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GPCG: A Case Study in the Performance and Scalability ofOptimization Algorithms�Steven J. Benson, Lois Curfman McInnes, and Jorge J. Mor�eMathematics and Computer Science DivisionArgonne National LaboratoryAbstractGPCG is an algorithm within the Toolkit for Advanced Optimization (TAO) forsolving bound constrained, convex quadratic problems. Originally developed by Mor�eand Toraldo [19], this algorithm was designed for large-scale problems but had beenimplemented only for a single processor. The TAO implementation is available for awide range of high-performance architecture, and has been tested on up to 64 processorsto solve problems with over 2.5 million variables.1 IntroductionThe Toolkit for Advanced Optimization (TAO) focuses on the design and implementationof component-based optimization software for the solution of large-scale optimization ap-plications. Our approach is motivated by the scattered support for parallel computationsand lack of reuse of linear algebra software in currently available optimization software. Weexploit numerical abstractions in the optimization software design so that we can leverageexternal parallel computing infrastructure (for example, communication libraries and visu-alization packages) and linear algebra tools in the development of optimization algorithms.The algorithms in the toolkit place strong emphasis on the reuse of external tools whereappropriate. Our design enables connection to lower-level support (parallel sparse matrixdata structures, preconditioners, solvers) provided in toolkits such as PETSc [2, 3], andthus we are able to build on top of these toolkits instead of having to redevelop code. Theadvantages in terms of development time are signi�cant.Initial work in the TAO project [4, 5] has centered on the development of a core li-brary of components for various types of optimization problems, including unconstrainedand bound-constrained minimization and nonlinear least squares. To explain the TAO de-sign strategy and analyze parallel performance issues, we focus on the gradient projectionconjugate gradient (GPCG) algorithm for the solution of the bound-constrained quadraticprogramming problem minfq(x) : l � x � ug; (1.1)where q : Rn 7! R is a strictly convex quadratic function, and the vectors l and u de�nebounds on the variables. Although GPCG had been originally designed [19] for large-scale�This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Advanced Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38. 1



problems, implementation of GPCG on a parallel architecture presented signi�cant obstaclesthat are typical of a large class of optimization algorithms. The most signi�cant obstaclearises from the method used to compute the step between iterates. Speci�cally, in modernactive set methods for solving (1.1), the step between iterates is usually de�ned via theapproximate solution of a linear system of the formAkwk = �rk;where the matrix Ak and the vector rk are, respectively, the reduced Hessian matrix andthe reduced gradient of q with respect to the free variables. In a parallel environment,the e�cient implementation of the conjugate gradient method requires that Ak be evenlydistributed over the processors, but since the set of free variables can change drastically be-tween iterates, the reduced matrix is unlikely to be well distributed. Hence, a redistributionof the rows of Ak over the processors may be necessary at each iteration.This observation implies that the scalability of the GPCG is limited not only by thee�ciency of the redistribution algorithm but by the sizes of the matrices Ak. If the set offree variables is large, then performance is likely to improve because the communicationoverhead is small, while performance is likely to su�er when there are few free variables.Thus, the GPCG algorithm is prime candidate for a case study in the performance andscalability of optimization algorithms in parallel architectures.Our implementation of GPCG uses object-oriented techniques to leverage the parallelcomputing and linear algebra infrastructure o�ered by PETSc [2, 3], which relies on MPI[14] for all interprocessor communication. As a result, our implementation runs on a widevariety of high-performance architectures. Biros and Ghattas [6, 7] have been using a similarapproach for the solution of PDE-constrained optimization problems. They have also beenconcerned with e�ciency and scalability issues, but for quadratic problems with linearequality constraints. As we have pointed out, inequality constrained optimization problemsgive rise to di�erent performance issues. Hohmann [16], Deng, Gouveia and Scales [11],Meza [18], Bruhwiler et al. [8], and Gockenbach, Petro, and Symes [13] have employedobject-oriented design for nonlinear optimization, but their work does not address the reuseof linear algebra toolkits and is restricted to uniprocessor environments. Our use of object-oriented techniques and linear algebra toolkits also distinguishes our implementation ofGPCG from the data-parallel implementation of McKenna, Mesirov, and Zenios [17]. Inparticular, they can rely only on diagonal preconditioners, while our approach allows a widerange of preconditioners.Sections 2 and 3 are dedicated to background material on the bound-constrained op-timization problem (1.1) and to a brief overview of the GPCG algorithm, while Section 4has a discussion of our design philosophy and its bene�ts in developing robust and scalablesolutions strategies.The performance results in Section 5 are noteworthy in several ways. First, the numberof faces visited by GPCG is remarkably small. Other strategies can lead to a large numberof gradient projection iterates, but the GPCG algorithm is remarkably e�cient. Another2



