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1 IntroductionFollowing the discovery of perfect-reconstruction (PR) �lter banks in the mid-eighties [1, 2, 3, 4],subband coding research has focused primarily on the design and optimization of PR systems. Theemergence of wavelet theory provided new insights into the design of PR �lter banks and helpedsustain this trend. Yet the use of subband coders without PR constraints is not without advan-tages. The exibility provided by the use of such a broad class of �lters means that subband coderswithout PR constraints generally outperform subband coders that use PR �lter banks. This advan-tage has been well documented in research using statistical signal models. In a 1988 paper, Demboand Malah [5] used modulated analysis �lter banks and designed synthesis �lters that minimizethe mean-squared error of the reconstructed signal under a broad class of quantizer models. Morerecently, Kova�cevi�c [6] used (�xed-length) Lloyd-Max quantizers and designed synthesis �lters insuch a way that the reconstruction error is uncorrelated with the signal itself. Haddad and Park[7] also used Lloyd-Max quantizers, designed a set of scaling factors (which they called compen-sators) for synthesis �lters, and minimized the mean-squared reconstruction error over these factors.Vaidyanathan and Chen [8] gave a Wiener �ltering interpretation for such �lter design problems.Gosse and Duhamel [9] considered a broader class of scalar quantizers, including uniform quantizersand entropy-constrained scalar quantizers, which have variable length and are optimal in a rate-distortion sense. They developed numerical methods for optimizing Finite Impulse Response (FIR)synthesis �lter banks, given the analysis �lter banks. Tuqan and Vaidyanathan [10] investigatedthe design of pre- and post-�lters for single-channel quantization systems. As described in [10], un-der some assumptions the scalar quantizer could be replaced with an orthonormal subband coder.However, that special setup does not lend itself to joint optimization of the pre- and post-�lters,orthonormal �lter banks, and bit allocation.The problem of interest in our paper is to design the analysis and synthesis �lters and the bitallocation that jointly optimize the rate-distortion performance of subband coders that use scalarquantizers in each channel. The distortion measure is mean-squared reconstruction error. For a�xed bit budget, the resulting �lter banks are termed minimum-mean-squared-error (MMSE) �lterbanks. Unlike previous work, our focus is on identifying basic statistical properties and derivinganalytical expressions for the optimal �lter banks and optimal bit allocation. These expressions aregiven in terms of the overall bit budget and second-order statistics of the input signal. Hence ourobjectives are similar to those in [11], where an analysis was developed for subband coders withPR constraints. The absence of PR constraints introduces interesting new challenges because thedistortion-rate function includes both a signal and a quantization noise term, and several key tools2



from [11] are not applicable here.This paper is organized as follows. Our working assumptions and the rate{distortion criterionfor subband coder design are introduced in Sec. 2. Some fundamental statistical properties ofthe optimal �lter banks are derived on Sec. 3; our �rst main result is Theorem 3.3, which showsthat the optimal coder takes the form of the cascade of a principal component �lter bank (PCFB)[12, 13] and a set of pre- and post-�lters surrounding each quantizer. Expressions for these optimal�lters are derived in Theorem 3.4, and an algorithm that computes the jointly optimal �lters andbit allocation is given. The results are specialized to coders under an exponential rate-distortionmodel in Sec. 4. In Sec. 5, we present numerical results that illustrate our theoretical analysisand demonstrate some remarkable advantages of FIR �lter banks over their PR counterparts.Conclusions are given in Sec. 6. Details of most proofs are given in the Appendix.2 Statement of the Problem2.1 Subband Coder ModelWe consider M -channel subband coders with analysis �lters fHi(f); 0 � i < Mg and synthesis�lters f ~Hi(f); 0 � i < Mg. Figure 1 shows an equivalent representation of the codec in terms ofthe M �M analysis and synthesis polyphase matrices H(f) and ~H(f) [14]. Throughout, we usescript fonts for polyphase matrices.The input x(n) to the subband coder is assumed to be real-valued, Gaussian, and wide-sensestationary, with zero mean and spectral density S(f). Throughout, we assume that S(f) is boundedaway from zero. The total bit budget is R bits per sample, to be allocated to the quantizers ineach channel. Quantizer Qi in channel i operates on a signal yi(n) with variance �2i , is scalar, andis allocated Ri bits, where 1M PM�1i=0 Ri = R. We assume that the quantization noise is additive,white, and independent of the signal and that the quantization noise sources in di�erent channelsare mutually independent. This is a standard model that is valid for uniform quantizers at highbit rates, but not at low bit rates. (See [9] for more sophisticated quantization models at low bitrates.) Hence we assume that all Ri are large and positive. Since x(n) is zero-mean Gaussian,all (unquantized) subband signals yi(n) are also zero-mean Gaussian. Each quantizer is assumedto have a distortion rate function �2iD(Ri), where in this context, distortion is quantization noisevariance, and the distortion{rate function D(:) for a unit-variance Gaussian random variable isstrictly positive, strictly monotonic decreasing, and strictly convex. We also require ln D(:) tobe concave. The standard exponential model D(Ri) = �2i 2�2Ri for the rate-distortion functionsatis�es all of these assumptions and will be considered in some detail.3



2.2 Design CriterionUnder the assumptions of Sec. 2.1, the reconstruction error x̂(n)�x(n) is a cyclostationary processwith period M . For PR systems, the expected mean-squared error (MSE) takes the form [11]1M M�1Xn=0 Ejx̂(n)� x(n)j2 = 1M M�1Xi=0 D(Ri)�2i jj~hijj2; (2.1)where jj~hijj2 represents the ampli�cation factor for white noise passed through synthesis �lter ~hi.In the MMSE �lter bank approach, the PR constraints are relaxed so as to trade o� systematicreconstruction errors (due to lack of PR) against quantization noise. The solution is nearly identicalto the PR solution at high bit rates (low quantization noise), but notable improvements overPR designs have been demonstrated numerically at lower bit rates [9]. Here, we seek analyticalexpressions for the �lters and bit allocation fRig that jointly minimize the MSE. Let S(f) be theM �M spectral density matrix for the polyphase vector x(n), input to H(f) in Fig. 1. Accordingto the model in Sec. 2.1, signal and quantization noise are independent. Hence, the MSE is thesum of the noise term (2.1) due to quantization and a signal term due to lack of PR:E = 1M M�1Xi=0 D(Ri)�2i jj~hijj2 + 1MTr Z 0:5�0:5( ~H(f)H(f)� IM )S(f)( ~H(f)H(f)� IM)y df; (2.2)where �2i = Z 0:5�0:5(H(f)S(f)H(f)y)ii df; 0 � i < M; (2.3)jj~hijj2 = Z 0:5�0:5( ~Hy(f) ~H(f))ii df; 0 � i < M;and the superscript y stands for the Hermitian transpose operator. Hence the mathematical problemis to minimize the functional E over H, ~H, and fRig, subject to the constraint R = 1M PM�1i=0 Ri. Asolution is guaranteed to exist, because the admissible set of �H; ~H; fRig� is nonempty and closed,and the cost function (2.2) is bounded from below. Also note that while E is strictly convex infRig (for �xed �lters H, ~H) and quadratic in both H and ~H (for �xed fRig), E is not convex in�H; ~H; fRig� jointly. This makes the joint optimization problem harder to solve.2.3 Optimal Bit AllocationIn order to �nd the optimal bit allocation, the optimization problem (2.2) with bit rate constraintsis transformed into the Lagrange optimization problem:4



