds of insights that can be obtained with such a tool. We
conclude with a discussion of opportunities for future research in this area.

2 Background

In this section we give a brief history of the developments that led to Jumpshot, culminating in a
list of requirements.

2.1 History

Jumpshot traces its history back to the original version of gist, a program that was delivered
with, and only ran on, the BBN Butterfly parallel computer. Gist is still available as part of the
Total View© debugging environment, although it is now known as TimeScan. The original version
of upshot [13] was written to provide the most useful feature of gist, its zoomable and scrollable
timeline window, in a color version (gist was black-and-white only) that was non-proprietary and
would run on any workstation supporting X-windows. (Upshot gets its name from gist, for which
it is a synonym [5].) Over the years upshot expanded to include a number of other features as
well [14]. The enhancements were motivated by the development of an application whose highly
irregular and input-dependent behavior made an analysis tool of this type indispensable [16]. The
logfile generation library developed along with upshot was called ALOG, for Argonne logging.

Upshot originally was written in X (with the Athena widget set). Because it was cumbersome
to expand and maintain, we completely rewrote i1t in the Tcl scripting language, using the Tk
companion graphics package [18]. This approach made for extremely rapid development, but the
interpreted nature of the language made the graphics component slow when logfiles were large. To
deal with this problem, we rewrote the main graphics component of upshot in C, using Tcl’s C
interface. This rewrite solved the performance problem but introduced a dependency on an unstable
part of Tcl itself, as the C interface changed right after the publication of [18]. This version, called
nupshot (for new upshot), can still be used, however, if one obtains an earlier version of Tcl/Tk.
Until recently, nupshot has been our main performance analysis tool. Upshot, in pure Tcl/Tk, is
also still available, but also requires an old version of Tcl. This instability of Tcl/Tk encouraged us
to find an alternative.

A few years ago, we rewrote the logging library to improve in multiple ways on ALOG. There
was also an intermediate library called BLOG. For historical continuity, therefore, the new package
had to be called CLOG (pronounced see-log). Tt is described in detail in Section 4.

2.2 Requirements for a New System

More than ten years of experience with similar tools gave us a clear set of requirements that our
next-generation performance analysis tool should meet.

e It is expected to have a long lifetime and to be the foundation for our future research in
performance analysis. It should therefore be implemented in a stable and widely supported
programming environment.

e The tool must be portable to all the types of workstations that parallel programmers would
want to use. Although the use of X made previous tools portable within the Unix universe,
portability to Microsoft-based environments is now required.

o It must be able to deal with large logfiles in a scalable way. While filtering of very large logfiles
can be expected to take place either within the application program itself or in an intermediate
preprocessing step, in order to be a practical tool, performance needs to be maintained in the
presence of many thousands of graphical objects being displayed, zoomed, and scrolled.

e The display package (the Jumpshot part) must not be too tightly integrated with the logging
package (the CLOG part), for the sake of flexibility within each.

e Support for nested and overlapping states is needed, although nested states occur far more
often than overlapping ones, because of the natural nesting of subroutine calls in programs.

e Support for MPI concepts, such as communicators, is required. At the same time, it is overly
restrictive to tie the tool to the message-passing model of parallel computation.

e It must be relatively easy to manipulate the display, turning specific states on and off, changing
colors, and so forth.

e The ability to create printable versions of displays is crucial, for inclusion in documents.

e A desirable feature i1s to help the user find the “interesting” parts of what might be a large
and confusing display. This 1s a research topic we are only beginning to explore.

e Multiple types of display are useful for looking at the behavior of a program from many points
of view:

— process timelines with zooming and scrolling
— histograms of state durations and message data

— “mountain ranges” for aggregating state data

e It must be possible for the user to define states that are meaningful in the context of the
application, not just the system.

e It must be possible to query specific states and events for details.

e The logfile format needs to be flexible, to account for unanticipated types of events and states,
summary data, and entirely new concepts.

e It is desirable that an event can be connected back to the source code that generated it.

Jumpshot currently makes some compromises in attempting to meet these requirements. These
compromises are expected to be temporary.