interesting aspect is that because of the low memory requirements of iterative solvers, we areable to solve problems with over 2.5 million variables with only 8 processors. Strategies thatrely on direct solvers are likely to need signi�cantly more storage, and thus more processors.Finally, these results show that the GPCG implementation has excellent e�ciency.Section 6 examines the scalability of the GPCG component functions and the perfor-mance of GPCG as the number of variables and the number of active variables at thesolution change. These results illustrate the complex performance behavior for constrainedoptimization problems as well as the observation that performance results that focus onlyon e�ciency can be deceiving if the total computing time is not taken into account.Section 7 considers the performance of GPCG as the preconditioners change. Theability to use various preconditioners is a result of our design, which allows the connectionto external linear algebra toolkits. Our results in this section show that for our benchmarkproblem, a block Jacobi preconditioner with one block per processor, where each subproblemis solved with a standard, sparse ILU(2) factorization, is faster than a variant with ILU(0).We also show that both block Jacobi variants are faster than a simple point Jacobi method,although the point Jacobi preconditioner exhibits better scalability.2 Bound-Constrained Quadratic Optimization ProblemA classical result shows that the bound-constrained quadratic optimization problem (1.1)has a unique solution on the feasible region
 = fx 2 Rn : l � x � ug (2.1)when the quadratic q : Rn 7! R is strictly convex, so thatq(x) = 12xTAx+ bTx+ c; (2.2)where A 2 Rn�n is symmetric and positive de�nite, b 2 Rn, and c 2 R. This result holdsfor unbounded 
, and we thus allow the components of l and u to be in�nite. Solutions toproblem (1.1) satisfy the Kuhn-Tucker conditions@iq(x) = 0 if xi 2 (li; ui)@iq(x) � 0 if xi = li@iq(x) � 0 if xi = ui;where @iq(x) is the partial derivative of q with respect to the ith variable. Approximatesolutions can be de�ned in terms of the projected gradient, de�ned by[r
q(x)]i = 8<: @iq(x) if xi 2 (li; ui)minf@iq(x); 0g if xi = limaxf@iq(x); 0g if xi = ui (2.3)This de�nition of a projected gradient is appropriate because x� is a solution of (1.1) if andonly if r
q(x�) = 0. 3



Given x0 2 
, and a tolerance � , an approximate solution to the bound constrainedproblem (1.1) is any vector x 2 
 such thatkr
q(x)k � �: (2.4)Note that (2.4) holds whenever x is su�ciently close to x� and in the face of 
 that containsx�. The concept of a face is standard in convex analysis; for the convex set (2.1), the faceof 
 that contains x is ny 2 
 : yi = xi if xi 2 fli; uigo:Thus, the face of the feasible set that contains x can be described in terms of the set ofactive constraints A(x) = fi : xi = li or xi = uig:Variables with indices in A(x) are the active variables, and those with indices outside A(x)are the free variables. Similarly, the binding variables are those with indices inB(x) = fi : xi = li and @iq(x) � 0; or xi = ui and @iq(x) � 0g:The Kuhn-Tucker conditions show that B(x) = A(x) at a solution, so that if all the activevariables are not binding, then x is not on the face that contains the solution.3 The GPCG AlgorithmThe GPCG algorithm uses a gradient projection method to identify a face of the feasibleregion 
 that contains the solution, and the conjugate gradient method to search the face.This section provides an outline of the algorithm and notes any di�erences between ourimplementation and the implementation of Mor�e and Toraldo [19].Given y0 = xk , the gradient projection method generates a sequence of vectors fyjg inthe feasible region 
 such that yj+1 = P [yj � �jrq(yj)]; (3.1)where P is the projection onto (2.1), and the step size �j is chosen such thatq(yj+1) � q(yj) + �hrq(yj); P [yj � �jrq(yj)]� yji (3.2)for some � 2 (0; 1=2). The projection P can be computed in n operations byP [x] = mid(l; u; x);where mid(l; u; x) is the vector whose ith component is the median of the set fli; ui; xig.The step size is computed by a projected search [19] by setting �j to the �rst member ofthe sequence �0(12)j for j = 0; 1; : : : such that yj+1 satis�es the su�cient decrease condition(3.2). In our implementation, we use�0 = argmin fq (yk � �r
q(yk)) : � > 0g : (3.3)4