Minimize E = 1M PM�1i=0 D(Ri)�2i jj~hijj2+1MTr R 0:5�0:5( ~H(f)H(f)� IM )S(f)( ~H(f)H(f)� IM)y df � � 1M PM�1i=0 Riover H; ~H; fRig, where �� � 0 is the Lagrange multiplier. For any choice of �lters �H; ~H�, theoptimal bit allocation fRig satis�es the condition�2i jj~hijj2 dD(R)dR ����Ri = �; 0 � i < M: (2.4)Hence, the slope of the distortion-rate function 1MD(Ri)�2i jj~hijj2 at the encoder's operating pointis the same for all channels. Here we have made the standard assumption that R is large enoughso that the positivity constraints Ri � 0 are all inactive (i.e., Ri > 0 for 0 � i < M). Because ofthe strict convexity of D(:), the optimal bit allocation condition (2.4) yields a unique solution, for�xed �lters H, ~H.3 Fundamental Properties of Optimal Subband Coder3.1 Structure of Optimal Subband CoderWe have recently proven that �lter banks that are optimal with respect to the PR criterion (2.1)enjoy two fundamental properties: total decorrelation of the subband channels, and spectral ma-jorization [11]. These properties were previously known to apply only to paraunitary �lter banks,in which case the solution is a PCFB [12, 13, 15]. Propositions 3.1 and 3.2 below show that thesefundamental properties hold even when the PR constraint is relaxed and the appropriate cost func-tion (2.2) is used. These results enable us to derive the structure of the optimal subband coder inTheorem 3.3.Speci�cally, Proposition 3.1 implies that theM�M spectral density matrix Sy(f) for the vectory(n) of subband signals is diagonal; in other words, the optimal coder statistically decouples thesubbands. Proposition 3.2 asserts that the spectral densities Sy;ii(f) for the individual subbandsignals yi(n) satisfy a certain ordering condition.Proposition 3.1 (Total Decorrelation Is Necessary for Optimality.) The system H; ~H,fRig minimizes the MSE (2.2) only if the matrices Sy = HSHy and ~Hy ~H are diagonal and fRigsatis�es (2.4).Proposition 3.2 (Spectral Majorization Is Necessary for Optimality.) Let H; ~H, fRig bea minimizer of the MSE (2.2), and M = ~Hy ~H. Without loss of generality, assume that R0 � R1 �5



� � � � RM�1. The normalized spectral densities 1D(Ri)�2i Sy;ii(f) for the subband signals satisfy thespectral majorization property1D(R0)�20Sy;00(f) � � � � � 1D(RM�1)�2M�1Sy;M�1;M�1(f); 8f:Likewise, the normalized quantities 1D(Ri)jj~hijj2Mii(f) satisfy the spectral majorization property1D(R0)jj~h0jj2M00(f) � � � � 1D(RM�1)jj~hM�1jj2MM�1;M�1(f); 8f:The proof of Propositions 3.1 and 3.2 uses variational techniques and is briey outlined below. Themethodology parallels the proofs of Theorem 2.3 and Lemma 2.6 in [11]. The idea is to introduceadmissible variations of the �lters around the optimal solution, from which it can be inferredthat total decorrelation and spectral majorization are necessary conditions for optimality. Eachvariation is a modi�cation of the analysis and synthesis polyphase matrices, H and ~H, by polyphasematrices G and G�1, respectively. The modi�ed analysis and synthesis polyphase matrices undersuch variations are Hnew = HG and ~Hnew = G�1 ~H, respectively. Note that under this variation,Hnew ~Hnew = H ~H, so the second term of the cost function (2.2) (signal term, due to lack of PR)remains unchanged.Therefore, if �H; ~H� is optimal, no variation �HG;G�1 ~H� can possibly increase the �rst termof (2.2), 1M PM�1i=0 D(Ri)�2i jj~hijj2. But this is precisely the cost function used in [11]. So theprocedure used to prove Theorem 2.3 and Lemma 2.6 in [11] directly applies. We conclude thattotal decorrelation and spectral majorization are necessary conditions for optimality under the costfunction (2.2). �We now show that the design in Fig. 2 is optimal. This result, which is stated more preciselyin Theorem 3.3, is a fundamental property of optimal �lter banks without PR constraints. All ofour subsequent analysis is based on this theorem. The fact that U(f) is a PCFB means that theoutput z(n) of U(f) satis�es the spectral majorization property:Sz;00(f) � � � � � Sz;M�1;M�1(f):Theorem 3.3 Let S = V�Vy be the eigenvector decomposition of S, where the diagonal elements�i(f) of � are spectrally majorized: �0(f) � �1(f) � : : : � �M�1(f) for all f . Without loss ofgenerality, assume that R0 � R1 � � � � � RM�1. Let C be the class of subband coders in whichthe analysis and synthesis �lter banks are of the form H = GU and ~H = Uy ~G, respectively, where6



U = Vy is a PCFB, and G and ~G are diagonal matrices with real, nonnegative functions on thediagonals; see Fig. 2. Then the optimal subband coder in class C achieves the global minimum ofthe MSE (2.2).Proof : See Appendix A.The particular subband coder in Fig. 2 was already shown to be optimal in the PR class [11].In that case, we had the additional restriction ~Gi(f) = 1=Gi(f), due to the PR constraint. It wasalso shown that under optimality conditions, U(f) must be a PCFB. As Theorem 3.3 shows, aclosely related but weaker property holds for our problem. As discussed in Remark 5 in Sec. 3.2,it is generally not necessary for U(f) to be a PCFB for optimality. Hence, unlike in the PR case,the design in Fig. 2 may not be necessary for optimality.In Sec. 3.2, we seek expressions for the best �lters Gi(f) and ~Gi(f). The optimal solution isclearly guaranteed to be at least as good as the optimal PR solution, since the optimization is overa larger set.3.2 Optimal Filters for a Given Bit AllocationOur goal here is to �nd the pre- and post-�lters Gi(f) and ~Gi(f) in Fig. 2 that minimize theMSE (2.2) for a given U(f) and bit allocation fRig. We shall not assume that either U(f) orthe bit allocation fRig is optimal. However, we shall assume that U(f) statistically decouples thesubbands, as is the case for the PCFB in Fig. 2.Let Si(f), 0 � i < M , be the spectral density of the signal zi(n) in channel i at the output ofU(f). Since H = GU and ~H = Uy ~G, we have�2i = Z 0:5�0:5 ���Gi(f)pSi(f)���2 df and jj~hijj2 = Z 0:5�0:5 ��� ~Gi(f)���2 df; 0 � i < M: (3.1)Additionally, since U(f) statistically decouples the subbands,Tr �� ~H(f)H(f)� IM�S(f)� ~H(f)H(f)� IM�y�= Tr �Uy(f)� ~G(f)G(f)� IM�Sz(f)� ~G(f)G(f)� IM�yU(f)�= Tr �� ~G(f)G(f)� IM�Sz(f)� ~G(f)G(f)� IM�y�= M�1Xi=0 ��� ~Gi(f)Gi(f)� 1���2 Si(f): (3.2)7



Hence the MSE (2.2), viewed as a function of G = fGi(f)g and ~G = f ~Gi(f)g, takes the formE �G; ~G� = 1M M�1Xi=0 D(Ri) Z 0:5�0:5 ���Gi(f)pSi(f)���2 df Z 0:5�0:5 ��� ~Gi(f)���2 df+ 1M M�1Xi=0 Z 0:5�0:5 ��� ~Gi(f)Gi(f)� 1���2 Si(f)df: (3.3)Applying the Cauchy-Schwartz inequality to the product of integrals in (3.3), we obtainE �G; ~G� � E (P) ; (3.4)where we have introduced the product �ltersPi(f) = Gi(f) ~Gi(f); 0 � i < M ; P(f) 4= [P0(f); P1(f); : : : ; PM�1(f)]T ;and the functionalE (P) 4= 1M M�1Xi=0 D(Ri) �Z 0:5�0:5 Pi(f)pSi(f) df�2 + 1M M�1Xi=0 Z 0:5�0:5 jPi(f)� 1j2 Si(f) df: (3.5)By Theorem 3.3, Gi(f) and ~Gi(f) are real and nonnegative, so Pi(f) is also nonnegative:Pi(f) � 0; 0 � i < M; f 2 [�0:5; 0:5] : (3.6)The lower bound in (3.4) is attained if and only ifGi(f)pSi(f) = �i ~Gi(f); 0 � i < M; f 2 [�0:5; 0:5] ; (3.7)where �i are arbitrary, nonnegative, real-valued constants. If (3.7) is satis�ed, we have�2i jj~hijj2 = ����Z 0:5�0:5 Pi(f)pSi(f)df ����2 ; 0 � i < M: (3.8)Our approach is to minimize the lower bound (3.5) over P subject to the nonnegativity con-straints (3.6). Using (3.7), we then construct a set of �lters G, ~G that attains this minimum; hencethis must be the solution to the minimization problem (3.3). Denote byPopt = argminfPi(f)�0gE (P) (3.9)the solution to the constrained optimization problem (3.5) (3.6). The following theorem gives Poptand constructs optimal �lters Gopt and ~Gopt in terms of the bit allocation fRig and the spectraldensities fSi(f)g. If U(f) is a PCFB, and if the bit allocation is optimal, then Gopt and ~Goptgive us a globally optimal solution to the original optimization problem (2.2).8



