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Abstract

We investigate the design of subband coders without the traditional perfect-reconstruction
constraint on the filters. The coder uses scalar quantizers, and its filters and bit allocation
are designed so as to optimize a rate-distortion criterion. Convexity properties play a central
role in the analysis. Our results hold for a broad class of rate-distortion criteria. First, we
show that optimality can be achieved using filter banks that are the cascade of a (paraunitary)
principal component filter bank for the input spectral process and a set of pre- and post-filters
surrounding each quantizer. An algorithm for computing the globally optimal filters and bit
allocation is given. We then develop closed-form solutions for the special case of two-channel
coders under an exponential rate-distortion model. Finally, we investigate a constrained-length
version of the filter design problem, which is applicable to practical coding scenarios. While the
optimal filter banks are nearly perfect-reconstruction at high rates, we demonstrate an appar-
ently surprising advantage of optimal FIR filter banks: they significantly outperform optimal
perfect-reconstruction FIR filter banks at all bit rates.
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1 Introduction

Following the discovery of perfect-reconstruction (PR) filter banks in the mid-eighties [1, 2, 3, 4],
subband coding research has focused primarily on the design and optimization of PR systems. The
emergence of wavelet theory provided new insights into the design of PR filter banks and helped
sustain this trend. Yet the use of subband coders without PR constraints is not without advan-
tages. The flexibility provided by the use of such a broad class of filters means that subband coders
without PR constraints generally outperform subband coders that use PR filter banks. This advan-
tage has been well documented in research using statistical signal models. In a 1988 paper, Dembo
and Malah [5] used modulated analysis filter banks and designed synthesis filters that minimize
the mean-squared error of the reconstructed signal under a broad class of quantizer models. More
recently, Kovacevi¢ [6] used (fixed-length) Lloyd-Max quantizers and designed synthesis filters in
such a way that the reconstruction error is uncorrelated with the signal itself. Haddad and Park
[7] also used Lloyd-Max quantizers, designed a set of scaling factors (which they called compen-
sators) for synthesis filters, and minimized the mean-squared reconstruction error over these factors.
Vaidyanathan and Chen [8] gave a Wiener filtering interpretation for such filter design problems.
Gosse and Duhamel [9] considered a broader class of scalar quantizers, including uniform quantizers
and entropy-constrained scalar quantizers, which have variable length and are optimal in a rate-
distortion sense. They developed numerical methods for optimizing Finite Impulse Response (FIR)
synthesis filter banks, given the analysis filter banks. Tugan and Vaidyanathan [10] investigated
the design of pre- and post-filters for single-channel quantization systems. As described in [10], un-
der some assumptions the scalar quantizer could be replaced with an orthonormal subband coder.
However, that special setup does not lend itself to joint optimization of the pre- and post-filters,

orthonormal filter banks, and bit allocation.

The problem of interest in our paper is to design the analysis and synthesis filters and the bit
allocation that jointly optimize the rate-distortion performance of subband coders that use scalar
quantizers in each channel. The distortion measure is mean-squared reconstruction error. For a
fixed bit budget, the resulting filter banks are termed minimum-mean-squared-error (MMSE) filter
banks. Unlike previous work, our focus is on identifying basic statistical properties and deriving
analytical expressions for the optimal filter banks and optimal bit allocation. These expressions are
given in terms of the overall bit budget and second-order statistics of the input signal. Hence our
objectives are similar to those in [11], where an analysis was developed for subband coders with
PR constraints. The absence of PR constraints introduces interesting new challenges because the

distortion-rate function includes both a signal and a quantization noise term, and several key tools



from [11] are not applicable here.

This paper is organized as follows. Our working assumptions and the rate—distortion criterion
for subband coder design are introduced in Sec. 2. Some fundamental statistical properties of
the optimal filter banks are derived on Sec. 3; our first main result is Theorem 3.3, which shows
that the optimal coder takes the form of the cascade of a principal component filter bank (PCFB)
[12, 13] and a set of pre- and post-filters surrounding each quantizer. Expressions for these optimal
filters are derived in Theorem 3.4, and an algorithm that computes the jointly optimal filters and
bit allocation is given. The results are specialized to coders under an exponential rate-distortion
model in Sec. 4. In Sec. 5, we present numerical results that illustrate our theoretical analysis
and demonstrate some remarkable advantages of FIR filter banks over their PR counterparts.

Conclusions are given in Sec. 6. Details of most proofs are given in the Appendix.

2 Statement of the Problem
2.1 Subband Coder Model

We consider M-channel subband coders with analysis filters {H;(f),0 < ¢ < M} and synthesis
filters {H;(f),0 < i < M}. Figure 1 shows an equivalent representation of the codec in terms of
the M x M analysis and synthesis polyphase matrices H(f) and 7—~l(f) [14]. Throughout, we use

script fonts for polyphase matrices.

The input z(n) to the subband coder is assumed to be real-valued, Gaussian, and wide-sense
stationary, with zero mean and spectral density S(f). Throughout, we assume that S(f) is bounded

away from zero. The total bit budget is R bits per sample, to be allocated to the quantizers in
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each channel. Quantizer (); in channel ¢ operates on a signal y;(n) with variance o7, is scalar, and
is allocated R; bits, where ﬁ Zf\ial R; = R. We assume that the quantization noise is additive,
white, and independent of the signal and that the quantization noise sources in different channels
are mutually independent. This is a standard model that is valid for uniform quantizers at high
bit rates, but not at low bit rates. (See [9] for more sophisticated quantization models at low bit
rates.) Hence we assume that all R; are large and positive. Since z(n) is zero-mean Gaussian,
all (unquantized) subband signals y;(n) are also zero-mean Gaussian. Each quantizer is assumed
to have a distortion rate function o?D(R;), where in this context, distortion is quantization noise
variance, and the distortion-rate function D(.) for a unit-variance Gaussian random variable is
strictly positive, strictly monotonic decreasing, and strictly convex. We also require In D(.) to

be concave. The standard exponential model D(R;) = yo?2721% for the rate-distortion function

satisfies all of these assumptions and will be considered in some detail.



2.2 Design Criterion

Under the assumptions of Sec. 2.1, the reconstruction error #(n) — z(n) is a cyclostationary process

with period M. For PR systems, the expected mean-squared error (MSE) takes the form [11]

1 M-1 1 M—l_ ~
LS Blin) - ) = 1 3 Do, 2.)
n=0 1=0

where ||h;]|? represents the amplification factor for white noise passed through synthesis filter h;.

In the MMSE filter bank approach, the PR constraints are relaxed so as to trade off systematic
reconstruction errors (due to lack of PR) against quantization noise. The solution is nearly identical
to the PR solution at high bit rates (low quantization noise), but notable improvements over
PR designs have been demonstrated numerically at lower bit rates [9]. Here, we seek analytical
expressions for the filters and bit allocation {R;} that jointly minimize the MSE. Let S(f) be the
M x M spectral density matrix for the polyphase vector z(n), input to H(f) in Fig. 1. According
to the model in Sec. 2.1, signal and quantization noise are independent. Hence, the MSE is the

sum of the noise term (2.1) due to quantization and a signal term due to lack of PR:

M-1 0.5
€= % ; D(R;)o?||hi]|? + %Tr /_0.5(;%(]@)7{(]6) S ANH - Dot (22)
where
ot = [ wnsmnad, o<i<m 23

N 0.5 5 5
[l / AR df, 0 <i< M,

-0.5
and the superscript { stands for the Hermitian transpose operator. Hence the mathematical problem
is to minimize the functional & over #, H, and {R;}, subject to the constraint R = ﬁ Zf\ial R;. A
solution is guaranteed to exist, because the admissible set of (7—[, H, {RZ}) is nonempty and closed,

and the cost function (2.2) is bounded from below. Also note that while & is strictly convex in

{R;} (for fixed filters H, H) and quadratic in both # and # (for fixed {R;}), & is not convex in
(7—[, 7—2, {RZ}) jointly. This makes the joint optimization problem harder to solve.