Computation of �0 is straightforward, since the mapping � 7! q (yk � �r
q(yk)) is aquadratic.We generate gradient projection iterates until su�cient progress is not made or theactive set settles down. Thus, we generate iterates until eitherA(yj) = A(yj�1) (3.4)or q(yj�1)� q(yj) � �1maxfq(yl�1)� q(yl) : 1 � l < jg: (3.5)If either test is satis�ed, we proceed to the conjugate gradient part of the algorithm.The �rst test (3.4) measures when the active set settles down. For nondegenerate prob-lems, (3.4) holds in a neighborhood of the solution. The gradient projection could befollowed until the optimal face is found, but experience has shown that a large numberof iterates may be required. The second test (3.5) measures when the gradient projectionmethod is not making su�cient progress.Given an iterate xk and the active set A(xk), the conjugate gradient method computesan approximate minimizer to the subproblemminfq(xk + d) : di = 0; i 2 A(xk)g: (3.6)This problem is unconstrained in the free variables. Note that if xk lies in the same face asthe solution and dk solves (3.6), then xk + dk is the solution of (1.1).The conjugate gradient algorithm for solving (3.6) is implemented by expressing thissubproblem in terms of an equivalent subproblem in the free variables. If i1; : : : ; imk arethe indices of the free variables, and the matrix Zk is de�ned as the matrix in Rn�mk whosejth column is the ijth column of the identity matrix in Rn�n, then subproblem (3.6) isequivalent to the unconstrained subproblemminfqk(w) : w 2 Rmkg; (3.7)where qk(w) � q(xk + Zkw)� q(xk) = 12hw;Akwi+ hrk; wi:The matrix Ak and the vector rk are, respectively, the reduced Hessian matrix of q andreduced gradient of q at xk with respect to the free variables. If A is the Hessian matrix ofthe quadratic q, then Ak = ZTk AZk; rk = ZTk rq(xk):Also note that Ak is the matrix obtained from A by taking those rows and columns whoseindices correspond to free variables; similarly, rk is obtained from rq(xk) by taking thecomponents whose indices correspond to free variables.Given a starting point w0 2 Rmk , the conjugate gradient algorithm generates a sequenceof iterates w0; w1; : : : that terminates at a solution of subproblem (3.7) in at most mkiterations. We use the conjugate gradient algorithm until it generates wj such thatqk(wj�1)� qk(wj) � �2maxfqk(wl�1)� qk(wl) : 1 � l < jg (3.8)5



for some tolerance �2 > 0. The approximate solution of (3.6) is then dk = Zkwjk , where jkis the �rst index j that satis�es (3.8).The termination test (3.8) is not standard. Iterative solvers usually terminate whenkrj + Ajwjk � �2krjkfor some tolerance �2 2 (0; 1). This test su�ers from the erratic behavior of the residualkrj+Ajwjk. On the other hand, the termination test (3.8) depends on whether the conjugategradient method is making su�cient progress.Given the direction dk, we use a projected search [19] to de�ne xk+1 = P [xk + �kdk],where �k is the �rst element in the sequence (12)k for k = 0; 1; : : : such thatq(xk+1) � q(xk) + �hrq(xk); xk+1 � xki: (3.9)More sophisticated projected searches are possible [19] , but this simple search has provedto be su�cient in all cases tried. IfB(xk+1) = A(xk+1); (3.10)then we �nd a more accurate solution to subproblem (3.7) by reducing �2 and continuingwith the conjugate gradient method. Otherwise, we terminate this iteration.Algorithm GPCGChoose x0 2 
.For k = 0; : : : ;Set y0 = xk, and generate gradient projection iterates y1; : : : ; yjk , where jk is the�rst index to satisfy (3.4) or (3.5). Set xk = yjk .Set w0 = 0, and generate conjugate gradient iterates w1; : : : ; wjk for the reducedsystem (3.6). Set dk = Zkwjk , where jk is the �rst index that satis�es (3.8).Use a projected search to generate xk+1. If (3.10) holds, reduce �2, and continuewith the conjugate gradient method.Our outline of algorithm GPCG does not include the termination test. An advantageof the termination test (2.4) is that this test is satis�ed [9] in a �nite number of iterations.On nondegenerate problems GPCG terminates [19] at the solution in a �nite number ofiterations.Algorithm GPCG is suitable for large problems. As opposed to some other active setmethods, each iteration is capable of adding or removing multiple constraints from theactive set. Moreover, as we shall see, GPCG tends to require few iterations for conver-gence. Another advantage of the GPCG algorithm is that convergence can be achievedwhile requiring only approximate solutions to the linear systems.6