Theorem 3.4 For any given eigenvector matrix U(f) and fRig, the �lters G and ~G in Fig. 2 thatminimize the MSE (2.2) are given byGopt;i(f) = ciS� 14i (f)qPopt;i(f); 0 � i < M; f 2 [�0:5; 0:5] (3.10)and ~Gopt;i(f) = c�1i S 14i (f)qPopt;i(f); 0 � i < M; f 2 [�0:5; 0:5] ; (3.11)where ci are arbitrary positive scaling factors, and the product �lters Popt;i(f) = Gopt;i(f) ~Gopt;i(f),are of the formPopt;i(f) = max 0; 1� D(Ri)1 + ��F+i ��D(Ri) R+pSi(f) dfpSi(f) ! ; 0 � i < M; f 2 [�0:5; 0:5] : (3.12)Here F+i � [�0:5; 0:5] is the set of frequencies where Popt;i(f) is strictly positive, R+ denotes inte-gration over F+i , and R� denotes integration over the complementary set. The normalized variancesof the subband signals are1c2i �2opt;i = Z 0:5�0:5 Popt;i(f)pSi(f)df = R+pSi(f)df1 + ��F+i ��D(Ri) ; 0 � i < M: (3.13)The MSE for the optimal �lters G, ~G is given byEmin = 1M M�1Xi=0 D(Ri)1 + ��F+i ��D(Ri) �Z+pSi(f)df�2 + 1M M�1Xi=0 Z� Si(f) df: (3.14)Proof : See Appendix B.Since the support sets F+i depend on Popt;i(f), the expression (3.12) is apparently a complicatednonlinear system of equations. However, in Appendix C we develop a simple algorithm that solvesthis system. The key idea is that Popt;i(f) is zero for all frequencies f such that Si(f) is belowa certain threshold. The weak signal components at frequencies f 62 F+i are of no signi�cance indetermining the optimal �lters. Note that this property is unique to �lter banks without PR con-straints. The ability to entirely eliminate weak components of the signal bears a striking similaritywith the well-known reverse water �lling result in rate-distortion theory for stationary Gaussianprocesses [16, p. 641], according to which no bits should be allocated to frequency components thatfall below a certain level that depends on the spectral density of the signal and on the bit budgetavailable.To illustrate Theorem 3.4 and the discussion above, we present a toy example. The signal x(n)in Fig. 3 is applied to a two-channel �lter bank. Its spectral density Sx(f) is piecewise constant as9



given in Fig. 3(a), with � � 1. The frequency response of the lowpass and highpass �lters of thePCFB U(f) is displayed in Fig. 3(b), and the resulting aliased spectra S0(f) and S1(f) are shownin Fig. 3(c). For any bit rate R0, the solution to (3.12) is given by F+0 = [�0:5; 0:5], Popt;0(f) =1� D(R0)1+D(R0) . For any given R1, if � is small enough, half of the frequency components of S1(f) areweak and are �ltered out. For � � 1, the solution to (3.12) is F+1 = [�0:5;�0:25][ [0:25; 0:5], andPopt;1(f) = 1� D(R1)2+D(R1) for f 2 F+1 , and zero otherwise.Remark 1 The functional form of the optimal �lters (3.12) is independent of the particular rate-distortion criterion used.Remark 2 Given a particular bit allocation fRig, the solution (3.12) is unique because it is theglobal minimizer of the strictly convex cost functional (3.5) over the convex set (3.6) (a simpleextension of Proposition B.10, in [17, p. 571]). This implies uniqueness of the sets �F+i 	.Remark 3 In virtually all examples involving AR processes we studied, a signi�cant simpli�cationarose as Popt;i(f) was strictly positive over the whole frequency interval:F+i = [�0:5; 0:5] ; 0 � i < M: (3.15)From (3.12), we �nd that a necessary and su�cient condition for (3.15) to hold isminf2[�0:5;0:5]pSi(f) > D(Ri)1 +D(Ri) Z 0:5�0:5pSi(f)df; 0 � i < M: (3.16)In other words, (3.15) holds if pSi(f) is not too small relative to its mean and if the bit rate Riis large enough. This condition was not satis�ed in the toy example of Fig. 3. If (3.15) holds, then(3.12) reduces toPopt;i(f) = 1� D(Ri)1 +D(Ri) R 0:5�0:5pSi(f)dfpSi(f) ; 0 � i < M; f 2 [�0:5; 0:5] ; (3.17)and the expression (3.14) for the minimal MSE simpli�es toEmin = 1M M�1Xi=0 D(Ri)1 +D(Ri) �Z 0:5�0:5pSi(f)df�2 : (3.18)Remark 4 If ��F+i �� 6= 1, it may not be necessary for U(f) to be a PCFB. To see this, considerthe two-channel case, and assume there exists f such that the signal components at f are weak inboth channels: f 62 F+0 and f 62 F+1 . Then, switching U00f) and U11(f) has no e�ect on the costfunctional.Remark 5 Since the class C of �lters considered includes biorthogonal �lters as a special case, theoptimal MSE (3.14) is upper-bounded by the minimal valueE = 1M M�1Xi=0 D(Ri)�Z 0:5�0:5pSi(f)df�210



for the In�nite Impulse Response (IIR) biorthogonal case [11]. At high bit rates, Emin tends to thelimit above. Observe that Gopt;i(f) and ~Gopt;i(f) can be approximated with arbitrary accuracy byFIR �lters of su�cient length, so the performance of optimal FIR �lter banks converges to (3.14)as the �lter length tends to in�nity. As discussed in [11], PR-FIR �lter banks do not enjoy a similarproperty: they must satisfy the constraint detH(f) � 1, and their performance does not convergeto that of IIR biorthogonal �lter banks (for which the constraint detH(f) � 1 is not applicable).This has a remarkable implication, which is illustrated by experiments in Sec. 5: even at high bitrates, FIR �lter banks of speci�ed length can vastly outperform FIR biorthogonal �lter banks ofarbitrary length.3.3 Computation of Jointly Optimal Filters and Bit AllocationIn Sec. 2.3, we derived the condition (2.4) for the optimal bit allocation given the �lters. In Sec. 3.2,we obtained the optimal �lters from the expression (3.12) for the optimal product �lters P, giventhe bit allocation fRig and the eigenvector matrix U(f). This was done by minimizing the costfunctional E in (3.5) over P. As mentioned in Remark 2, these optimal product �lters are unique,given fRig and U(f), because E is strictly convex in P. Moreover, E is strictly convex in fRig forevery P, which implies the uniqueness of the optimal fRig, given P and U(f).We are now interested in computing jointly optimal �lters and bit allocation. This can be doneby using an alternating optimization approach in which bit allocation and �lters are successivelyupdated. Each iteration involves two steps: �rst, optimize the bit rates using standard convexprogramming (e.g., gradient-based) techniques, and second, optimize the �lters using (3.10), (3.11),and (3.12). Such an algorithm would converge to the globally optimum solution under convexityconditions that are discussed below. The PCFB U(f) is �xed, so we view E as a function of bothfRig and P. The joint optimization problem is much harder than it appears at �rst sight. Forinstance, just because the optimal fRig is unique given P, and the optimal P is unique given fRig,we cannot assume that the jointly optimal solution is unique. 1 We now present a condition onthe rate-distortion function D(R) that guarantees strict convexity of E as a function of the pair(fRig ;P) and hence existence of a unique minimum. The convexity property implies that thisminimum can be easily found by using numerical techniques such as the iterative algorithm above.1A textbook example of this apparent paradox is the function of two variables F (x0; x1) = (x0 � 1)2 x21 +x20 (x1 � 1)2, which has a unique minimum for any given x0 and a unique minimum for any given x1, yet admitstwo joint minima (0; 0) and (1; 1). This function is strictly convex in x0 as well as strictly convex in x1, but is notconvex in the pair (x0; x1). 11