2.3 Optimal Bit Allocation

In order to find the optimal bit allocation, the optimization problem (2.2) with bit rate constraints

is transformed into the Lagrange optimization problem:



Minimize & = ﬁZ?ﬁglE(Ri)U?Hi%H?‘F
' [20s(HUNH() = ) S HNHS) = )T df = gy G Ry

over H,H, {R;}, where —p > 0 is the Lagrange multiplier. For any choice of filters (7—[77-2), the

optimal bit allocation {R;} satisfies the condition

dD(R)
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=, 0<i<M. (2.4)

Hence, the slope of the distortion-rate function ﬁE(RZ)U?H/NzZHQ at the encoder’s operating point
is the same for all channels. Here we have made the standard assumption that R is large enough
so that the positivity constraints R; > 0 are all inactive (i.e., B; > 0 for 0 <7 < M). Because of
the strict convexity of D(.), the optimal bit allocation condition (2.4) yields a unique solution, for

fixed filters H, H.

3 Fundamental Properties of Optimal Subband Coder

3.1 Structure of Optimal Subband Coder

We have recently proven that filter banks that are optimal with respect to the PR criterion (2.1)
enjoy two fundamental properties: total decorrelation of the subband channels, and spectral ma-
jorization [11]. These properties were previously known to apply only to paraunitary filter banks,
in which case the solution is a PCFB [12, 13, 15]. Propositions 3.1 and 3.2 below show that these
fundamental properties hold even when the PR constraint is relaxed and the appropriate cost func-
tion (2.2) is used. These results enable us to derive the structure of the optimal subband coder in

Theorem 3.3.

Specifically, Proposition 3.1 implies that the M x M spectral density matrix S, ( f) for the vector
y(n) of subband signals is diagonal; in other words, the optimal coder statistically decouples the
subbands. Proposition 3.2 asserts that the spectral densities S, ;;(f) for the individual subband

signals y;(n) satisfy a certain ordering condition.

Proposition 3.1 (Total Decorrelation Is Necessary for Optimality.)  The system H, 7,
{R;} minimizes the MSE (2.2) only if the matrices S, = HSHT and HIH are diagonal and {R;}
satisfies (2.4).

Proposition 3.2 (Spectral Majorization Is Necessary for Optimality.) Let H,H, {R;} be
a minimizer of the MSFE (2.2), and M = HIH. Without loss of generality, assume that Ry > Ry >



--- > Rar—1. The normalized spectral densities ﬁ‘?y’“’(f) Jor the subband signals satisfy the
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spectral majorization property

1 1
=——Sy00(f) 2 2 = Sym-1.m-1(f), Y/
Do 22 By ez, V)
Likewise, the normalized quantities WM“(]‘) satisfy the spectral majorization property
- Moo(/) > 1 M (5), V1
== 5MoolJ) 2= = M-1,M-1{/), .
D(Ro)lhol[? D(Rys—1)[[hag - [?

The proof of Propositions 3.1 and 3.2 uses variational techniques and is briefly outlined below. The
methodology parallels the proofs of Theorem 2.3 and Lemma 2.6 in [11]. The idea is to introduce
admissible variations of the filters around the optimal solution, from which it can be inferred
that total decorrelation and spectral majorization are necessary conditions for optimality. FEach
variation is a modification of the analysis and synthesis polyphase matrices,  and %, by polyphase
matrices G and G, respectively. The modified analysis and synthesis polyphase matrices under
such variations are Mo = HG and Hypew = g—lﬁ, respectively. Note that under this variation,
Moo Hpew = HH, so the second term of the cost function (2.2) (signal term, due to lack of PR)

remains unchanged.

Therefore, if (7—[, 7—2) is optimal, no variation (%g g—lsft) can possibly increase the first term
of (2.2), ﬁzgal_(Rz)ainzzHQ But this is precisely the cost function used in [11]. So the
procedure used to prove Theorem 2.3 and Lemma 2.6 in [11] directly applies. We conclude that
total decorrelation and spectral majorization are necessary conditions for optimality under the cost

function (2.2). [ |

We now show that the design in Fig. 2 is optimal. This result, which is stated more precisely
in Theorem 3.3, is a fundamental property of optimal filter banks without PR constraints. All of
our subsequent analysis is based on this theorem. The fact that ¢(f) is a PCFB means that the

output z(n) of U(f) satisfies the spectral majorization property:

S.o0(f) > > Som—1,m—1(f).

Theorem 3.3 Let S = VAV! be the eigenvector decomposition of S, where the diagonal elements
Xi(f) of A are spectrally majorized: Ao(f) > M(f) > ... > Aym—1(f) for all f. Without loss of
generality, assume that Ry > Ry > --- > Ry_1. Let C be the class of subband coders in which
the analysis and synthesis filter banks are of the form H = GU and H = UTG, respectively, where



U =Vt isa PCFB, and G and G are diagonal matrices with real, nonnegative functions on the
diagonals; see Fig. 2. Then the optimal subband coder in class C achieves the global minimum of

the MSE (2.2).

Proof : See Appendix A.

The particular subband coder in Fig. 2 was already shown to be optimal in the PR class [11].
In that case, we had the additional restriction Gy(f) = 1/G4(f), due to the PR constraint. It was
also shown that under optimality conditions, (f) must be a PCFB. As Theorem 3.3 shows, a
closely related but weaker property holds for our problem. As discussed in Remark 5 in Sec. 3.2,
it is generally not necessary for U(f) to be a PCFB for optimality. Hence, unlike in the PR case,

the design in Fig. 2 may not be necessary for optimality.

In Sec. 3.2, we seek expressions for the best filters G/;(f) and Gz(f) The optimal solution is
clearly guaranteed to be at least as good as the optimal PR solution, since the optimization is over

a larger set.

3.2 Optimal Filters for a Given Bit Allocation

Our goal here is to find the pre- and post-filters G;(f) and G;(f) in Fig. 2 that minimize the
MSE (2.2) for a given U(f) and bit allocation {R;}. We shall not assume that either U(f) or
the bit allocation {R;} is optimal. However, we shall assume that /( f) statistically decouples the
subbands, as is the case for the PCFB in Fig. 2.