4 Software DesignThe TAO design philosophy uses object-oriented techniques of data and state encapsulation,abstract classes, and limited inheritance to create a exible optimization toolkit. Thissection provides a short introduction to our design philosophy by describing the objectsneeded to create GPCG.Our current implementation leverages the parallel computing and linear algebra infras-tructure o�ered by PETSc [2, 3], which employs MPI [14] for all interprocessor communica-tion. TAO optimization algorithms use high-level abstract data objects that are providedby PETSc, including vectors, matrices, and index sets. In this context, a vector (Vec) is anabstraction of an array of values that represent a discrete �eld, and a matrix (Mat) representsa discrete linear operator that maps between vector spaces. An index set (IS) is a general-ization of a set of integer indices, which can be used for selecting, gathering, and scatteringsubsets of vector and matrix elements. TAO also interfaces to the linear solvers (SLES)within PETSc. Because each of these abstractions has several underlying representations,TAO has easy access to a variety of parallel vector and sparse matrix implementations aswell as preconditioners and Krylov subspace methods.Solving an optimization problem with TAO requires �rst creating a context data typecalled TAO SOLVER, which encapsulates information about the solution process, includingthe algorithm, convergence tolerances, options, and parameters. All of the computationsand communications related to a particular solution process are managed in the solvercontext variable. After de�ning the optimization problem, the user then calls TaoSolve todetermine the solution. Finally, the user destroys the TAO solver via TaoDestroy. Thecode fragment in Figure 4.1 shows the main functions needed to solve bound-constrainedquadratic programming problems with TAO.TaoCreate(MPI_Comm comm,TaoMethod method,TAO_SOLVER *tao);TaoSetQuadraticFunction(TAO_SOLVER tao,Vec X,Vec G,Mat A,Vec B,double c);TaoSetVariableBounds(TAO_SOLVER tao,Vec XL,Vec XU);TaoSolve(TAO_SOLVER tao);TaoDestroy(TAO_SOLVER tao);Figure 4.1: TAO interface for GPCGThe function TaoCreate creates the TAO SOLVER context for one of several possiblemethods (denoted by TaoMethod) for solving the problem. This interface serves severalalgorithms for bound-constrained quadratic problems in addition to GPCG, including lim-ited memory variable metric, trust region Newton, and interior point techniques. Moreover,this single interface serves other types of optimization problems as well. The functionTaoSetQuadraticFunction in Figure 4.1 de�nes the objective function (2.2) in terms ofthe Mat object A, Vec object B, and scalar c and provides the Vec objects X and G that areused for the solution and gradient. 7