Proposition 3.5 The cost functional (3.5) is strictly convex in fRig and P if2�D0(R)�2 < D00(R) �D(R) + 1� ; (3.19)where D0(R) and D00(R) denote the �rst and second derivatives of D(R), respectively.Proof : See Appendix D.Note that our concavity requirement on lnD(R) in Sec. 2.1 can be written as �D(R)�2 �D(R)D00(R), so not many distortion rate-functions will satisfy both the log concavity assumptionand the condition (3.19) for all R. Interestingly, under the classical exponential model D(R) =2�2R for the rate-distortion function, (3.19) reduces to the simple condition D(R) < 1, namely,R > log2 2 : (3.20)This condition is satis�ed under our initial assumption of high bit rates. For entropy constrainedscalar quantizers (ECSQ) with Gaussian inputs, log2 2 = 0:71 [16, p. 154].4 Exponential Rate-Distortion FunctionIn this section, we derive analytical expressions for the jointly optimal �lters and bit allocation,under the classical model D(R) = 2�2R for the rate-distortion function. Recall from (3.20) thatthe high bit rate assumption guarantees uniqueness of the solution to this optimization problem.For this particular D(R), the optimal bit allocation condition (2.4) becomes�2i jj~hijj2 dD(R)dR ����Ri = (�2 ln 2)�2i jj~hijj22�2Ri = �; 0 � i < M: (4.1)The resulting distortions �2i jj~hijj2D(Ri) are thus identical for all channels. Therefore,2�2Ri�2i jj~hijj2 = 2�2R 24M�1Yj=0 �2j jj~hj jj2351=M ; 0 � i < M; (4.2)where R = 1M PM�1j=0 Rj . This yields a closed{form expression for the optimal bit allocation interms of the �lters, Ri = R+ log2 �ijj~hijj � 1M M�1Xj=0 log2 �j jj~hjjj; 0 � i < M: (4.3)Substituting (4.2) into (2.2), we obtainE = 2�2R"M�1Yi=0 Z 0:5�0:5 �H(f)S(f)Hy(f)�ii df Z 0:5�0:5 � ~Hy(f) ~H(f)�ii df#1=M+ 1MTr Z 0:5�0:5 � ~H(f)H(f)� IM� S(f) � ~H(f)H(f)� IM�y df; (4.4)12



to be minimized over (H; ~H). (For PR systems, the optimization criterion is the classical codinggain criterion.) It remains to solve the resulting nonlinear system (3.12) (4.3). The solution of thissystem is given in Appendix E. Equation (E.1) gives the optimal �lters under optimal bit allocation.This expression involves M +1 constants �2opt;i and Eq, which are solutions to the nonlinear system(E.2) (E.3). These solutions are unique owing to (3.20). We have been able to solve the nonlinearsystem (E.2) (E.3) in closed form for the special case of two-channel �lter banks at high bit rates.The result is stated below.Proposition 4.1 Assume without loss of generality that ci � 1. 2 For two-channel coders withexponential distortion{rate function, there exists R� > 0 such that the following holds. For anyR > R�, the optimal pre- and post-�lters are given by Gopt;i(f) = S� 14i (f)pPopt;i(f) and ~Gopt;i(f) =S 14i (f)pPopt;i(f), i = 0; 1, wherePopt;0(f) = 1� 2�2RpS0(f)�2opt;1; f 2 [�0:5; 0:5] ;Popt;1(f) = 1� 2�2RpS1(f)�2opt;0; f 2 [�0:5; 0:5] ; (4.5)and �2opt;0 = R 0:5�0:5pS0(f)df � 2�2R R 0:5�0:5pS1(f)1� (2�2R)2 ;�2opt;1 = R 0:5�0:5pS1(f)df � 2�2R R 0:5�0:5pS0(f)1� (2�2R)2 : (4.6)Proof : Here (E.3) takes the form Eq = 2�2R�2opt;0�2opt;1: (4.7)Assume momentarily that condition (3.15) is satis�ed. Substituting (4.7) into (E.9), we obtain�4opt;i � �2opt;i Z+pSi(f)df + 2�2R�2opt;0�2opt;1 = 0; i = 0; 1:Dividing both sides by �2opt;0 when i = 0 and by �2opt;1 when i = 1 gives the linear system�2opt;0 + 2�2R�2opt;1 = Z 0:5�0:5pS0(f)df;�2opt;1 + 2�2R�2opt;0 = Z 0:5�0:5pS1(f)df;whose solution is (4.6). Substituting (4.7) into (E.1), we obtain (4.5). From (4.6), we have �2opt;i !R 0:5�0:5pSi(f)df as R!1 (i = 1; 2). Hence (4.3) implies that Ri !1. Hence the right{hand sideof (3.16) tends to zero, which justi�es our initial assumption (3.15). �2Otherwise replace �2opt;i by �2opt;i=c2i in the expressions below.13



5 Numerical ExperimentsTo illustrate our analyses, we applied an AR(1) input process with correlation coe�cient r = 0:8 toa two-channel subband coder. The PCFB for this process is the traditional orthonormal �lter bankwith ideal low-pass and high-pass �lters shown in Fig. 3b. We used the exponential rate-distortionmodel D(R) = 2�2R for the quantizers, with  = 2:71 (ECSQ). The optimization problem wassolved for various rates R, and the results were compared with optimal IIR biorthogonal �lterbanks and optimal unconstrained-length FIR biorthogonal �lter banks [11]. At all bit rates, weobtained F+i = ��12 ; 12�. For R = 1:76, the bit rate in the high-pass channel becomes zero, inwhich case the design criterion (4.4) becomes invalid. As Fig. 4 shows, the performance of theoptimal unconstrained-length MMSE �lter banks is very close to optimal IIR biorthogonal �lterbanks at very high rates, but improvements become quite signi�cant as R decreases. These resultsare consistent with numerous results in the literature using numerically optimized �lter banks.Frequency responses are shown in Fig. 5 for an AR(1) process with correlation coe�cient r = 0:8,and rate R = 2:91. The arbitrary scaling constants c0 and c1 for all three �lter banks have beenchosen so that the frequency responses are the same at f = 0 and at f = 0:5.Remark 5 at the end of Sec. 3.2 motivated us to investigate the constrained-length version of thisdesign and to quantify the improvements over FIR biorthogonal �lter banks. A simple rectangularwindowing technique was used to design constrained-length FIR �lter banks from the optimumunconstrained-length solution. As shown in Fig. 6, the results are excellent at medium bit rates.At R = 2:91, the length-63 FIR �lter bank outperforms optimal FIR biorthogonal �lter banks ofarbitrary length, and the length-103 FIR �lter bank outperforms optimal IIR biorthogonal �lterbanks. Similar advantages hold at arbitrarily high bit rates, but longer FIR �lters are needed tobreak the performance bounds for FIR and IIR biorthogonal �lters. Re�nements in the FIR �lterdesign method are likely to yield further improvements.6 ConclusionWe have studied the design of subband coders that are optimally adapted to second{order inputsignal statistics. Our main working assumptions are the use of scalar quantizers and a model forthe rate{distortion characteristic of these quantizers. Absolutely no constraints are placed on thesubband �lters. The criterion for optimal design of the �lters and bit allocation is overall rate-distortion performance of the subband coder. Previous results in the literature have addressedsimpli�ed versions of this problem, involving assumptions such as �xed analysis �lters. However,14