Let S;(f), 0 <1i < M, be the spectral density of the signal z;(n) in channel ¢ at the output of
U(f). Since H = GU and H = U'G, we have

U?z/i]@(f)\/si(f)fdf and ||/32»||2:/

—0. —-0.5

” ‘Gi(f)r df, 0<i< M. (3.1)
Additionally, since 2(f) statistically decouples the subbands,
[ (nn - i) st (rn - )|
_ [u*(f) (9n9(H = 1) 8:00) (GG - IM)TW)]
= 1 [(90600) - 1) 8.0 (6065 - 1) |
o

= Y |ancn -] s, (32

=0



Hence the MSE (2.2), viewed as a function of G = {G;(f)} and G = {G,(f)}, takes the form

EGLG)=3%f;3130/22@xﬁvﬁzﬂfﬁ/jyéxﬁf#
. 1 MZlocos )
2 [ JGnen -1 s (33)

Applying the Cauchy-Schwartz inequality to the product of integrals in (3.3), we obtain
3 (G, G) > E(P), (3.4)
where we have introduced the product filters

(NGf), 0<i< My P(S) 2 [Po(f), Plf)s- s Pu—r (NI

D

PAf) =

and the functional
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By Theorem 3.3, G;(f) and G;(f) are real and nonnegative, so P;(f) is also nonnegative:

P(f)>0, 0<i<M, fe[-0.5,0.5]. (3.6)

The lower bound in (3.4) is attained if and only if
GiHVS:(f) = a;Gi(f), 0<i< M, fe[-0.5,0.5], (3.7)

where «; are arbitrary, nonnegative, real-valued constants. If (3.7) is satisfied, we have

~ 0.5 2
amwﬁhﬁmwMW,ogdm (3.9

Our approach is to minimize the lower bound (3.5) over P subject to the nonnegativity con-
straints (3.6). Using (3.7), we then construct a set of filters G, G that attains this minimum; hence

this must be the solution to the minimization problem (3.3). Denote by
Popt = argmin{Pi(f)Zo}g (P) (39)

the solution to the constrained optimization problem (3.5) (3.6). The following theorem gives Pop¢
and constructs optimal filters Gopt and éopt in terms of the bit allocation {R;} and the spectral
densities {S;(f)}. If U(f) is a PCFB, and if the bit allocation is optimal, then Gop¢ and éopt

give us a globally optimal solution to the original optimization problem (2.2).



Theorem 3.4 For any given eigenvector matriz U(f) and {R;}, the filters G and G in Fig. 2 that
minimize the MSE (2.2) are given by

1

Gopti f) = &iS; *(N)A/Popti(f), 0<i< M, fe[-0.50.5] (3.10)

and

Gropei(f) = 1S3 () Bopea (), 0< i< M, fe[-0.5,05], (3.11)

where ¢; are arbitrary positive scaling factors, and the product filters P,y ;(f) = Gopm(f)éopm(f),
are of the form

D(R) S VSN df

14 ‘f{l_‘ E(RZ) Sz(f)

Popti(f) = max (0, 1- ) , 0<i<M, fe[-0.5,05]. (3.12)

Here ]—‘{" C [-0.5,0.5] is the set of frequencies where Py ;(f) is strictly positive, f-l— denotes inte-
gration over ]—'{", and [_ denotes integration over the complementary set. The normalized variances

of the subband signals are

boti= [ Putvsar = DTy 3.13)
—0.5 7

2 T+ D)

k3

The MSE for the optimal filters G, G is given by

&mn:MZ e VSa) 4y > [sne e

Proof : See Appendix B.

Since the support sets 7 depend on P, ;(f), the expression (3.12) is apparently a complicated
nonlinear system of equations. However, in Appendix C we develop a simple algorithm that solves
this system. The key idea is that P,y ;(f) is zero for all frequencies f such that S;(f) is below
a certain threshold. The weak signal components at frequencies f ¢ ]—'{" are of no significance in
determining the optimal filters. Note that this property is unique to filter banks without PR con-
straints. The ability to entirely eliminate weak components of the signal bears a striking similarity
with the well-known reverse water filling result in rate-distortion theory for stationary Gaussian
processes [16, p. 641], according to which no bits should be allocated to frequency components that
fall below a certain level that depends on the spectral density of the signal and on the bit budget

available.

To illustrate Theorem 3.4 and the discussion above, we present a toy example. The signal z(n)

in Fig. 3 is applied to a two-channel filter bank. Its spectral density S, (f) is piecewise constant as



given in Fig. 3(a), with § < 1. The frequency response of the lowpass and highpass filters of the
PCFB U(f) is displayed in Fig. 3(b), and the resulting aliased spectra So(f) and S;(f) are shown
in Fig. 3(c). For any bit rate Rg, the solution to (3.12) is given by F" = [~0.5,0.5], Popio(f) =

D(Ro)
11D (Ro)
weak and are filtered out. For § < 1, the solution to (3.12) is F;" = [-0.5, —0.25]U [0.25,0.5], and

Poa(f)y=1- 2?%](%11%)1) for f € ]:1'"7 and zero otherwise.

. For any given Ry, if ¢ is small enough, half of the frequency components of S1(f) are

Remark 1 The functional form of the optimal filters (3.12) is independent of the particular rate-
distortion criterion used.

Remark 2 Given a particular bit allocation {R;}, the solution (3.12) is unique because it is the
global minimizer of the strictly convex cost functional (3.5) over the convex set (3.6) (a simple
extension of Proposition B.10, in [17, p. 571]). This implies uniqueness of the sets {]—'{"}.
Remark 3 In virtually all examples involving AR, processes we studied, a significant simplification

arose as Py ;(f) was strictly positive over the whole frequency interval:
FF =1[-0.5,05], 0<i<M. (3.15)

From (3.12), we find that a necessary and sufficient condition for (3.15) to hold is
: D(R;) /0'5 :
min S; > — Si(f)df, 0<i< M. 3.16
sein G VS > o DR Jos ¥ (Ndf, 0< (3.16)
In other words, (3.15) holds if /.S;(f) is not too small relative to its mean and if the bit rate R;
is large enough. This condition was not satisfied in the toy example of Fig. 3. If (3.15) holds, then
(3.12) reduces to
— 0.5
_ D(R;) f_0.5 V Si(f)df
1+ D(R)) Si(f)
and the expression (3.14) for the minimal MSE simplifies to

o 1 M-1 E(Ri) 0.5 ' 2
Emin = 77 z:; TID(E) [ . VS:(f) df] : (3.18)

Poi(f) =1 . 0<i<M, fe[-05,0.5], (3.17)

Remark 4 If ‘]—'{"‘ # 1, it may not be necessary for U(f) to be a PCFB. To see this, consider
the two-channel case, and assume there exists f such that the signal components at f are weak in
both channels: f ¢ 7 and f ¢ F;'. Then, switching Uoo f) and U (f) has no effect on the cost

functional.

Remark 5 Since the class C of filters considered includes biorthogonal filters as a special case, the

optimal MSE (3.14) is upper-bounded by the minimal value

1 M-1

i D(R;) ( _0..5 \/Wdf) 2

=0

£ =

10



for the Infinite Impulse Response (IIR) biorthogonal case [11]. At high bit rates, &, tends to the
limit above. Observe that Gy i(f) and Gopm(f) can be approximated with arbitrary accuracy by
FIR filters of sufficient length, so the performance of optimal FIR filter banks converges to (3.14)
as the filter length tends to infinity. As discussed in [11], PR-FIR filter banks do not enjoy a similar
property: they must satisfy the constraint det H(f) = 1, and their performance does not converge
to that of IIR biorthogonal filter banks (for which the constraint det H(f) = 1 is not applicable).
This has a remarkable implication, which is illustrated by experiments in Sec. 5: even at high bit
rates, FIR filter banks of specified length can vastly outperform FIR biorthogonal filter banks of
arbitrary length.

3.3 Computation of Jointly Optimal Filters and Bit Allocation

In Sec. 2.3, we derived the condition (2.4) for the optimal bit allocation given the filters. In Sec. 3.2,
we obtained the optimal filters from the expression (3.12) for the optimal product filters P, given
the bit allocation {R;} and the eigenvector matrix ¢/ (f). This was done by minimizing the cost
functional € in (3.5) over P. As mentioned in Remark 2, these optimal product filters are unique,
given {R;} and U(f), because & is strictly convex in P. Moreover, & is strictly convex in {R;} for
every P, which implies the uniqueness of the optimal {R;}, given P and U(f).