3 Using Jumpshot

In this section we give a walkthrough of using Jumpshot to view a very simple parallel program. We
defer to Section 6 the viewing of more interesting examples. Jumpshot can be used either in stand-
alone mode by running the jumpshot command or, when properly installed, from a Web browser, in
which case it will run as an applet. In either case it begins with a simple opening window, as shown
in Figure 1. The “look and feel” of Jumpshot is by default “metal”, the default appearance of the

[®] Untitled]
File felp Syster Options

Logfile P‘{u Name |

Options

(@) Time Lines) Bovmitain Ranges

Figure 1: Initial Jumpshot screen

Swingset class library. In the System Options menu it can be changed to have a Motif, Windows95,
or MacOS appearance. Figure 2 shows the difference between Metal and Motif looks.

[] Untitled
File melp System Optians
Zogfils o Name
13 -

Enter path or Folder nawe:
| 1

[8] Untitied -
File felp Systen Options Filter - s
ZLogfile No Nawe | s fs.
fanpshot.
inages fi
Files F
: logfiles

11

27 =
fook in: |2/ v @ @ @ ﬂ-

Cdata B

[inages

T IogFiles

[other_logfiles

S src

] sving

[rEADHE

[fs_classes. jar - Enter file nane:
File nare: [| [e |
Files of type: [l Files (*. %) ~| [eancer (=] [E==] [==] [==]

Figure 2: Two looks for picking a logfile to view

The logfile-selection menu allows one to browse in the file system for a logfile, produced in any
of the ways described in Section 4. Then the main window appears, as shown in Figure 3. Since
reading the logfile and drawing the initial screen may take some time, depending on the size of the
logfile, a “progress” window appears while the logfile is being loaded. The initial display provides
the primary view of logfile data, together with access to other views.

3.1 Timeline Display

The primary view of logfile data is the “timeline window” in which time (in seconds) is indicated from
left to right and MPI process ranks are shown from top to bottom. Colored rectangles spanning
sections of the timelines indicate that a particular process was in a particular state during the
indicated time interval. These states are defined by the logging library and typically consist of MPI
function call durations and the durations of user-defined states. Clicking with the mouse on such
a rectangle pops up a small window containing detailed information (state name, precise duration,
etc.) Arrows show messages, and details about a particular message (length, tag, etc.) appear when
one clicks on the small circle appearing near the origin of an arrow.

As the user moves the mouse in this window, its position along the time axis is dynamically

[® Untitled

inter 0. 16665967
fioperad s 0. 16605967 [= | ewt | meset || gptions | Print | close

{7

B T R A R -
B T R T

S

¢ ! ! i I ! ! ! ¢
A 0. 6227 1. 2454 1. 8681 2. 4908 3. 1136 3. 7363 43590 4. 9817

[«] [
BARRTFR |@ | RECV ‘IE ‘ W 5= |@ All States on
All States 0fF

| Hessages ||E

Figure 3: A simple ring program

tracked in the box labeled “Pointer” at the upper left of the frame. If the user presses the “t” key,
the origin of the “Elapsed Time” field 1s set wherever the cursor is, and elapsed time 1s set to 0,
enabling very precise measurements of time intervals with the mouse.

If the “z” key is pressed with the mouse cursor in the window, the zooming origin is set, and the
“In” and “Out” buttons cause the display to expand and contract horizontally. When the display
is zoomed in, the scrollbar along the bottom allows the user to scroll the view back and forth. A
number of techniques, such as drawing portions of the display into memory even when they are not
visible, smooth the action of the scrolling, even at high zoom factors. “Reset” returns the display
to its original configuration. “Options” presents a menu of system configuration options, such as
the default zoom factor, “Print” allows for printing a Postscript version of the display, and “Close”
exits. One of the options is to show a “mountain range” view of the data, which agglomerates states
to show the number of processes in each state at each time. Figure 4 shows a trace from the cpilog
program distributed with MPICH, with both timeline and mountain range data shown in coupled
scrollable windows. This program computes the value of 7 by numerical integration and consists
of compute stages intermixed with global operations. It illustrates the use of user-defined states.
Currently the mountain range view is not valid for nested states.

3.2 The States Subwindow

The lower portion of the window contains buttons associated with states. By grabbing this sub-
window’s “handle” (the stippled area at the left) with the mouse, this subwindow can be “torn off”
and displayed in a separate window. This feature is convenient when there are very many different
states, as in the PETSc example in Section 6.

The check-boxes selectively turn on and off the display of state rectangles and arrows. This
feature can be important when the display gets complicated. The colored rectangles that are labeled
with state names are themselves buttons, each of which brings up a histogram window for that
particular state.