joint optimization of analysis �lters, synthesis �lters, and bit allocation presents signi�cant chal-lenges. We have obtained answers to a number of basic theoretical questions.First, we have shown that the output of the optimal coder satis�es fundamental propertiesof total decorrelation and spectral majorization, which were previously known to apply only tocoders with PR constraints on the �lters. Also, we have shown that the optimal subband coderin the special class of Fig. 2 achieves the global minimum of the distortion-rate function. Thisanalysis stresses the important role played by PCFBs in such problems. We have derived analyticalexpressions for the optimal pre- and post-�lters in Fig. 2. The functional form of these expressionsis independent of the particular rate-distortion model used. Conditions for uniqueness of the jointlyoptimal pre- and post-�lters and bit allocation have been identi�ed in Proposition 3.5. A simplealgorithm based on convexity properties of the cost function has been proposed to compute theglobally optimal coder. Closed-form expressions have been obtained in the case of two-channelsubband coders with exponential rate-distortion function.The optimal �lters do not admit a �nite parameterization. In practice, FIR approximationsmay be sought. We have constructed simple FIR approximations and demonstrated both theoret-ically and numerically (see Fig. 6) the following remarkable property: these FIR approximationssigni�cantly outperform FIR PR �lter bank of arbitrary length in the sense that even at high bitrates, the MSE performance gap does not tend to zero. Note that the ultimate performance in aconstrained class of FIR �lters would be obtained by using rate-distortion as the approximationcriterion. However, determining optimal �lters in this fashion is still an open problem. Anotherpossible extension of our work would be to relax the high-rate assumption that led to the MSEmodel (2.2). However, as indicated in [9], low-bit-rate quantization noise models involve complexdependencies between noise samples. Optimization of the overall performance of the subband coderunder such models would certainly present a formidable challenge.
15



APPENDIXA Proof of Theorem 3.3First we give two lemmas that are a direct consequence of Proposition 3.1.Lemma A.1 The optimal synthesis polyphase matrix is of the form~H(f) = ~U(f) ~G(f); (A.1)where ~U(f) is a paraunitary matrix and ~G(f) is a diagonal matrix with real, nonnegative entries.The proof of Lemma A.1 is exactly the same as the proof of Corollary 2.4 in [11] and uses thefact that ~Hy ~H is diagonal, which is a consequence of Proposition 3.1. �Lemma A.2 The optimal analysis polyphase matrix is of the formH(f) = S0:5y (f)W(f)��0:5(f)Vy(f); (A.2)where S = V�Vy is the eigenvector decomposition of S, W is a paraunitary matrix, and Sy is the(diagonal) spectral density matrix for the vector y(n) of subband signals in Fig. 1.Proof : De�ne the M � M matrix W = S�0:5y HV�0:5. Hence H(f) takes the form (A.2). ByProposition 3.1, Sy = HSHy is a diagonal matrix with nonnegative entries. This implies thatWWy = I , and thus W is paraunitary. �To prove Theorem 3.3, we again use a variational technique. The outline of the proof is asfollows. We �x the bit allocation fRig and assume that (H; ~H) minimizes the MSE (2.2). Let Sy =HSHy be the spectral density matrix corresponding to this choice of H. The variational techniqueis based on the parameterizations ~H = ~U ~G and H = S0:5y W��0:5Vy given by Lemmas A.1 and A.2.We construct a �lter bank (Hnew ; ~Hnew) that is in class C and satis�es E(Hnew ; ~Hnew) = E(H; ~H).We then conclude that the optimal subband coder in class C achieves the global minimum of (2.2)over the unconstrained set of subband coders.The proof is as follows. First consider the quantization noise term En(H; ~H) = 1M PM�1i=0 D(Ri)�2i jj~hijj2in (2.2). From (2.3) and (A.1), we have�2i = Z Sy;ii(f) df and jj~hijj2 = Z ~G2ii(f) df; i = 0; 1; : : : ;M � 1: (A.3)16



Hence, for �xed fRig, Sy and ~G, the noise term is una�ected by variations in ~U and W .The signal term (due to lack of PR) in (2.2) is given byEs(H; ~H) = 1MTr Z � ~HH � IM�S � ~HH � IM�y= 1M Z Tr� ~HH � IM�S � ~HH � IM�y= 1M Z Tr� ~U ~GS0:5y W��0:5Vy� IM�V�0:5�0:5Vy� ~U ~GS0:5y W��0:5Vy� IM�y= 1M Z Tr �V �Vy ~U ~GS0:5y W � �0:5��Vy ~U ~GS0:5y W � �0:5�yVy�= 1M Z Tr ��Vy ~U ~GS0:5y W � �0:5��Vy ~U ~GS0:5y W � �0:5�y� ; (A.4)where the third equality uses the eigenvector decomposition for S and the parameterization of Hand ~H given in Lemmas A.1 and A.2, and the last equality uses the trace invariance property,which holds for any unitary V . De�ne the matrixQ = ~GS0:5y ; (A.5)which by our assumptions is diagonal, real, and nonnegative de�nite. Observe that its squareddiagonal elements Q2i (f) are the spectral density functions of the signal part of v(n) in Fig. 2. BothQ and �0:5 are diagonal matrices with nonnegative real elements, and Vy ~U and W are complexparaunitary matrices. We now use a simple extension of the Ho�man-Wielandt theorem [18, The-orem 6.3.5] to the non-Hermitian case [18, Corollary 7.3.8] to bound the integrand of (A.4) frombelow: Tr ��Vy ~UQW � �0:5��Vy ~UQW � �0:5�y� � M�1Xi=0 �Qi � �0:5i �2 ; (A.6)where fQig is a frequency-dependent permutation of fQig, so that Q0(f) � Q1(f) � � � � �QM�1(f). Since (H; ~H) is optimal, no variation in ~U and W can reduce Es(H; ~H); hence Es(H; ~H)must achieve the lower bound in the right-hand side of (A.6).If Qi(f) are already ordered, then Qi(f) � Qi(f), and equality is achieved in (A.6) for Vy ~U =W = IM . We then choose Hnew = S0:5y ��0:5Vy and ~Hnew = V ~G, which are clearly in class C, andsatisfy Es(Hnew ; ~Hnew) = Es(H; ~H); hence E(Hnew ; ~Hnew) = E(H; ~H).If Qi(f) are not ordered, we proceed in two steps. The �rst step consists of normalizingthe analysis and synthesis �lters. We let di = [D(Ri)�2i ]1=2, D = diag(di), and normalize the�lters as follows: htemp;i(n) = d�1i hi(n), and ~htemp;i(n) = di~hi(n). In terms of polyphase ma-trices, we have Htemp = D�1H, and ~Htemp = ~HD. We also let Sy;new = HtempSHytemp and~Gtemp = ~GD, so ~Htemp = ~U ~Gtemp. This scaling changes neither the signal term Es(Htemp; ~Htemp) =17