We are now interested in computing jointly optimal filters and bit allocation. This can be done
by using an alternating optimization approach in which bit allocation and filters are successively
updated. Each iteration involves two steps: first, optimize the bit rates using standard convex
programming (e.g., gradient-based) techniques, and second, optimize the filters using (3.10), (3.11),
and (3.12). Such an algorithm would converge to the globally optimum solution under convexity
conditions that are discussed below. The PCFB U(f) is fixed, so we view & as a function of both
{R;} and P. The joint optimization problem is much harder than it appears at first sight. For
instance, just because the optimal { R;} is unique given P, and the optimal P is unique given {R;},

1 'We now present a condition on

we cannot assume that the jointly optimal solution is unique.
the rate-distortion function D(R) that guarantees strict convexity of £ as a function of the pair
({R;},P) and hence existence of a unique minimum. The convexity property implies that this

minimum can be easily found by using numerical techniques such as the iterative algorithm above.

'A textbook example of this apparent paradox is the function of two variables F(wo,21) = (w0 — 1)2 z7 +
x3 (z1 — 1)27 which has a unique mimimum for any given zo and a unique minimum for any given zi, vet admits
two joint minima (0,0) and (1,1). This function is strictly convex in z¢ as well as strictly convex in x, but is not
convex in the pair (zg,z1).

11



Proposition 3.5 The cost functional (3.5) is strictly conver in {R;} and P if
. 2 — _
2 (D’(R)) <D'"(R) (D(R)+1), (3.19)

where D' (R) and D" (R) denote the first and second derivatives of D(R), respectively.

Proof : See Appendix D.

Note that our concavity requirement on In D(R) in Sec. 2.1 can be written as [E(R)]z >
E(R)E”(R), so not many distortion rate-functions will satisfy both the log concavity assumption
and the condition (3.19) for all R. Interestingly, under the classical exponential model D(R) =
7272 for the rate-distortion function, (3.19) reduces to the simple condition D(R) < 1, namely,

log, v

k> 5

(3.20)

This condition is satisfied under our initial assumption of high bit rates. For entropy constrained

scalar quantizers (ECSQ) with Gaussian inputs, logTﬂ = 0.71 [16, p. 154].

4 Exponential Rate-Distortion Function

In this section, we derive analytical expressions for the jointly optimal filters and bit allocation,
under the classical model D(R) = v272 for the rate-distortion function. Recall from (3.20) that
the high bit rate assumption guarantees uniqueness of the solution to this optimization problem.
For this particular D(R), the optimal bit allocation condition (2.4) becomes

dD(R)
dR

o 2| || ? =~y (=2In2)c?||h]|?27 i =, 0<i< M. (4.1)

R;
The resulting distortions o?||h;||*D(R;) are thus identical for all channels. Therefore,
1M
22 2| |2 = 972F H AP 0<i<, (12

where R = - ZM ! R; . This yields a closed—form expression for the optimal bit allocation in

terms of the filters,

M-1
- 1 - ]
Ri = R +logy ol [hi|| = -7 > logy ajl|hyll, 0 <i< M. (4.3)

7=0

Substituting (4.2) into (2.2), we obtain

M-1 .05 /M
£ = 72—2R[H /_0.5 (HHSHH' (). df/ naw) df]
bt [ (Rm - ) st (RGm) - lrM)T . (4.4

12



to be minimized over (7—[,7—2) (For PR systems, the optimization criterion is the classical coding
gain criterion.) It remains to solve the resulting nonlinear system (3.12) (4.3). The solution of this
system is given in Appendix E. Equation (E.1) gives the optimal filters under optimal bit allocation.

This expression involves M + 1 constants o2 , . and &, which are solutions to the nonlinear system

optyi
(E.2) (E.3). These solutions are unique owing to (3.20). We have been able to solve the nonlinear
system (E.2) (E.3) in closed form for the special case of two-channel filter banks at high bit rates.

The result is stated below.

Proposition 4.1 Assume without loss of generality that ¢; = 1. ? For two-channel coders with
exponential distortion-rate function, there exists R* > 0 such that the following holds. For any

l ~
R > R*, the optimal pre- and post-filters are given by Gopi(f) = S; * (f)\/Popti (f) and Gope i (f) =
1
Si4 (f) Popt,i(f), iZO,l, where

y2
Popt,O(f) =1- mgopt,h f € [_0'57 05]7
y2
Popea(f)=1- S f €[-0.5,0.5], (4.5)

and

, /So(f) df — 2~ 2Rf /5 ()

Ot =
v 1 — (y272R)*
/S R /S
o2 = iy =2 o : (4.6)
opt,1 1— (72 QR)
Proof : Here (E.3) takes the form
& = 72_2R‘72pt,0‘72pt,1- (4.7)

Assume momentarily that condition (3.15) is satisfied. Substituting (4.7) into (E.9), we obtain
O-;lpt,i - O-Zpt,i/ V Sz(f) df + 72_2R02pt,00-2pt,1 = 07 1= 07 1.
_l_

Dividing both sides by o2, ; when ¢ = 0 and by 02, ; when i =1 gives the linear system

0.5
opt0+72 2 optl_ \/SO(f)df7

0.5
opt1+72 2 optO_ \/Sl(f)df7

whose solution is (4.6). Substituting (4.7) into (E.1), we obtain (4.5). From (4.6), we have o2, ;

f%‘l VSi(f)df as R — oo (i =1,2). Hence (4.3) implies that R; — co. Hence the right-hand side

—

of (3.16) tends to zero, which justifies our initial assumption (3.15). |

2Qtherwise replace aim by agpm/c? in the expressions below.
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5 Numerical Experiments

To illustrate our analyses, we applied an AR(1) input process with correlation coefficient r = 0.8 to
a two-channel subband coder. The PCFB for this process is the traditional orthonormal filter bank
with ideal low-pass and high-pass filters shown in Fig. 3b. We used the exponential rate-distortion
model D(R) = v272F for the quantizers, with v = 2.71 (ECSQ). The optimization problem was
solved for various rates R, and the results were compared with optimal IIR biorthogonal filter
banks and optimal unconstrained-length FIR biorthogonal filter banks [11]. At all bit rates, we
obtained ]—'{" = [—%, %] For R = 1.76, the bit rate in the high-pass channel becomes zero, in
which case the design criterion (4.4) becomes invalid. As Fig. 4 shows, the performance of the
optimal unconstrained-length MMSE filter banks is very close to optimal IIR biorthogonal filter
banks at very high rates, but improvements become quite significant as R decreases. These results
are consistent with numerous results in the literature using numerically optimized filter banks.
Frequency responses are shown in Fig. 5 for an AR(1) process with correlation coefficient r = 0.8,

and rate R = 2.91. The arbitrary scaling constants ¢y and ¢; for all three filter banks have been

chosen so that the frequency responses are the same at f = 0 and at f = 0.5.

Remark 5 at the end of Sec. 3.2 motivated us to investigate the constrained-length version of this
design and to quantify the improvements over FIR biorthogonal filter banks. A simple rectangular
windowing technique was used to design constrained-length FIR filter banks from the optimum
unconstrained-length solution. As shown in Fig. 6, the results are excellent at medium bit rates.
At R = 2.91, the length-63 FIR filter bank outperforms optimal FIR biorthogonal filter banks of
arbitrary length, and the length-103 FIR filter bank outperforms optimal 1IR biorthogonal filter
banks. Similar advantages hold at arbitrarily high bit rates, but longer FIR filters are needed to
break the performance bounds for FIR and IIR biorthogonal filters. Refinements in the FIR filter

design method are likely to yield further improvements.