3.3 Histogram Windows

A histogram window for the cpi example is shown in Figure 5.

l:
airter 9.619305
|apsed Time 3 E102376 I || out " Reset | I Options || Print " Close

S
—
-

]
1
2
3

—

- T 1 _ 71 1T
43 4.497884 S 39?365 B 296926 T 196457 8. 896848 8. 995689 9.89517 18, 72473 11.69429 12.59385
\ 11 sed Tirre| DU[ULDE

[] I3

-Er\:adcast ||Z| -Cnmputs

I} | [Reduce

(] | Spne | All States On

All States OFF

Figure 4: Timeline and mountain range views for the cpilog program

The histogram view is, like the timeline view, highly interactive. The panel at the top left
describes the total histogram data, such as the range of values and the number of values. The top
right panel describes the data that is presented in the histogram window itself. The number of bins
for the histogram can be varied with the slider control, which dynamically changes the shape of the
histogram. The histogram window can be zoomed and scrolled to select a particular set of state
instances, and the “Blink states” button causes those states to blink on and off in the timeline view
so that they can be easily located. We have found this to be an effective method for locating specific
state instances even in a very busy display.

The most novel feature of this display is the method used to find states that last “too long.”
It makes the (not always true) assumption that each instance of a particular state should last
approximately the same length of time, and therefore the state durations are liable to have a normal
distribution. (This can be viewed as an application of the Central Limit Theorem of statistics.)
Under this assumption, one can calculate the high and low cutoff that would identify particular
percentages of the states durations. If the states truly last nearly all the same length of time, then
this method of identifying the top 1%, say, of the states will find none at all. Thus we can attempt
to find states with “anomalous” lengths, not just the longest and shortest durations. Clicking on the
various percentage buttons selects a particular set of state instances, which easily can be identified
in the timeline display when the user clicks on “Blink states”.

This technique is admittedly crude. One of our research tasks over the next few years is to develop
a sophisticated set of techniques for drawing the user’s attention to that part of the computation
where tuning can bring performance benefits.

The “Resize to fit” button raises the height of the histogram bars if the selection is such that they
have become inconveniently short. The “Selected Regions” button allows one to selectively turn off
the blinking of selected sets of state durations, the “Print” button prints the histogram window in
Postscript, and “Close” exits.

[mistogram: Compute. BT

fursor 24328725 gen Btates in View 20

Total number of instances 20 ercent of total states (1000 4
Nuration of shortest instance |2.306491 e Btart state length 2.306491 =e
Duration of longest instance |2 86523 gec End state length 2. 8E523 zec

State: Compute

Zoom Factor |2.U |

| In || Out || Reset |

Max Mumber of bins |ZDD

Humber of bins a0

Feogions CTop W A assuming normal distribution
17 SR 1688

ZAR 387 S8R

Fegions CBottom ¥ R) assuming normal distribution

| | | |
1= 57 ez L3280 2.4943 2. GEEE 2,826
267 267 sE7
Ll I
Rezize to... || Elink states | Selected Regions | Primnt || Close |

Figure 5: Histogram for the “compute” state

4 Producing Logfiles

The ALOG library used to write logfiles to be displayed with upshot and nupshot has served us well
over the years, but has a number of limitations. The most significant is its fixed record format. An
ALOG record contains 6 integers and a 12-character string. The fixed format means that the records
are easy to traverse in memory and to parse from files, but also means that it is cumbersome, if
not impossible, to add new fields, particularly fields that pertain to only one type of record. The
ASCII format in files is excellent for portability and human readability of the files, but awkward for
containing binary data. CLOG 1is more flexible: it contains a variety of predefined record formats,
together with a “raw” record format that can be used for special cases. It is also relatively easy to
extend with new record types without impacting the usefulness of existing logfiles.

4.1 How It Works

A logfile-creation library for parallel programs has a number of requirements. Meeting these require-
ments 1s eased by assuming that MPI is available, and we do make that assumption.

e Logging must be so efficient that it does not materially affect the behavior of the program.
This means that 1/O should be carried out only after the program finishes.

e It is convenient if at the end of the program there is only one logfile, rather than one for each
process.

e Timestamps cannot, in general, be assumed to be synchronized among processes. On some
machines this assumption can be made, such as on certain SMPs or if the switch clock on
the IBM SP is being used, but in general some postprocessing is needed to synchronize the
timestamps.

e The data in the logfile should be self-describing to some extent, for the convenience of the
display tool.