The function TaoSetVariableBounds de�nes upper and lower bounds for the variablesX with the Vec objects XL and XU. Additional routines may be used to specify the startingpoint and various options for the optimization solver, but the structure in Figure 4.1 isneeded in all cases. Detailed information can be found in the TAO User Guide [4, 5].TAO implements the GPCG algorithm as a sequence of well-de�ned routines. Theevaluation of the function and gradient of the quadratic q, for instance, can be implementedthrough the standard numerical operations of matrix-vector multiplication, vector innerproduct, and vector saxpy. TAO passes Mat and Vec objects, whose representation isindependent of our implementation of GPCG, to external tools that perform the numericalcomputations. Additional work vectors required by the algorithm are created by calling aroutine that clones the variable vector X in Figure 4.1.Users working in a parallel environment must provide TAO with data structures A, B,X, G, XL, and XU that are properly distributed over the processors. Appropriate distributionallows e�cient executions of the matrix-vector multiplication, vector inner product, andvector saxpy operations. Numerical toolkits such as PETSc facilitate the creation of theseobjects and provide the functionality for most of the required numerical operations.The operations required to implement the GPCG algorithm as outlined in Section 3include the vector and matrix operations listed in the preceding paragraph, functions tocompute the pointwise minimum and maximum of two vectors, and a function that createsan index set that de�nes the indices where the elements of two vectors are equal.At each iteration of the GPCG algorithm, we also need to apply the conjugate gradientmethod to the matrix Ak corresponding to the free variables. This is an important phase ofthe computation because, as we shall see in Section 5, at least 70% of the GPCG computingtime is due to the conjugate gradient method. An e�cient parallel implementation of theconjugate gradient method requires that the reduced matrix Ak be evenly distributed overthe processors, but since the set of free variables may not be well distributed over theprocessors, the reduced matrix may not well distributed|regardless of how the matrix Ais distributed. Since an unbalanced load can result in tremendous losses in performance, aredistribution of the rows of Ak over the processors may be necessary. We end this sectionby discussing the implementation of the conjugate gradient method for solving the reducedproblem in the free variables.At least two techniques exist for applying the conjugate gradient method to the reducedsystem of equations. One technique creates a second matrix Ak that contains the rows andcolumns of A corresponding to the free variables, and then applies the conjugate gradientmethod to the reduced system. An alternative technique applies the conjugate gradientmethod to the rows and columns of the full matrix A speci�ed by the index set of the freevariables. In our implementation, we chose the �rst method. Despite the additional memoryrequirements and cost of copying data, this method is simpler, facilitates the preconditioningand load-balancing of the reduced matrix, and was easily implemented with the utilitiesprovided by PETSc.Our implementation of GPCG calls MatExtractSubmatrix(Mat,IS,IS,Mat *), which8



 

Figure 5.1: The journal bearing problem with " = 0:9.accepts the matrix A and the index set that identi�es the set of free variables, and createsthe reduced matrix Ak. A call to VecCreateSubVec(Vec,IS,Vec*) accepts the gradientvector and index set identifying the free variables to create a new, reduced vector. In aparallel environment, the index sets also de�ne the distribution of the reduced matrix overthe processors. These operations require a careful implementation when load balancingissues are taken into consideration.We interface to the preconditioned conjugate gradient method provided by the SLES com-ponent of PETSc. We use the SLES object to de�ne this iterative method, its preconditioner,the solution tolerance, and an initial point. The routine LinearSolve(SLES,Mat,Vec,Vec)computes an approximate solution to the linear system using the SLES object. At eachiterate we create the conjugate gradient solver, apply it to the reduced linear system, andthen destroy it.In the entire implementation of GPCG no assumptions are made about the representa-tions of data in the vectors and matrices. This approach eliminates some of the barriers inusing independently developed software components by accepting data that is independentof representation and interfacing to numerical routines with the appropriate data formats.5 PerformanceWe have evaluated the performance of the GPCG implementation on a variety of architec-tures. The data presented in this section was generated on the IBM SP (each processorhas 256 MB RAM, 128 KB cache for data, and a 32 KB cache for instructions) at ArgonneNational Laboratory; performance trends were similar on other machines.As a benchmark application we have used a journal bearing model, a variational problemover a two-dimensional region. This problem arises in the determination of the pressure dis-tribution in a thin �lm of lubricant between two circular cylinders. The in�nite-dimensional9