6 Conclusion

We have studied the design of subband coders that are optimally adapted to second—order input
signal statistics. Our main working assumptions are the use of scalar quantizers and a model for
the rate—distortion characteristic of these quantizers. Absolutely no constraints are placed on the
subband filters. The criterion for optimal design of the filters and bit allocation is overall rate-
distortion performance of the subband coder. Previous results in the literature have addressed

simplified versions of this problem, involving assumptions such as fixed analysis filters. However,
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joint optimization of analysis filters, synthesis filters, and bit allocation presents significant chal-

lenges. We have obtained answers to a number of basic theoretical questions.

First, we have shown that the output of the optimal coder satisfies fundamental properties
of total decorrelation and spectral majorization, which were previously known to apply only to
coders with PR constraints on the filters. Also, we have shown that the optimal subband coder
in the special class of Fig. 2 achieves the global minimum of the distortion-rate function. This
analysis stresses the important role played by PCFBs in such problems. We have derived analytical
expressions for the optimal pre- and post-filters in Fig. 2. The functional form of these expressions
is independent of the particular rate-distortion model used. Conditions for uniqueness of the jointly
optimal pre- and post-filters and bit allocation have been identified in Proposition 3.5. A simple
algorithm based on convexity properties of the cost function has been proposed to compute the
globally optimal coder. Closed-form expressions have been obtained in the case of two-channel

subband coders with exponential rate-distortion function.

The optimal filters do not admit a finite parameterization. In practice, FIR approximations
may be sought. We have constructed simple FIR approximations and demonstrated both theoret-
ically and numerically (see Fig. 6) the following remarkable property: these FIR approximations
significantly outperform FIR PR filter bank of arbitrary length in the sense that even at high bit
rates, the MSE performance gap does not tend to zero. Note that the ultimate performance in a
constrained class of FIR filters would be obtained by using rate-distortion as the approximation
criterion. However, determining optimal filters in this fashion is still an open problem. Another
possible extension of our work would be to relax the high-rate assumption that led to the MSE
model (2.2). However, as indicated in [9], low-bit-rate quantization noise models involve complex
dependencies between noise samples. Optimization of the overall performance of the subband coder

under such models would certainly present a formidable challenge.
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APPENDIX

A Proof of Theorem 3.3
First we give two lemmas that are a direct consequence of Proposition 3.1.

Lemma A.1 The optimal synthesis polyphase matrix is of the form

H(f) =UHG(S), (A.1)

where Z/N{(f) is a paraunitary matriz and QN(f) is a diagonal matriz with real, nonnegative entries.

The proof of Lemma A.1 is exactly the same as the proof of Corollary 2.4 in [11] and uses the
fact that H17# is diagonal, which is a consequence of Proposition 3.1. |

Lemma A.2 The optimal analysis polyphase matrix is of the form

H(f) = SyP (WA (NHVI, (A.2)

where S = VAV is the eigenvector decomposition of S, W is a paraunitary matriz, and Sy is the

(diagonal) spectral density matriz for the vector y(n) of subband signals in Fig. 1.

Proof : Define the M x M matrix W = S;%°HVA®®. Hence H(f) takes the form (A.2). By
Proposition 3.1, &, = HSH! is a diagonal matrix with nonnegative entries. This implies that

WW! =T, and thus W is paraunitary. [ |

To prove Theorem 3.3, we again use a variational technique. The outline of the proof is as
follows. We fix the bit allocation {R;} and assume that (#,#) minimizes the MSE (2.2). Let S, =
HSHT be the spectral density matrix corresponding to this choice of H. The variational technique
is based on the parameterizations # = 4G and H = 85'5WA_0'5VT given by Lemmas A.1 and A.2.
We construct a filter bank (Heu, 7—~lmw) that is in class C and satisfies &(Hew, ﬁnew) = E(H, 7—2)
We then conclude that the optimal subband coder in class C achieves the global minimum of (2.2)

over the unconstrained set of subband coders.

The proof is as follows. First consider the quantization noise term &, (H, H) = 15 SSMAD(R) o2 |hi |2

n (2.2). From (2.3) and (A.1), we have

o= [Satndr ad P =[G i=on Mt (A.3)
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Hence, for fixed {R;}, S, and G, the noise term is unaffected by variations in ¢/ and W.

The signal term (due to lack of PR) in (2.2) is given by
. 1 y . t
E(HH) = MTr / (mz - IM) S (mz - IM)
- T
- / Tr (HH — 1u) S (HH ~ )
= ugs“mx OSPE— 13y) VAPSADSVT (GSOIWAOSV — 1y,
= 5 u) (@gs, - I
1 - - t
_ _/ [ VTUQSS'5W— A0'5) (VTUQSS'5W— A0'5) VT]
- - T
= / Tr [ VIUGSIIW = A7) (VUGS ™ W - A°7) ] , (A.A4)

where the third equality uses the eigenvector decomposition for § and the parameterization of H
and H given in Lemmas A.1 and A.2, and the last equality uses the trace invariance property,

which holds for any unitary V. Define the matrix
Q=gSY, (A.5)

which by our assumptions is diagonal, real, and nonnegative definite. Observe that its squared
diagonal elements Q?(f) are the spectral density functions of the signal part of v(n) in Fig. 2. Both
Q and A%® are diagonal matrices with nonnegative real elements, and V14 and W are complex
paraunitary matrices. We now use a simple extension of the Hoffman-Wielandt theorem [18, The-
orem 6.3.5] to the non-Hermitian case [18, Corollary 7.3.8] to bound the integrand of (A.4) from

below:
M-1

, [(VTZ;{QW _ A0'5) (VTZ;{QW _ A0'5) T] Z _ /\05 (A.6)

=0
where {Q,} is a frequency-dependent permutation of {Q;}, so that Qu(f) > Q.(f) > -+ >
Qu—1(f). Since (7—[,7—2) is optimal, no variation in & and W can reduce &, (7—[,7—2); hence &, (7—[,7—2)

must achieve the lower bound in the right-hand side of (A.6).

If Q;(f) are already ordered, then Q;(f) = Q:(f), and equality is achieved in (A.6) for V1t/ =
W = Ips. We then choose H,,0, = SO'5A_0'5VJr and H,ey = VG, which are clearly in class C, and
satisfy Eo(Hpew, Hnew) = Es(H, H); hence E(Hpew, Hnew) = EH,H).

If Q:(f) are not ordered, we proceed in two steps. The first step consists of normalizing
the analysis and synthesis filters. We let d; = [D(R;)0?]'/?, D = diag(d;), and normalize the
filters as follows: htempi(n) = d7 *hi(n), and hieppi(n) = dihi(n). In terms of polyphase ma-
trices, we have Hiepp = D~ 1. and Htemp = HD. We also let Synew = HtempSHtemp and

gtemp = gD, S0 Htemp = ugtemp. This scaling changes neither the signal term E(Hemp, %temp) =
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E;(H,H) nor the noise term, which can now be written as En(?ltempﬂ:ltemp) = &(HH) =
ﬁ Zf\ial il g?mp’ﬁ(f) df. Our second step consists of reordering the diagonal elements of Gtemp(f).
For each f, let Gnew’i(f) be a reordering of Gtemm(f), so that Gnew,o(f) > Gnew’l(f) > e >

Grewm—1(f). Note that E(Ri)afwwﬂ»

Synew1(f) > -+ > Synewm—1(f). Hence from (A.5), Qnew,i(f) = 557'25w7i(f)énew,i(f) are simi-
larly ordered. We now let Hpew = S5 A%V and H,eo = VGnew. The reordering of elements

Y, new

= 1, so from Proposition 3.2, we also have Sy ;c0(f) >

of Gtemp does not affect the noise term:
i | ML | M1 i
(oo o) = 37 3 [ w0 r =5 3 [ G hydf = 0070