CLOG makes a number of compromises in meeting these requirements.

e To obtain a timestamp, CLOG calls MPI Wtime, which returns a floating-point number of
seconds since some time in the past. The assumption is that MPI_Wtime is reasonably efficient
on any MPI implementation, although this particular format may not be the most efficient
way to get a timestamp on a given machine. We choose this approach for portability.

e When a log record is to be written, a subset of its content is stored in a relatively large buffer
in memory. When this buffer fills up, another one is malloc’d from the system. An alternative
would be to write the full buffer to disk and reuse the space, but the 1/O might perturb the
computation. Of course calling malloc also causes some perturbations in the computation,
but not as much as I/O would. We are planning to make this mechanism scalable to larger
log files by periodically dumping to disk.

e At the end of the computation, the buffers are processed to add information that is the same
for all records in the buffer (process id, for example). At this time the timestamps are adjusted.
A relatively straightforward algorithm is used to find relative clock offsets. Process 0 requests
a local time value from each of the other processes, and assumes that other processes read
their own clocks midway between the sending of this request and receiving the answer. The
request is repeated several times, and the result with lowest error (shortest round-trip time)
is used. More accurate but more complicated algorithms are known; our algorithm corrects
only for displacement, not for dilation, but so far it has proved adequate. As a last resort,
Jumpshot itself has a method for fine tuning the displacement of the events in a given process
at display time by dragging an individual time line.

At the end of the run, all processes participate in merging the records by timestamp to create a
single logfile. After the last log record is written and postprocessing of local buffers is complete, each
process has a linked list of buffers, each containing a large number of log records. The processes
form themselves into a binary tree, with (MPI) Process 0 at the root. The processes at the leaves
begin by sending their buffers to their parents. Each nonleaf process performs a three-way merge of
its own buffer with the buffers arriving from its children. When a merged buffer has been filled, it
is sent to its parent. At the root, merged, filled buffers are written to the logfile. MPI is used for
all communication. The file is in MPI’s “external-32” portable format [7], which is the same format
used by Java for portability of files, and which makes it portable, but requires byte-swapping on
some machines for some fields in the log records.

The post mortem processing, although it makes collection of the logfiles less intrusive, makes
Jumpshot less useful for debugging, since the logfile is only fully assembled when the program ter-
minates normally. This underscores the fact that Jumpshot is a performance debugging tool rather
than a correctness debugging tool.

4.2 The MPI Profiling Interface

The easiest way to write CLOG logfiles is automatically, using the MPT profiling interface. (See
Section 8.1 of [20] and Section 7.6 of [10].) The MPI standard specifies a mechanism by which all
MPI calls may be intercepted by the user, who can define a profiling library containing his own
versions of the MPT functions. Distributed with the MPICH portable implementation of MPT [6, 9]
is such a profiling library to write CLOG records, logging the start time and end time of all MPI
calls, thus logging a state for Jumpshot for the time a process is executing an MPI call. The profiling
version of MPI _Finalize causes the local logs to be merged and the logfile to be written as described
in Section 4.1. In order to cause this to happen, one need only link the profiling library in front of
the MPI library one is using. In MPICH, this is conveniently accomplished by using MPICH scripts
for linking, which have flags to link in various profiling libraries. For example,

mpicc -mpilog -o myprog myprog.c

will cause the profiling library for CLOG logging to be automatically linked in. When myprog is run
with

mpirun -np 64 myprog

a CLOG logfile will automatically be produced, suitable for viewing with Jumpshot.

The MPI Pcontrol function, when used with this profiling library, can be used to turn logging
on and off dynamically in the program. This can be used, for example, to collect logging data for a
single iteration of a complex loop that is executed many times.

4.3 The MPE Interface

For greater control, a user may log events directly, using the MPE library. MPE comprises useful
tools that forms a companion library for enhancing MPI programs. It was originally designed for
use with MPICH, but now is independent of MPICH and can be used with any implementation of
MPI. Tt contains non-MPT synchronization functions (for serialization), graphics routines (see [8]),
and logging functions. It is these logging routines that are called by the profiling library described
in Section 4.2, rather than CLOG directly.

The usefulness of using this library to prepare logfiles for Jumpshot is that a user (or another
library) can log events and states that are directly related to the application or library independently
of the MPI calls made. One can use the MPE logging functions either without any automated logging
at all or in conjunction with it. A large-scale example of use with a library 1s given in Section 6.4.