Es(H; ~H) nor the noise term, which can now be written as En(Htemp; ~Htemp) = En(H; ~H) =1M PM�1i=0 R ~G2temp;ii(f) df . Our second step consists of reordering the diagonal elements of ~Gtemp(f).For each f , let ~Gnew;i(f) be a reordering of ~Gtemp;i(f), so that ~Gnew;0(f) � ~Gnew;1(f) � � � � �~Gnew;M�1(f). Note that D(Ri)�2new;i � 1, so from Proposition 3.2, we also have Sy;new;0(f) �Sy;new;1(f) � � � � � Sy;new;M�1(f). Hence from (A.5), Qnew;i(f) = S0:5y;new;i(f) ~Gnew;i(f) are simi-larly ordered. We now let Hnew = S0:5y;new��0:5Vy and ~Hnew = V ~Gnew . The reordering of elementsof ~Gtemp does not a�ect the noise term:En(Hnew ; ~Hnew) = 1M M�1Xi=0 Z ~G2new;ii(f) df = 1M M�1Xi=0 Z ~G2temp;ii(f) df = En(H; ~H):As well, (A.6) yields Es(Hnew ; ~Hnew) = Es(H; ~H), where the equality follows from the ordering ofQnew;i(f). So again, we obtain (Hnew ; ~Hnew) in class C that is as good as the original (H; ~H). �.B Proof of Theorem 3.4To �nd the solution to the constrained optimization problem (3.6) (3.9), we use the GeneralizedKuhn-Tucker Theorem [19, p. 249]. We introduce the LagrangianL (P;�) = E (P)�M�1Xi=0 Z 0:5�0:5 �i(f)Pi(f) df;where �i(f) � 0; 0 � i < M; f 2 [�0:5; 0:5] are Lagrange multipliers, and we de�ne �(f) 4=[�0(f); �1(f); : : : ; �M�1(f)]T . Let Popt(f) be a solution to the constrained optimization problem(3.9). Then there exists �opt(f) such that the Lagrangian is stationary at Popt(f). Setting theFr�echet derivative of the Lagrangian to zero, we obtain the necessary conditions (B.1) and (B.2)for optimality: ��rPiE� (f)� �opt;i(f)���Pi=Popt;i = 0; 0 � i < M; f 2 [�0:5; 0:5] ; (B.1)where �opt(f) is such that the nonnegativity constraints (3.6) are satis�ed. Additionally,�opt;i(f)Popt;i(f) = 0; 0 � i < M; f 2 [�0:5; 0:5] : (B.2)To �nd the solution to the optimization problem (3.6) (3.9), we examine whether the constraintPi(f) � 0 is active or not, for each frequency f 2 [�0:5; 0:5]. If the constraint is inactive fora particular frequency f , then Popt;i(f) > 0, and successive application of (B.2) and (B.1) gives�opt;i(f) = 0 and rPiE ��Pi=Popt;i = 0. On the other hand, if the constraint is active at f , we18



have Popt;i(f) = 0 and rPiE��Pi=Popt;i (f) = �opt;i(f). This solution clearly satis�es the �rst-orderKuhn-Tucker conditions (B.1) and (B.2).We can now compute Popt;i(f). When the constraint is inactive (Popt;i(f) > 0), we obtain from(3.5)0 = �rPiE���Pi=Popt;i (f) = 2MD(Ri) �Z 0:5�0:5 Popt;i(f)pSi(f)df�pSi(f) + 2M [Popt;i(f)� 1]Si(f);0 � i < M; f 2 F+i ;whence Popt;i(f) = 1� D(Ri)pSi(f) Z 0:5�0:5 Popt;i(f)pSi(f)df; 0 � i < M; f 2 F+i : (B.3)When the constraint is active �f 62 F+i �, we obtainPopt;i(f) = max 0; 1� D(Ri)pSi(f) Z 0:5�0:5 Popt;i(f)pSi(f)df! ; 0 � i < M; f 2 [�0:5; 0:5] : (B.4)Multiplying both sides by pSi(f), integrating and simplifying, we obtainZ 0:5�0:5 Popt;i(f)pSi(f)df = R+pSi(f)df1 + ��F+i ��D(Ri) ; 0 � i < M: (B.5)Substituting (B.5) into (B.4) yields the expression (3.12) for the optimal product �lter.We can now compute the optimal pre- and post-�lters, fGopt;i(f)g and n ~Gopt;i(f)o. From (3.7),we have Gopt;i(f)pSi(f) = �i ~Gopt;i(f) = �i Popt;i(f)Gopt;i(f) . Hence, (3.10) (3.11) follow with ci = �i. Wenow substitute (3.10) and (3.11) into (3.1) and obtain�2opt;ic2i = c2i jj~hopt;ijj2 = Z 0:5�0:5 Popt;i(f)pSi(f)df; 0 � i < M: (B.6)Using (B.5) in (B.6) yields (3.13). Having derived the optimum �lter responses (3.10){(3.12), wecompute the corresponding optimal value of the cost functional Emin. Evaluating (3.5) at Popt, weobtain Emin 4= E (Popt)= 1M M�1Xi=0 D(Ri) �Z 0:5�0:5 Popt;i(f)pSi(f)df�2+ 1M M�1Xi=0 Z 0:5�0:5 jPopt;i(f)� 1j2 Si(f) df (B.7)= 1M M�1Xi=0 D(Ri)" R+pSi(f)df1 + ��F+i ��D(Ri)#219



+ 1M M�1Xi=0 ��F+i �� " D(Ri)1 + ��F+i ��D(Ri) Z+pSi(f)df#2 + 1M M�1Xi=0 Z� Si(f) df= 1M M�1Xi=0 D(Ri)1 + ��F+i ��D(Ri) �Z+pSi(f) df�2 + 1M M�1Xi=0 Z� Si(f) df:The expression above is (3.14) and is valid for any given bit allocation fRig. �C Computation of Support Sets F+iThe sets F+i implicitly de�ned in (3.12) can be written asF+i = nf : �0:5 � f � 0:5 andpSi(f) > T �i o ;where T �i 4= D(Ri)1+jF+i jD(Ri) R+pSi(f) df . De�ne the sets Fi(T ) = nf : 0:5 � f � 0:5 and pSi(f) > Toand the functions Qi(T ) = RFi(T )pSi(f)df . The threshold T �i is the solution to the nonlinear equa-tion T = fi(T ); (C.1)where fi(T ) 4= D(Ri)1 + jFi(T )jD(Ri)Qi(T ):See Fig. 7 for an illustration. As noted in Remark 2 in Sec. 3.2, the sets F+i are unique, so thesolution T �i to (C.1) is also unique.jFi(T )j and Qi(T ) are nonincreasing functions of T . If jFi(T )j and Qi(T ) are di�erentiable withrespect to T , thend jFijdT = �Xj 1���dpSi(f)=df ���f=fj ; dQidT = T d jFijdT ; 0 � i < M;where ffjg are the roots of pSi(f) = T . After some algebraic manipulations, we �nddfidT = D(Ri)1 + jFi(T )jD(Ri) [T � fi(T )] d jFijdT ; 0 � i < M;which implies that dfidT has the same sign as fi(T )� T . Since fi(0) = D(Ri)1+D(Ri) R 0:5�0:5pSi(f)df > 0,we directly obtain the following:Claim: For all T < T �i , we have T < fi(T ) � fi(T �i ) = T �i : (C.2)To establish this claim, we assumed di�erentiability of jFi(T )j and Qi(T ). However, the existenceof plateaus in pSi(f) (as in the example of Fig. 7a) would give rise to jumps in both jFi(T )j and20