As well, (A.6) yields E(Hnpew, Hnew) = Es(H, 7—2), where the equality follows from the ordering of
Qnew,i(f). So again, we obtain (H,cy, 7—~lmw) in class C that is as good as the original (%, 7—2) [}

B Proof of Theorem 3.4

To find the solution to the constrained optimization problem (3.6) (3.9), we use the Generalized

Kuhn-Tucker Theorem [19, p. 249]. We introduce the Lagrangian

M-1 L0535
ﬁmmﬁ®—ZLJMMMﬁ

where A;(f) >0, 0<i< M, f€[-0.5,0.5]are Lagrange multipliers, and we define A(f) 2

No(f), A(f)s - dar—1(N]F . Let Popt(f) be a solution to the constrained optimization problem
(3.9). Then there exists Aopt(f) such that the Lagrangian is stationary at Pope(f). Setting the
Fréchet derivative of the Lagrangian to zero, we obtain the necessary conditions (B.1) and (B.2)

for optimality:

[(VEE) () = Aopeilf)]

pep,, =0, 0<i<M, fe[-0.50.5], (B.1)

where Aope(f) is such that the nonnegativity constraints (3.6) are satisfied. Additionally,
Nopti(F) Popti(f) =0, 0<i< M, fe[-0.5,05. (B.2)

To find the solution to the optimization problem (3.6) (3.9), we examine whether the constraint
P;(f) > 0 is active or not, for each frequency f € [-0.5,0.5]. If the constraint is inactive for
a particular frequency f, then P, ;(f) > 0, and successive application of (B.2) and (B.1) gives
Aopti(f) = 0 and Vp &

PP, = 0. On the other hand, if the constraint is active at f, we
1—4 opt e
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have P, (f) = _ (f) = Aopti(f). This solution clearly satisfies the first-order
—4 opt,e
Kuhn-Tucker conditions (B.1) and (B.2).

We can now compute P, ;(f). When the constraint is inactive (P, ;(f) > 0), we obtain from

(3.5)

- 2 __ 0.5 2
0= (VPE) Op”(f):MD(Ri) |:/_05 optz \/ df \/ M[Popt,i(f)_l]si(f)7
0<i< M, felFf,
whence
Popiilf) = ¢_ / (VS df, 0<i<M, feFr. (B3

When the constraint is active (f ¢ ]—'{"), we obtain

Rmxﬁzmw(, / mz)wﬂﬁﬁ>70§i<M,fepﬂa0@(B®

\/_

Multiplying both sides by 1/.S;(f), integrating and simplifying, we obtain

/05 i (F)V/Si(f) df = f“si@df’, 0<i< M. (B.5)

o5 1+ |FH| D(R;)
Substituting (B.5) into (B.4) yields the expression (3.12) for the optimal product filter.

We can now compute the optimal pre- and post-filters, {Gopei(f)} and {Gopm(f)}. From (3.7),
we have Gope i (f)/Si(f) = oeiéopm(f) = ai%. Hence, (3.10) (3.11) follow with ¢; = a;. We
now substitute (3.10) and (3.11) into (3.1) and obtain

2

Uot,i 7 0-5 .
T = bl = [ POV A 02 <M. (B.)

Using (B.5) in (B.6) yields (3.13). Having derived the optimum filter responses (3.10)—(3.12), we
compute the corresponding optimal value of the cost functional &,,;,. Evaluating (3.5) at Popt, we

obtain

gmin é E(Popt)
1 M-1 0.5
= I 7 0 2 d
17 £ P00 [ potnvsia]
1 M-1 .05 ,
v opt,i () — i(f)d -
a7 2 | P = AP s (B.7)
1 M- 1_ f—l— / df
= 37 2 P \TE
=0 —I_‘]:Z ‘D
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1 D(R) |
ar ‘7:+ — Si d — SZ' d
el I ACEE R WAL
1 M-1 D(RZ) 2 M-1
= =7 VvSi(f)d — () d
MZHW\D(R)M st f] " ;/_S(f)f
The expression above is (3.14) and is valid for any given bit allocation {R;}. |
C Computation of Support Sets F;°

The sets 1 implicitly defined in (3.12) can be written as

Fr= {f :—0.5 < f <0.5and v/S;(f) > TZ»*}7

WhereTi*:m V/Si(f) df. Define the sets F;(T ):{f:0.5§f§0.5 and \/Si(f)>T}
and the functions Q;(T) = Fi(T) ' Si(f) df. The threshold T is the solution to the nonlinear equa-
tion

T = fi(1), (C.1)

where

A D(R)
14 |F(T)| D(R:)

See Fig. 7 for an illustration. As noted in Remark 2 in Sec. 3.2, the sets ]—'{" are unique, so the

fi(T) Qi(T).

solution 77 to (C.1) is also unique.

|F;(T)] and Q;(T') are nonincreasing functions of 7. If |F;(T")| and Q;(T") are differentiable with
respect to T', then

d|F; 1 dQ; d|F; ,
| |:_Z Q:TL 0<i< M,

v,
—JJ
where {f;} are the roots of \/S;(f) = 1. After some algebraic manipulations, we find

df; D(R;) o 4
AT~ 1+ |F(T)| D(R )[T_fZ(T)] T’

0<i< M,

which implies that 7 has the same sign as f;(T) = T. Since f;(0) = %ﬂ o5 Vi) df >0,

we directly obtain the following:
Claim: For all 7' < T, we have T' < fi(T) < fi(T7) =T7. (C.2)

To establish this claim, we assumed differentiability of |F;(T)| and Q;(T"). However, the existence
of plateaus in 4/5;(f) (as in the example of Fig. 7a) would give rise to jumps in both |F;(T")| and

20



Q:(T). We now show that the claim holds even in this case. The functions |F;(7")| and Q;(1') are

right-continuous and have the same set of discontinuities. We have

lim [F(T = o) = [F(T) [+ [A(D)], lmQi(T —¢) = Qi(1) + T |A(T)], 0<i<M,

e—0

where A;(T) = {f —0.5< £<0.5 and +/S;( } are the level sets of \/5;(f). It can easily
be shown that jumps of f;(1) are given by

()2 1) — i (7 - |A(T)| D(R) o Z.
AR & ) =iy (T = ) = s s L) = T0 S 6 < M. (C3)

Note that Af;(T) = 0 and that Af;(T) has the same sign as f;(1') — T. Hence the claim (C.2)
still holds.

This suggests the use of the following iterative algorithm to find 77" in each channel (see Fig. 7b
for an illustration):
1. Initialize T = 0, and k = 0.

2. Use the update rule Tf"’l =f (Tf)

The claim (C.2) guarantees that the sequence T is nondecreasing and converges to T7.

D Proof of Proposition 3.5

The cost functional (3.5) viewed as a function of both P and {R;} is the sum of M functionals

E{Ri},P) ZF R;, P),

where
0.5

2
s 2w ([ ravEma) « [ e - rsog

depends on i via S;. A sufficient condition for £ to be strictly convex in ({R;},P) is that each
F; be strictly convex in (R, P). A sufficient condition for strict convexity of [} is the positivity of
its second order variation evaluated for all (R, P). (Analogously, positive definiteness of Hessians
of functions defined on R” is a sufficient condition for the strict convexity of these functions). Let
(0R,5P) be any admissible variation of the variables (R, P). The claim will be proven by showing
that the second derivative of I' (R 4 adR, P + adP) with respect to the real variable «, evaluated
at o = 0, is strictly positive for any admissible (§R,dP). We have

= R D' (R)UE +1.(6F) D (R)U: (8U) + 2D() GU)* +2 [ ey s

-0.5 0.1)

0°F;
Jdo?

a=0
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where

Uié/o'5 P(f)/S:(f) df, 5Uié/0'5 SP(f)\/Si(f)df.