4.4 The CLOG Interface

The lowest level way to create logfiles is with the CLOG interface, which logs the various event
types and manages the activities described in Section 4.1. The change from ALOG to CLOG logfile
formats was accomplished by re-implementing the MPE logging library in terms of CLOG calls,
without changing the MPE interface. In addition, the transition from ALOG format to CLOG
format has been eased for MPICH users by providing a CLOG-to-ALOG translator, so that the
older tools, upshot and nupshot, can still be used with the newer CLOG file format. This was
important for the period between the adoption of the CLOG format and the implementation of
Jumpshot.

5 Experiences with Java

Using Java for this fourth generation of our basic performance analysis tool was an experiment. The
first part of the experiment was to determine whether the graphics performance of Java would be
adequate. Although Jumpshot does not display complex views as quickly as did nupshot (with
its direct X interface) we find it adequate for our purposes. The increasing significance of Java is
likely to cause performance to improve over time as well. The functionality of the graphics interface,
considered against Jumpshot’s rather modest needs, is also adequate, and also getting better.

The second, nontechnical, part of the experiment was to determine whether the only really
new benefit conferred on the project by the use of Java, namely the ability for Jumpshot to

run as a Web application, would be worth the effort. This capability turned out to be more
useful than we anticipated, for two reasons. First, running Jumpshot from the Web browser
on one’s laptop connected to the network turned out to be useful for demonstrations and lec-
tures, as well as in allowing others to try it over the net. (The Jumpshot applet can be viewed
at http://www.mcs.anl.gov/ lusk/aptest/lib/jumpshot.) Second, the environment portabil-
ity problems described below are greatly ameliorated by using the Web interface, with no loss in
performance.

The main drawback to the use of Java was the lack of portability of Java environments. We
use the JDK (Java Development Kit) for portability. Although the Jumpshot program’s Java code
itself is portable, the way Java is locally installed on Sun, SGI, and IBM workstations, and un-
der Windows95 or NT, can be critical. Running Java programs typically involves setting certain
environment variables, which can conflict with settings required for other applications (e.g., Web
browsers). Since we would like users to use all our tools in the same way in all environments, this
can be frustrating. Again, we expect the situation to improve over time.

Java libraries are rapidly evolving, and this caused considerable discomfort as JDK 1.1.2 evolved
into 1.1.6, which is the level Jumpshot currently requires. With the acceptance of the Swing GUI,
which Jumpshot uses now, and the upcoming release of JDK 1.2, we expect these problems to lessen.

At any rate, the overall verdict on the use of Java for this project is positive, and we expect to
continue to use it as Jumpshot evolves.

6 Interesting Examples

(T2

0 i 13.165563

. . 13165563 1 In | out | meset] metiens | Print | Close |
0 LA O T T 1 o
1 | [T T S
2 [H-I I—_IIIHI\I\IHIHIHIIIIIHIIHII\IIII 1T 1y 2
3 [T R TTATHTIT [T [T T AT 3
4 \II-H —_IIIIHIIIIIHIII\I\II\IIIHIIHIII [T 4
5 | 11 | | Y I | 1| 111111 NIV NI WUNL A0 A0 L LTI T 5
[W W T T (I
7 MW T I T [T
8 I W T T [T TN 8
9 | || | | I [T AT LI I 9
10 [W 1T TN 11 HHHH [N 10
11 I T [T [N 1
12 I I T [T Il HIIIIH HHHIH T f 42
13 I T TN LTI | 13
14 |1 I | | S S 0 (1[0 0 I LI IILETTITT ey 1 a4
15 W T T Onmmimmg 1 LI |45
16 I 1 NN [N NIRRT)
17 I T T [N AR TN v
18 I T T Il IH [T AT AT Y
18 [T TR L il 48
20 [T [N} IIIIIIIH T T | 20
a1 NI TR IIII\IIIIH I T (21
22 [M || WL I 1| 22
23 [N HIIII\ LTI 123
24 [T T T A TR =
2 I | E— Tl U T T | 25
26 | [T NI LT e |26
27 I I T T NI L LU Iy 1 f 27
28 [W T T IH\III I T AN T TR AR
29 I T TN G TTITW VI ITHNT T I 729
30 I T T IIHIIIHHI\ [N RN 30
EN T 0 T TN IR T TT AT AN i

5.3‘3739& 5.6'7173& B.BIBEBES 9.3‘45433 15.‘67475 12.‘55912 13.34347 14.'677&2 16.‘&1217 17.‘34652 1]
4 »
| D= [| W= [| @l [s [[A0 st o

Figure 6: MPI-2 independent (Unix-like) writes

In this section we describe and illustrate the use of Jumpshot with more interesting examples.

10