version of this problem is of the formminfq(v) : v � 0; v = 0 on @Dg;where v : D 7! R is piecewise continuously di�erentiable, q : H1 ! R is the quadraticq(v) = ZD �12wq(x)krv(x)k2� wl(x)v(x)	 dx;D = (0; 2�)� (0; 2b) for some constant b > 0, andwq(�1; �2) = (1 + " cos �1)3; wl(�1; �2) = " sin �1;where " in (0; 1) is the eccentricity parameter. The eccentricity parameter inuences, inparticular, the di�culty of the problem. Figure 5.1 shows the solution of the journal bearingproblem for " = 0:9. The steep gradient in the solution makes this problem a di�cultbenchmark.Discretization of the journal bearing problem with either �nite di�erences or �nite ele-ments leads to a problem of the form (1.1) with l � 0 and u � +1. The number of variablesis n = nxny , where nx and ny are, respectively, the number of grid points in each coordinatedirection of the domain D. See [19] for a description of the �nite element discretization.We now analyze the performance of GPCG on large problems, that is, problems thatwill not �t into the memory of a single processor. Speci�cally, we used a grid with 1600points in each direction, leading to a problem with n = 2:56 � 106 variables.The initial point x0 was set to the lower bound l. We used �1 = 0:1 in the test (3.5)to terminate the gradient projection algorithm and �2 = 0:05 in the test (3.8) to terminatethe conjugate gradient algorithm. We stopped GPCG when the convergence test (2.4) wassatis�ed with � = 10�4.Table 5.1 presents performance data for GPCG. We show the number of processors p,the number of GPCG iterates (iters), the number of conjugate gradient iterations nGP , thewall clock solution time (in seconds), the percentage of time (tCG%) used by the conjugategradient algorithm, and the e�ciency (E) of GPCG in going from 8 to 64 processors. Thetime in the conjugate gradient algorithm includes the time spent computing the precon-ditioner. Our design allows the use of several preconditioners, but for the results in thissection we used a block Jacobi preconditioner with one block per processor, where eachsubproblem was solved with ILU(2).The results in Table 5.1 are noteworthy is several ways. First, the number of iterationsof GPCG is remarkably small. This is surprising because the feasible set (2.1) has 3n faces,and the GPCG visits only one face on each iteration. Other strategies can lead to a largenumber of iterates, but the GPCG algorithm is remarkably e�cient.Another interesting aspect of the results in Table 5.1 is that due to the low memoryrequirements of iterative solvers, we were able to solve these problems with only p = 8processors. Strategies that rely on direct solvers are likely to need signi�cantly more storage,10



Table 5.1: Performance of GPCG on the journal bearing problem with n = 2:56 � 106." p iters nGP time tCG% E0.1 8 46 431 7419 86 1000.1 16 45 423 3706 83 1000.1 32 45 427 2045 82 910.1 64 45 427 1279 82 730.9 8 37 105 2134 70 1000.9 16 37 103 1124 71 950.9 32 38 100 618 69 860.9 64 38 99 397 68 67and thus more processors. Finally, these results show that the GPCG implementation hasexcellent e�ciency with respect to p = 8 processors, ranging between 67% and 100%. Thissustained e�ciency is remarkable because the GPCG algorithm is solving a sequence oflinear problems with a coe�cient matrix set to the submatrix of the Hessian of q with respectto the free variables for the current iterate. Thus, our implementation's repartitioning ofsubmatrices deals e�ectively with the load-balancing problem that is inherent in the GPCGalgorithm.For these results we have noted that as " increases, both tCG% and the overall e�-ciency decrease. This observation follows from the empirical result that the number of freeconstraints at the solution is inversely proportional to the eccentricity parameter ". In par-ticular, roughly 68% of the constraints are free at the solution when " = 0:1, and 54% arefree for " = 0:9. Since the size of the linear system that the conjugate gradient algorithmneeds to solve increases as " decreases, the time required by the conjugate gradient algo-rithm increases. Since the parallel e�ciency of larger problems is greater than the parallele�ciency for smaller problems, the overall e�ciency of GPCG increases.6 Performance AnalysisGPCG is typical of optimization algorithms that must deal with constrained problems inthe sense that these algorithms have dynamically changing active sets. In this section weanalyze the performance of GPCG.Table 6.1 presents performance results for the journal bearing problem with dimension640,000. In comparing these results with those of the larger problem in Table 5.1, notethat while the number of variables increases by a factor of four, the number of iterations,the number of gradient projection iterates, and the time for solving the problem, increaseby about a factor of two. This seems to be fairly typical of GPCG but may not holdfor other optimization algorithms. Some algorithms for unconstrained problems exhibitmesh invariance in the sense that the number of iterations is independent of the number ofvariables, but this does not generally hold for constrained problems.When analyzing the parallel performance of an algorithm, we must bear in mind that11