—-0.5 —-0.5

Using the Cauchy-Schwartz inequality on the rightmost term of (D.1), we have the following tight
lower bound:

0°F;
Jdo?

> (6R)* D" (R)UZ + 4 (§R) D' (R)U; (8U;) + (2D(R) + 2) (6U;)* . (D.2)

a=0

The right hand side of (D.2) is quadratic in § R and is strictly positive if the discriminant is negative:

2 =i

SUZ (U;)? [2 (E’(R)) D"(R) (D(R)+1)]| <.

Hence (3.19) follows directly. [ |

E Optimal Filters for Exponential Rate-Distortion Function

2

For notational simplicity, we use o7, ;

in place of ngm»/c?. (Equivalently, we assume that ¢; = 1.)

Claim : Under optimal bit allocation, the filters that minimize the MSE (4.4) are given by (3.10)
and (3.11), with product filters
&y 1

Ppti(f) =max [ 0,1—
8 a2i /Si(F)

) , 0<i<M, fe[-05,0.5]. (E.1)

The constants o2

opt,i and &, are solutions to the nonlinear system
?

agpm:%/Jr\/Wdfi\/(%/Jr\/Wde—\}'ﬂgq, 0<i< M, (E.2)

M—1 2/M
gq = 72_2R [H O-Zpt,i] (ES)
=0
&
fz*:{f:—0.5§f§0.5 and \/Si(f)>02q}, 0<i< M. (E.4)
opt,e
The MSE for the optimal filters is given by
1 M=AT e 2 | M-l
- il g T+ — »
Emin = & + 57 ; lggp”] |7+ i ; /_Sz(f) df. (E.5)
Proof : Substituting (B.6) in (B.4), we obtain
D(R; :
P,pi(f) = max (07 1- ; (]2) UZW) , 0<i< M, fe[-0.5,0.5]. (E.6)
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The first term in the right hand side of (4.4),

Nt 2M
y2 [H Uillhilll ) (E.7)
=0

is inversely proportional to the classical coding gain for PR systems. For optimal filters, (B.6) is
satisfied (with ¢; = 1), so (E.7) takes the form (E.3). Using (4.1) (equality of distortions in all

channels), we obtain from (E.3)

o) D(R) =&, 0<i<M. (E.8)

opt,e

Substituting (E.8) into (E.6), we obtain (E.1). Multiplying both sides of (E.1) by /S;(f) and

integrating, we obtain

Op“:/w/ 7 df - \fﬂg L 0<i< M.

optyi
Therefore, ngm» satisfies the quadratic equation
Tonti = Ot /+ VSi(f)df + |FFE, =0, 0<i<M, (E.9)

whose solution is given by (E.2). Equations (E.2), (E.3) constitute a nonlinear system of M + 1

equations with M + 1 unknowns {o? .}, &, The nonlinearity of this system is compounded by

opt,e

the dependency of the domain of integration ]—'Z‘" on &, and o? Given {ngt .}, &y, one can solve

opt,e®
for 7t using the algorithm in Appendix C. Given F, the system (E.2) (E.3) can be solved

K3 K3

numerically. The optimal pre- and post-filters are again given by (3.10) and (3.11), respectively.

To find the optimum value of the MSE, we substitute (B.6) and (E.1) into the first and second
terms of (B.7), respectively. We obtain

M— B 2
&mn:M;D ohi+ MZ[U ] f+\+ Z/S (E.10)

Substituting (E.8) into the first term of (E.10), we obtain (E.5). |

optyi

The discriminant in (E.2) is guaranteed to be nonnegative for all 7 because there always exists
a solution to the optimization problem, as noted in the remark at the end of Sec. 2.2. This solution
is unique because the condition (3.20) is assumed to be satisfied.

According to (E.2), there apparently exist two possible candidates for the solution ngm» in
each channel, depending on the choice of the sign. Only one of them corresponds to the (unique)

solution. At high bit rates, the solution tends to the IIR biorthogonal solution, and the optimal
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system tends to a PR system. In this case, ngm» tends to the PR solution ff'jﬁ v/ Si(f) df, meaning
that all signs in (E.2) must positive.

Remark When the condition (3.15) is satisfied, the optimal product filters are given by

&
Po t,i(f) =1- ! ;
' ngm' SZ(f)

0<i< M, fe[-0.5,0.5],

in which case

=AY
- q
gmzn_gq—l_M Z (0'275') ) (Ell)
=0 opt,t
where o2, ; and &, are the solutions to the nonlinear system (E.2),(E.3).
F Alternative Proof of Theorem 3.3

In this section, we use intensively the parameterization of # and H' as obtained from Corollary

A.2:

H(f) = UNG(S) (F.1)
H(f) = GUHWUNHA(NHVI), (F.2)

where VAV is the eigenvalue decomposition of S, G and G are diagonal matrices with nonnegative

entries and U, U, VW are complex paraunitary matrices.

Lemma F.1

a1 /_(;i(fl(f)%(f) ~ L)S(HHNHH(S) — )T df > (F.3)
W /_0 2 AN FPH ) = 2T NP6 ), (F.1)

where P = GG.

Proof For compactness of notation, we elude the dependence on f of the matrices involved. Using

the parameterizations of % and H, we obtain

Tr(HHSHIH) = TrUGGWA T VIVAVTIVA~O S WIGGHUT) = (F.5)
TrUGGGeUtY) = Tr(P?), (F.6)

the last equation arising from the invariance property Tr(UAUT) = TrA, for U paraunitary. We

also have that

Tr(P?) = Z P2 = Z Pl (F.7)
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since the sum is invariant to permutations of its own terms. At the same time,
Tr(HHS) = TrUGGWA S VIVAVT) = Tr(VIUPWAS®). (F.8)
Thus,
Re(Tr(HHS)) = TrUGGWAT VIVAVT) = Re(Tr(VIUPWA"®)) < 3P\ (F.9)

where the last relation is a consequence of the Wielandt-Hoffman theorem for nonsymmetric ma-

trices [18, Corollary 7.3.8]. We are now in position to write

0.5
ﬁfn/ (FH = i) S(HH — Tn) df = (F.10)
—0.5
0.5
1 1»/) TrHAUSHIH) + Tr(S) — 2Re(Tr(AHS)) > (F.11)
—0.5
0.5
7 /_ . Y Ay + PGy — 2A0 P, (F.12)
by (F.6), (F.9). Since Tr(S) = > A, the proof is complete. 0

Lemma F.2 Leta > c and b > 0. Let R(t) be the unique minimizer, for fized t, of the expression
E(R,t) = D(R)(a+bt)* 4+ D(B — R)(c — bt)* (F.13)

Then LE(R(t),t) <0, V0 < t < £.

Proof For fixed ¢, the extremality conditions require F(R,t) = D' (R)(a+bt)2—D'(B—R)(c—bt)? =
0, which defines R(t) implicitly. We have that <= F (R, t) = D"(R)(a+bt)2+D"(B—R)(c—bt)? > 0,
Vt, R, since, from our assumptions, D(R) is strictly convex. Thus, the solution to F(R,t) = 0 is
unique, and R(t) is differentiable by the implicit function theorem (the fact that one solution exists
is the result of our high bit-rate assumption). Also, since D(R) is convex, D' (R) is increasing; thus

F(R,t) = 0, together with our assumptions about «,b, ¢, imply that R > B — R.