Qi(T ). We now show that the claim holds even in this case. The functions jFi(T )j and Qi(T ) areright-continuous and have the same set of discontinuities. We havelim�!0 jFi(T � �)j = jFi(T )j+ jAi(T )j ; lim�!0Qi(T � �) = Qi(T ) + T jAi(T )j ; 0 � i < M;where Ai(T ) 4= nf : �0:5 � f � 0:5 and pSi(f) = To are the level sets of pSi(f). It can easilybe shown that jumps of fi(T ) are given by�fi(T ) 4= fi(T )� lim�!0 fi(T � �) = jAi(T )jD(Ri)1 + (jFi(T )j+ jAi(T )j)D(Ri) [fi(T )� T ] ; 0 � i < M: (C.3)Note that �fi(T �i ) = 0 and that �fi(T ) has the same sign as fi(T )� T . Hence the claim (C.2)still holds.This suggests the use of the following iterative algorithm to �nd T �i in each channel (see Fig. 7bfor an illustration):1. Initialize T 0i = 0, and k = 0.2. Use the update rule T k+1i = f �T ki �.The claim (C.2) guarantees that the sequence T ki is nondecreasing and converges to T �i .D Proof of Proposition 3.5The cost functional (3.5) viewed as a function of both P and fRig is the sum of M functionalsE (fRig ;P) = M�1Xi=0 Fi (Ri; Pi) ;where Fi (R; P ) 4= D(R)�Z 0:5�0:5 P (f)pSi(f)df�2 + Z 0:5�0:5 (P (f)� 1)2 Si(f) dfdepends on i via Si. A su�cient condition for E to be strictly convex in (fRig ;P) is that eachFi be strictly convex in (R; P ). A su�cient condition for strict convexity of Fi is the positivity ofits second order variation evaluated for all (R; P ). (Analogously, positive de�niteness of Hessiansof functions de�ned on <n is a su�cient condition for the strict convexity of these functions). Let(�R; �P ) be any admissible variation of the variables (R; P ). The claim will be proven by showingthat the second derivative of F (R+ ��R; P + ��P ) with respect to the real variable �, evaluatedat � = 0, is strictly positive for any admissible (�R; �P ). We have@2Fi@�2 �����=0 = (�R)2D00(R)U2i + 4 (�R)D0(R)Ui (�Ui) + 2D(R) (�Ui)2 + 2 Z 0:5�0:5 (�P (f))2 Si(f) df;(D.1)21



where Ui 4= Z 0:5�0:5 P (f)pSi(f)df; �Ui 4= Z 0:5�0:5 �P (f)pSi(f)df:Using the Cauchy-Schwartz inequality on the rightmost term of (D.1), we have the following tightlower bound:@2Fi@�2 �����=0 � (�R)2D00(R)U2i + 4 (�R)D0(R)Ui (�Ui) + �2D(R) + 2� (�Ui)2 : (D.2)The right hand side of (D.2) is quadratic in �R and is strictly positive if the discriminant is negative:8U2i (�Ui)2 �2�D0(R)�2 �D00(R) �D(R) + 1�� < 0:Hence (3.19) follows directly. �E Optimal Filters for Exponential Rate-Distortion FunctionFor notational simplicity, we use �2opt;i in place of �2opt;i=c2i . (Equivalently, we assume that ci � 1.)Claim : Under optimal bit allocation, the �lters that minimize the MSE (4.4) are given by (3.10)and (3.11), with product �ltersPopt;i(f) = max 0; 1� Eq�2opt;i 1pSi(f)! ; 0 � i < M; f 2 [�0:5; 0:5] : (E.1)The constants �2opt;i and Eq are solutions to the nonlinear system�2opt;i = 12 Z+pSi(f)df �s�12 Z+pSi(f)df�2 � ��F+i �� Eq; 0 � i < M: (E.2)Eq = 2�2R"M�1Yi=0 �2opt;i#2=M : (E.3)F+i = (f : �0:5 � f � 0:5 and pSi(f) > Eq�2opt;i) ; 0 � i < M: (E.4)The MSE for the optimal �lters is given byEmin = Eq + 1M M�1Xi=0 " Eq�2opt;i#2 ��F+i ��+ 1M M�1Xi=0 Z� Si(f) df: (E.5)Proof : Substituting (B.6) in (B.4), we obtainPopt;i(f) = max 0; 1� D(Ri)pSi(f) �2opt;i! ; 0 � i < M; f 2 [�0:5; 0:5] : (E.6)22



The �rst term in the right hand side of (4.4),2�2R "M�1Yi=0 �ijj~hijj#2=M ; (E.7)is inversely proportional to the classical coding gain for PR systems. For optimal �lters, (B.6) issatis�ed (with ci � 1), so (E.7) takes the form (E.3). Using (4.1) (equality of distortions in allchannels), we obtain from (E.3) �4opt;iD(Ri) = Eq; 0 � i < M: (E.8)Substituting (E.8) into (E.6), we obtain (E.1). Multiplying both sides of (E.1) by pSi(f) andintegrating, we obtain �2opt;i = Z+pSi(f)df � ��F+i �� Eq�2opt;i ; 0 � i < M:Therefore, �2opt;i satis�es the quadratic equation�4opt;i � �2opt;i Z+pSi(f)df + ��F+i �� Eq = 0; 0 � i < M; (E.9)whose solution is given by (E.2). Equations (E.2), (E.3) constitute a nonlinear system of M + 1equations with M + 1 unknowns f�2opt;ig; Eq. The nonlinearity of this system is compounded bythe dependency of the domain of integration F+i on Eq and �2opt;i. Given f�2opt;ig; Eq, one can solvefor F+i using the algorithm in Appendix C. Given F+i , the system (E.2) (E.3) can be solvednumerically. The optimal pre- and post-�lters are again given by (3.10) and (3.11), respectively.To �nd the optimum value of the MSE, we substitute (B.6) and (E.1) into the �rst and secondterms of (B.7), respectively. We obtainEmin = 1M M�1Xi=0 D(Ri)�4opt;i + 1M M�1Xi=0 " Eq�2opt;i#2 ��F+i �� + 1M M�1Xi=0 Z� Si(f) df: (E.10)Substituting (E.8) into the �rst term of (E.10), we obtain (E.5). �The discriminant in (E.2) is guaranteed to be nonnegative for all i because there always existsa solution to the optimization problem, as noted in the remark at the end of Sec. 2.2. This solutionis unique because the condition (3.20) is assumed to be satis�ed.According to (E.2), there apparently exist two possible candidates for the solution �2opt;i ineach channel, depending on the choice of the sign. Only one of them corresponds to the (unique)solution. At high bit rates, the solution tends to the IIR biorthogonal solution, and the optimal23



system tends to a PR system. In this case, �2opt;i tends to the PR solution R 0:5�0:5pSi(f)df , meaningthat all signs in (E.2) must positive.Remark When the condition (3.15) is satis�ed, the optimal product �lters are given byPopt;i(f) = 1� Eq�2opt;i 1pSi(f) ; 0 � i < M; f 2 [�0:5; 0:5] ;in which case Emin = Eq + 1M M�1Xi=0  Eq�2opt;i!2 ; (E.11)where �2opt;i and Eq are the solutions to the nonlinear system (E.2),(E.3).F Alternative Proof of Theorem 3.3In this section, we use intensively the parameterization of H and Hy as obtained from CorollaryA.2: ~H(f) = ~U(f) ~G(f) (F.1)H(f) = G(f)W(f)��0:5(f)Vy(f); (F.2)where V�~V is the eigenvalue decomposition of S, ~G and G are diagonal matrices with nonnegativeentries and U ; ~U ;W are complex paraunitary matrices.Lemma F.1 1M Tr Z 0:5�0:5( ~H(f)H(f)� IM)S(f)( ~H(f)H(f)� IM )y df � (F.3)1M Z 0:5�0:5X�(i)(f) + P2(i)(f)� 2�0:5(i) (f)P(i)(f); (F.4)where P = ~GG.Proof For compactness of notation, we elude the dependence on f of the matrices involved. Usingthe parameterizations of H and ~H, we obtainTr( ~HHSHyH) = Tr( ~U ~GGW��0:5VyV�VyV��0:5WyG ~G ~Uy) = (F.5)Tr( ~U ~GGG ~G ~Uy) = Tr(P2); (F.6)the last equation arising from the invariance property Tr(UAUy) = TrA, for U paraunitary. Wealso have that Tr(P2) =Xi P2i =Xi P2(i) (F.7)24