Table 6.1: Performance of GPCG on the journal bearing problem with n = 640; 000." p iters nGP time tCG% E0.1 2 27 227 2057 79 1000.1 4 26 227 1173 79 890.1 8 27 232 639 78 800.1 16 26 231 365 75 700.1 32 27 230 220 74 580.1 64 27 228 152 75 420.9 2 21 58 645 65 1000.9 4 20 54 368 63 880.9 8 20 52 199 64 810.9 16 21 54 128 64 630.9 32 20 52 74 61 540.9 64 23 54 58 62 35a problem can scale well only when the ratio of computation to communication time issu�ciently large. Thus, for a particular problem size, scalability tapers o� when moreprocessors are added than can be used e�ectively. For GPCG, this e�ect can be seen clearlyby comparing the results in Table 6.1 with those in Table 5.1.An important aspect of the results in Table 6.1 is that for this particular problem ofdimension 640,000, the e�ciency of GPCG is acceptable for p � 8 processors but dropsrapidly with more processors. To explain the drop in e�ciency, we list in Table 6.2 thepercentage of time spent in the main operations of GPCG. Note that some of these oper-ations overlap, so the sum of the percentages always exceed 100%. In this table Vec Redrefers to vector reductions, such as dot products and norms, while Vec Local refers to vectoroperations such as y  �x+ y.Table 6.2: Scalability of GPCG functions (n = 640; 000, " = 0:1)Percentage of time Total MFlopsNumber Mat-Vec Vec Vec Linear Extract Linear TAOProc. Multiply Local Red Solve Submatrix Solve Solve1 27 15 7 81 1 26 232 30 15 8 83 2 47 424 30 12 8 82 2 94 828 29 11 10 81 2 179 15616 26 10 14 78 2 333 27932 24 9 22 78 2 563 47364 20 5 36 78 2 790 665The percentage of time spent in the various functions of GPCG generally decreasesslightly as the number of processors increases, with the exception of the vector reductions.Since vector reductions require communication among all processors, they have a signi�cante�ect on the e�ciency of the algorithm. Note that the time for vector reductions remains12



fairly constant at about 8% of the total computation time for 1{8 processors but that thee�ciency of the algorithm declines quickly as the percentage of time doing vector reductionsincreases to 36% on 64 processors. This analysis shows that the ratio of computation tocommunication for this problem is too small for large number of processors and is responsiblefor the loss in scalability of GPCG for p > 8.In this discussion of e�ciency bear in mind that the Hessian matrix of the journal bearingproblem is relatively sparse with 5 nonzeros per row on average. The e�ciency is likely toimprove if we deal with matrices with more nonzeros per row, since then the amount ofcomputation per conjugate gradient iteration increases. These problems arise, for example,in three-dimensional simulations or in variational problems with vector functions, that is,variational problems that require determining a vector-valued v : D 7! Rm for m > 1 thatminimizes the quadratic q.A surprising aspect of the results in Table 6.1 is that the percentage of time requiredto extract the submatrix remains nearly constant at 2% of the total computation time,demonstrating the relative e�ciency of this phase of the computation. These results aresurprising because at �rst sight the need to extract an arbitrary submatrix and to refbalancethe distribution of rows across the processors would destroy the e�ciency of the algorithm.On the other hand, the creation of a second matrix to hold the submatrix requires additionalstorage. For large problems the additional storage may exceed the memory capacity of asmall number of processors.Another important component of our scalability analysis is the op rate per processor.As noted in Table 6.1, the op rate for the linear solve component of GPCG is 26 MFlops forone processor and decreases to about 12:3 for 64 processors. For comparison purposes, theop rate of a Newton algorithm in PETSc is about 42 MFlops for one processor on a systemof nonlinear equations with the same sparsity as the journal bearing problem. This rate ishigher than the rate achieved by the GPCG algorithm, but this is to be expected because,as previously mentioned, the GPCG algorithm spends a signi�cant amount of time on taskswith no arithmetic operations. The extraction of the submatrix, creating the reduced linearsystem and determining the free variables, typically requires more than 10% of the time.Hence, it is unlikely that the GPCG algorithm, or any active set algorithm for constrainedproblems, can achieve a computation rate as high as a Newton algorithm.While these computations employed a standard compressed, sparse row format for ma-trix data, higher op rates could be obtained on some problems, changing the matrix format.Alternative storage schemes that exploit the structured sparsity of these problems wouldachieve higher op rates for matrix operations by alleviating unnecessary memory refer-ences. Likewise, block sparse storage variants for problems with multiple unknowns pergrid point would achieve higher op rates [15]. Since our optimization algorithms use adata-structure-neutral interface to matrix and vector operations, we can easily experimentwith such alternatives without altering any of the optimization code.13