Since E(IR) = exp(—In(D(R))) is a convex function, it follows that

(F.14)

and thus,

-/
- > — . (F.15)
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In the previous expression, the denominators are positive and the numerators are positive and equal

(by the extremal condition F'(R,t) =0 and since D(R) is strictly decreasing). This results in

D’ (R)(a+bt)?> < D*(B — R)(c — bt)? (F.16)
D(R)(a+bt) < D(B — R)(c— bt). (F.17)
We now have
d _ — dR
EE(R@)’ t) = 2b(D(R)(a+bt) — D(B—R)(c—bt))+ F(R, t)% (F.18)
= 20(D(R)(a+bt) — D(B — R)(c—bt)) <0 (F.19)
by (F.17) and b > 0. The proof is complete. a

Lemma F.3 Assume that the bit rates are allocated such that Ry > Ry... > Ry_1. Then there
exists a choice of bit rates By > By... > Bps_1 such that

M-1 M-
1 0.5

LS Dyt = LY D P (1.20)

=0 =0 —05

Proof: We will first prove this result for two channels. In this case, we have that

1o 2 , 0.5 o (%5
5 S DRI 2= 5 ZD A A e
i=0 0.5 -0.5
1 <aa 0.5 0. 5 . 05 1 <aa 0.5
3D [0 [ G- ZD (G617 =5 Dir)[ P (r2)
2= -0.5 -0.5 2= -0.5
as a result of the Cauchy inequality. Assume now that a = 8'055 Py > f&; Py = ¢ (otherwise we

can simply switch the indices).

Let F = {f € [-0.5,0.5]|Po(f) < Pi(f)}. If this set is of measure zero, then the lemma is
proved. If F does not have measure zero, take Py, = Py + tx(F)(P1 — Po), and Py = Py —

tY(F)(P1 — Po), where x(F) is the characteristic function of the set F. Clearly Pos, P1r > 0,
Vi €[0,1]. Let b= [ \(F)(P1 — Po) > 0. Clearly

0.5 0.5
b= [ AP [ m=e (F.29)
—0.5 —0.5
Let Ro(t), R1(t) be the results of adapting the bit rates to minimize
1 _ 0.5 . 0.5
E(Rot) = S(D(Ro)(|  Po)*+ DR = Ro)([ Pri)” (F.24)
—0.5 —0.5
1 —
= (D D(Ro)(a+tb)* + D(2R — Ro)(c —tb)?). (F.25)
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From the results of our previous lemma, for 0 <t < 1 < 7, we have that %E(Ro(t)J) < 0, and
thus E(Ro(0),0) > E(Ro(1),1). But Pyy = max Py, Py = P(oy and P11 = min Py, P1 = Py), which

proves the claim for two channels.

For multiple channels, the two-channel approach is used to prove that we can replace Py(f)
and Py (f) with max(Po(f), P1(f)) and min(Po(f), P1(f)), respectively, and then Py(f) and Pz(f)
with max(Po(f), P2(f)) and min(Po(f), P2(f)), and so on, until in channel 0 we have Pry. The

procedure is repeated on P(1), P(z) until all channels are exhausted. The proof is complete. O

The main result of this section is summarized in the following theorem

Theorem F.4 Let H and H be two filters with the structure given by Corollary A.2. Let VAV = §
be the eigenvalue decomposition of S and Q(f) the permutation matrices such that Q(f)A(f)Q(f)T =
diag(Agy(f) = A°(f) (the permutation-matriz-valued function that orders the eigenvalue of S in a
decreasing order). Let P = GG > 0 and G° = diag( 77(2')). Then, there exists a choice of bit rates
B; such that

M-1 0.5 0.5
¥, 1 7 2 1 2 0.5 o qq0
EHHR) > o Z D(B:)( 0577(2')) + M/%(ZAQ)U) + Py — 20 Py) = E(H°, H?, B),

=0 - -
(F.26)
where H° = VQIG® and H° = G°QA~°5Vt. For this configuration, the inequality is, therefore,

attained.

Proof: The inequality follows instantly from Lemmas F.3 and F.1. To check that the inequality is
attained, we need to verify only the part, following the details of the proof of Lemma F.1:

Re(Tr(HH®S)) = Re(Tr(VQIG°G? QA= VTVAYT)) = (F.27)
Re(Tr(VQ1G°G° QA V) = Re(Tr(Q1G°G°QA°?)) = (F.28)
Re(Tr(G°G°QA°QM) = Re(Tr(P°(A°)*%)) =D " AP (F.29)

where we used Tr(QAQ") = Tr(A) for Q paraunitary. The proof is complete. a

F.1 Optimization Strategy

1. For S(f) given, compute the eigenvalue decomposition V(f)A(f)V(f)T.

2. Compute the permutation matrices Q(f) such that Q(f)A(f)Q(f) = diag(A(;)) (the permu-
tations that order A(f) decreasingly).
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3. Minimize the functional (which is convex under the conditions specified)

LN Dy [ pr e L [ a4 P2y (ra)
— i ; -I-—/ A+ P =207P; 30
M = o M J_g5 =" ®

Note that the P; need not be ordered, for the theorem guarantees that they will be ordered
at the solution (or some degeneracy happens that will allow for an ordered solution anyway).
Or alternatively, one may impose the ordering, resulting in a smaller search set but with more

inequalities to enforce.

4. Choose as solutions H° = VQG® and H° = G°QA~%5VT, where (G2 ="P.
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Figure 1: Polyphase representation of M—channel subband coder and decoder using analysis filters
H;(f) and synthesis filters H;(f). The polyphase components of H;(f) (resp. H;(f)) are contained
in row (resp. column) i of the polyphase matrix H(f) (resp. H(f)).
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Figure 2: Cascade of a principal-component filter bank 2/ (f) and a set of zero—phase prefilters G;( f)

and postfilters G;(f) around each quantizer. The optimal subband coder in that class achieves the
global minimum of the MSE (2.2).
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Figure 3: Toy example: (a) Spectral density of the input (n). (b) Frequency response of the two
filters Up(f) and Uy (f) in PCFB. These are the classical, “ideal” brickwall filters. (¢) Corresponding
spectral densities So(f) and Sy (f) together with the positive part of the support sets F and Fj'.
(d) The optimal product filters P, 0(f) and Pop1(f). Note P, 1(f) rejects the insignificant
frequency components in the range 0 < |f| < 0.25.

32



-10

-15

=20

Mean Squared Error (dB)

-25

15

2.5

Bit rate

Figure 4: AR(1) process with correlation coefficient » = 0.8: optimum values of MSE as a function
of overall bit rate R for different filter design methods, under exponential rate-distortion model.
Solid line: 1IR biorthogonal (half-whitening) filters [11]. Dotted line: FIR biorthogonal filters [11].
Dashed line: MMSE filters.
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Figure 5: Frequency responses of optimal, unconstrained length analysis filters in two-channel
coder, for AR(1) process at bit rate R = 2.91. Solid line: IIR biorthogonal (half-whitening) filters
[11]. Dotted line: FIR biorthogonal filters [11]. Dashed line: MMSE filters.
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Figure 6: AR(1) process, R=2.91: convergence of MSE (solid curve) for FIR-MMSE filter banks to
-17.22 dB limit (dashed line) for unconstrained-length MMSE filter banks. Compare with MSEs for
IIR biorthogonal filter banks (dash-dotted line, -16.86 dB), and unconstrained-length FIR biorthog-
onal filter banks (dotted line, -16.61 dB).
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Figure 7: Computation of the threshold T* that determines the set ]—'{". (a) Square root of spectral
density in channel i. The set F;(T") and the function @Q;(7") are shown for a given value of the level
T. (b) Function f;(T), and sample path of iterative algorithm converging to 77, the solution to
the equation T = f;(T).
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