since the sum is invariant to permutations of its own terms. At the same time,Tr( ~HHS) = Tr( ~U ~GGW��0:5VyV�Vy) = Tr(VyUPW�0:5): (F.8)Thus,Re(Tr( ~HHS)) = Tr( ~U ~GGW��0:5VyV�Vy) = Re(Tr(VyUPW�0:5)) �XP(i)�0:5(i) (F.9)where the last relation is a consequence of the Wielandt-Ho�man theorem for nonsymmetric ma-trices [18, Corollary 7.3.8]. We are now in position to write1M Tr Z 0:5�0:5( ~HH � IM)S( ~HH � IM)y df = (F.10)1M Tr Z 0:5�0:5 Tr( ~HHSHyH) + Tr(S)� 2Re(Tr( ~HHS)) � (F.11)1M Z 0:5�0:5X�(i) + P2(i) � 2�0:5(i)P(i); (F.12)by (F.6), (F.9). Since Tr(S) =P�(i), the proof is complete. 2Lemma F.2 Let a � c and b > 0. Let R(t) be the unique minimizer, for �xed t, of the expressionE(R; t) = D(R)(a+ bt)2 +D(B �R)(c� bt)2 (F.13)Then ddtE(R(t); t) < 0, 80 < t < cb .Proof For �xed t, the extremality conditions require F (R; t) = D0(R)(a+bt)2�D0(B�R)(c�bt)2 =0, which de�nes R(t) implicitly. We have that ddRF (R; t) = D00(R)(a+bt)2+D00(B�R)(c�bt)2 > 0,8t; R, since, from our assumptions, D(R) is strictly convex. Thus, the solution to F (R; t) = 0 isunique, and R(t) is di�erentiable by the implicit function theorem (the fact that one solution existsis the result of our high bit-rate assumption). Also, since D(R) is convex, D0(R) is increasing; thusF (R; t) = 0, together with our assumptions about a; b; c, imply that R > B � R.Since 1D(R) = exp(� ln(D(R))) is a convex function, it follows that�D0(R)D2(R) > �D0(B �R)D2(B �R) (F.14)and thus, �D0(R)(a+ bt)2D2(R)(a+ bt)2 > �D0(B � R)(c� bt)2D2(B � R)(c� bt)2 : (F.15)25



In the previous expression, the denominators are positive and the numerators are positive and equal(by the extremal condition F (R; t) = 0 and since D(R) is strictly decreasing). This results inD2(R)(a+ bt)2 < D2(B � R)(c� bt)2 (F.16)or D(R)(a+ bt) < D(B � R)(c� bt): (F.17)We now have ddRE(R(t); t) = 2b(D(R)(a+ bt)�D(B �R)(c� bt)) + F (R; t)dRdt (F.18)= 2b(D(R)(a+ bt)�D(B �R)(c� bt)) < 0 (F.19)by (F.17) and b > 0. The proof is complete. 2Lemma F.3 Assume that the bit rates are allocated such that R0 � R1::: � RM�1. Then thereexists a choice of bit rates B0 � B1::: � BM�1 such that1M M�1Xi=0 D(Ri)�2i jj~hijj2 � 1M M�1Xi=0 D(Bi)(Z 0:5�0:5P(i))2: (F.20)Proof: We will �rst prove this result for two channels. In this case, we have that12 1Xi=0 D(Ri)�2i jj~hijj2 �= 12 1Xi=0 D(Ri) Z 0:5�0:5(Gi)2 Z 0:5�0:5( ~Gi)2 = (F.21)12 1Xi=0 D(Ri) Z 0:5�0:5(Gi)2 Z 0:5�0:5( ~Gi)2 �= 12 1Xi=0 D(Ri)(Z 0:5�0:5(Gi ~Gi))2 = 12 1Xi=0 D(Ri)(Z 0:5�0:5Pi)2 (F.22)as a result of the Cauchy inequality. Assume now that a = R 0:5�0:5P0 � R 0:5�0:5P1 = c (otherwise wecan simply switch the indices).Let F = ff 2 [�0:5; 0:5]jP0(f) < P1(f)g. If this set is of measure zero, then the lemma isproved. If F does not have measure zero, take P0t = P0 + t�(F)(P1 � P0), and P1t = P1 �t�(F)(P1 � P0), where �(F) is the characteristic function of the set F . Clearly P0t;P1t � 0,8t 2 [0; 1]. Let b = R 0:5�0:5 �(F)(P1� P0) > 0. Clearlyb = Z 0:5�0:5 �(F)(P1� P0) � Z 0:5�0:5P1 = c: (F.23)Let R0(t); R1(t) be the results of adapting the bit rates to minimizeE(R0; t) = 12(D(R0)(Z 0:5�0:5P0t)2 +D(2R�R0)(Z 0:5�0:5 P1t)2 (F.24)= 12(D(R0)(a+ tb)2 +D(2R�R0)(c� tb)2): (F.25)26



From the results of our previous lemma, for 0 � t � 1 � cb , we have that ddtE(R0(t); t) < 0, andthus E(R0(0); 0) > E(R0(1); 1). But P01 = maxP0;P1 = P(0) and P11 = minP0;P1 = P(1), whichproves the claim for two channels.For multiple channels, the two-channel approach is used to prove that we can replace P0(f)and P1(f) with max(P0(f);P1(f)) and min(P0(f);P1(f)), respectively, and then P0(f) and P2(f)with max(P0(f);P2(f)) and min(P0(f);P2(f)), and so on, until in channel 0 we have P(0). Theprocedure is repeated on P(1), P(2) until all channels are exhausted. The proof is complete. 2The main result of this section is summarized in the following theoremTheorem F.4 Let H and ~H be two �lters with the structure given by Corollary A.2. Let V�Vy = Sbe the eigenvalue decomposition of S and Q(f) the permutation matrices such that Q(f)�(f)Q(f)y =diag(�(i)(f) = �o(f) (the permutation-matrix-valued function that orders the eigenvalue of S in adecreasing order). Let P = G ~G > 0 and Go = diag(pP(i)). Then, there exists a choice of bit ratesBi such thatE(H; ~H; R) � 1M M�1Xi=0 D(Bi)(Z 0:5�0:5P(i))2 + 1M Z 0:5�0:5(X�(i)(f) + P2(i) � 2�0:5(i)P(i)) = E(Ho; ~Ho; B);(F.26)where ~Ho = VQyGo and Ho = GoQ��0:5Vy. For this con�guration, the inequality is, therefore,attained.Proof: The inequality follows instantly from Lemmas F.3 and F.1. To check that the inequality isattained, we need to verify only the part, following the details of the proof of Lemma F.1:Re(Tr( ~HoHoS)) = Re(Tr(VQyGoGoQ��0:5VyV�Vy)) = (F.27)Re(Tr(VQyGoGoQ�0:5Vy)) = Re(Tr(QyGoGoQ�0:5)) = (F.28)Re(Tr(GoGoQ�0:5Qy)) = Re(Tr(Po(�o)0:5)) =X�0:5(i)P(i) (F.29)where we used Tr(QAQy) = Tr(A) for Q paraunitary. The proof is complete. 2F.1 Optimization Strategy1. For S(f) given, compute the eigenvalue decomposition V(f)�(f)V(f)y.2. Compute the permutation matrices Q(f) such that Q(f)�(f)Qy(f) = diag(�(i)) (the permu-tations that order �(f) decreasingly). 27



3. Minimize the functional (which is convex under the conditions speci�ed)1M M�1Xi=0 D(Ri)(Z 0:5�0:5Pi)2 + 1M Z 0:5�0:5(X�(i)(f) + P2i � 2�0:5(i)Pi) (F.30)Note that the Pi need not be ordered, for the theorem guarantees that they will be orderedat the solution (or some degeneracy happens that will allow for an ordered solution anyway).Or alternatively, one may impose the ordering, resulting in a smaller search set but with moreinequalities to enforce.4. Choose as solutions ~Ho = VQyGo and Ho = GoQ��0:5Vy, where (Go)2 = P .

28
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