7 PreconditionersThe ability to experiment with various preconditioners is a direct result of our design phi-losophy, which enables connection to the linear algebra infrastructure provided in toolkitssuch as PETSc. In particular, we compared the diagonal Jacobi preconditioner with ablock Jacobi preconditioner that used one block per processor. We employed sparse matrixbased ILU as a subdomain solver for the block Jacobi method, where we considered bothILU(0), which produced a factored matrix that maintained the same sparsity pattern as thesubdomain matrix, and ILU(2), which allowed two levels of �ll.The statistics summarized in Table 7.1 are the eccentricity parameter ", the number ofprocessors p, the number of iterations of GPCG, the time required to solve the problem,and the number of conjugate gradient iterations. We present results only for n = 640; 000,since similar results were obtained for n = 2; 560; 000.Table 7.1: Performance of preconditioners in GPCG (n = 640; 000)Diagonal Block Jacobi - ILU(0) Block Jacobi - ILU(2)" p iters time CG iters iters time CG iters iters time CG iters0.1 4 26 2928 37045 27 1324 8679 26 1173 63120.1 16 26 851 37045 27 409 9105 26 364 67120.9 4 21 1216 18118 20 416 2654 20 368 18640.9 16 22 390 18118 23 150 3390 21 128 2303The number of GPCG iterations in Table 7.1 is independent of the number of processorsand of the preconditioner. In general we expect small variations in the number of iterationsbecause di�erent preconditioners create di�erent approximate solutions to linear systemsand di�erent paths to the solution.In these experiments we were interested in the impact of the preconditioner on the totaltime to solution. The Jacobi method is scalable, so the main issue is whether the highercomputational cost of the block Jacobi is justi�ed. As expected, the block Jacobi precon-ditioner with subdomain solver ILU(2) required fewer conjugate gradient iterations thansubdomain solver ILU(0), and both block Jacobi preconditioners required fewer iterationsthan the point Jacobi method. In addition, the block Jacobi methods also required lesstime. In general, better preconditioners require more time to compute, and this additionalcost sometimes negates the savings achieved from fewer iterations of the linear solver. Inthis problem, the block Jacobi preconditioners used about half of the time required by thediagonal preconditioner, and the additional cost of computing better preconditioners is jus-ti�ed. The most expensive preconditioner to compute of the three under consideration inthis work, namely, the block Jacobi method with subdomain solver ILU(2), produced thefewest iterations by the conjugate gradient method and the smallest overall solution time.The ability to experiment easily with a variety of preconditioners is an advantage becausewe can then choose a technique that is most suitable to the problem. In this spirit, we plan to14



experiment with the evolving interfaces under development by the Equation Solver Interface(ESI) [12] and Common Component Architecture (CCA) [1, 10] working groups, with a goalof enabling dynamic use within TAO of any ESI-compliant preconditioning components.8 Concluding RemarksWe have shown that the TAO design leverages external parallel computing infrastructureand linear algebra toolkits to solve large-scale optimization problems on high-performancearchitectures. With the exception of the work of Biros and Ghattas [6, 7], other codes forlarge-scale optimization problems are either custom-written or restricted to uni-processorenvironments.TAO [4, 5] extends to general nonlinearly bound-constrained optimization, but the per-formance issues are more subtle due to the impact of user-supplied function, gradient andHessian code. Extensions of TAO to large linearly-constrained and nonlinearly-constrainedoptimization problems is currently an active research area.AcknowledgmentsThe development of TAO would not have been possible without the support and guidanceof Satish Balay, Bill Gropp, and Barry Smith. They, together with Lois McInnes, are themain developers of PETSc.References[1] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. C. McInnes,S. Parker, and B. Smolinski, Toward a common component architecture for high-performance scienti�c computing, in Proceedings of High Performance DistributedComputing, 1999, pp. 115{124.[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, E�cient manage-ment of parallelism in object oriented numerical software libraries, in Modern SoftwareTools in Scienti�c Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds.,Birkhauser Press, 1997, pp. 163{202.[3] , PETSc 2.0 users manual, Tech. Rep. ANL-95/11 - Revision 2.0.28, ArgonneNational Laboratory, March 2000.[4] S. Benson, L. C. McInnes, and J. Mor�e, Toolkit for Advanced Optimization (TAO)Web page. See http://www.mcs.anl.gov/tao.[5] , TAO users manual, Tech. Rep. ANL/MCS-TM-242, Mathematics and ComputerScience Division, Argonne National Laboratory, 2000.15
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