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Abstract. We present a new shape measure for tetrahedral elements that is optimal in the sense that
it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed
from the condition number of the linear transformation between a unit equilateral tetrahedron and
any tetrahedron with positive volume. We use this shape measure to formulate two optimization
objective functions that are differentiated by their goal: the first seeks to improve the average quality
of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. Because
the element condition number is not defined for tetrahedra with negative volume, these objective
functions can be used only when the initial mesh is valid. Therefore, we formulate a third objective
function using the determinant of the element Jacobian that is suitable for mesh untangling. We
review the optimization techniques used with each objective function and present experimental
results that demonstrate the effectiveness of the mesh improvement and untangling methods. We
show that a combined optimization approach that uses both condition number objective functions
obtains the best-quality meshes.
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1 Introduction

Local mesh smoothing algorithms are commonly used
for simplicial mesh improvement. These methods re-
locate a set of adjustable vertices, one at a time,
to improve mesh quality in a neighborhood of that
vertex. The new grid point position is determined
by considering a local submesh containing the ad-
justable, or free verter, v, and its incident vertices

and elements. For example, in Figure 1, we show
a two-dimensional local submesh with three possible
locations for v. The leftmost local submesh shows
a valid but poor-quality mesh, the middle submesh
shows a higher-quality valid mesh, and the rightmost
shows an invalid mesh with inverted elements. Over-
all improvement in the mesh is obtained by perform-
ing some number of sweeps over the set of adjustable
vertices.



Figure 1: A local submesh with three possible locations for v.

The most commonly used local mesh smoothing tech-
nique is Laplacian smoothing [6, 16] which moves the
free vertex to the geometric center of its incident ver-
tices. Laplacian smoothing is computationally inex-
pensive but does not guarantee improvement in the
element quality.

To address this problem, several optimization-based
approaches to mesh smoothing have been developed
in recent years, for example, [19, 11, 1, 18, 14]. In
these techniques, the local submesh 1s evaluated ac-
cording to some objective function based on a qual-
ity metric, ¢;, such as element angle or aspect ra-
tio. Function and, possibly, gradient information are
used to relocate the free vertex in such a way that
the objective function is optimized. For example, if
the quality metric under consideration is element an-
gle, the leftmost submesh in Figure 1 shows an initial
position for v that results in three poor-quality ele-
ments, 1, 2, and ¢7. The middle submesh in Figure
1 shows the position of v that optimizes the element
angle. We note that if the initial mesh contains in-
verted elements, objective functions that work well
for mesh quality improvement may not be appropri-
ate for mesh untangling [10].

Several optimization objective functions based on ge-
ometric criteria have been proposed for a prior: im-
provement of a simplicial mesh. For example, Bank
proposed a ratio of triangle area to edge length
squared for two-dimensional meshes [2], Shephard
and Georges proposed a similar ratio of volume to
face areas for tetrahedral meshes [19], Freitag et al.
used angle-based measures for both two- and three-
dimensional meshes [9, 11], and Knupp has proposed
anumber of shape quality measures derived from sim-
plicial element Jacobian matrices [14, 15]. Canann
et al. proposed a distortion metric for both triangles
and quadrilaterals that could be used with both valid
and inverted elements [18]. In addition, a posteriori

metrics have been proposed to improve finite element
meshes by optimizing solution error indicators [1].

In Section 2, we propose a new shape quality metric
constructed from the element condition number for
the a priori improvement of tetrahedral meshes. We
introduce the Jacobian matrix, A;, associated with
each tetrahedral vertex and show that its determinant
is invariant with respect to the vertex at which it is
evaluated. The condition numbers of the Jacobian
matrices can also be made invariant by introducing
a weighting that gives the linear transformation from
the physical tetrahedron to the logical tetrahedron.
We show that this weighted condition number is a
tetrahedral shape measure according to the formal
definition given in [4] and that it is optimal in that
it gives the distance of a tetrahedron from the set of
inverted elements.

In Section 3, we formulate two optimization objec-
tive functions using the element condition number
that are suitable for mesh improvement if the ini-
tial mesh is valid. The first objective function tar-
gets the improvement of average element quality; the
second targets the improvement of the worst element
quality. If the initial mesh is not valid, this shape
measure cannot be used for mesh improvement as it
is not defined for inverted elements. In this case we
use an objective function based on the determinant
of the Jacobian that is suitable for untangling the
inverted elements. In previous papers, we have inde-
pendently proposed optimization techniques for mesh
untangling [10], mesh improvement as measured by
average element quality [14], and mesh improvement
as measured by extremal element quality [11], and we
review these optimization techniques in Section 3.2.

In Section 4, we present numerical results for each of
the mesh improvement strategies using the condition
number shape measure on four tetrahedral meshes.



We compare each technique to a baseline Laplacian
smoother, and illustrate that in each test case, a
combined optimization approach produces the best-
quality meshes. We also show that the techniques can
achieve high-quality meshes even when starting with
an invalid mesh, by combining the mesh improvement
strategies with the mesh untangling approach. Fi-
nally, in Section 5, we offer concluding remarks and
directions for future research.

2 Tetrahedral Jacobian Matrices and Condi-
tion Numbers

In this section we discuss the Jacobian matrices as-
sociated with tetrahedral elements. We show that
the Jacobian determinants are invariant for each ele-
ment and that a new tetrahedral shape measure can
be constructed from the Jacobian matrix condition
number. The measure is optimal in the sense that it
measures the distance of a given tetrahedron to the
set of inverted tetrahedra.

2.1 Tetrahedral Jacobian Matrices

Let T" be an arbitrary tetrahedral element consist-
ing of four vertices v,, n = 0,1, 2, 3 with coordinates
x, € R3. Let V(T') denote the volume of the tetrahe-
dron. Define edge vectors eg ,, = xi — X, With k £ n
and £k =0,1,2, 3 (note that e, y = —eg ). Vertex v,
has three attached edge vectors, €,41,n, €nt2,n, and
€n+3,n, Where the indices are taken modulo four. De-
fine the Jacobian matrix at node n (denoted by A,)
to consist of the columns of the triplet of attached
edge vectors, namely,

Ap = (_1)n ( €n+ln €n42n En43n )

Let a,, be the determinant of A,,.
Theorem 1. The determinants o, = g for n =
1,2,3.
Proof.
Let M be the following constant matrix

1 1 1

M = -1 0 0
0 -1 0

The determinant of M equals 1. A direct calculation
shows that

A, =Ag M"

for n = 1,2,3. Taking the determinant of this
expression gives a, = agp. §

It is well known that the volume of a tetrahedron
is one-sixth of the Jacobian determinant [12], hence
ag = 6V(T) and V(T) > 0 if and only if ag > 0. An

element is said to be wnwvertible if and only if ay > 0.

Matrix norms are a critical part of the theory to be
presented. Let I be the identity matrix and S be an
arbitrary matrix. The Euclidean norm of S is defined
in terms of the trace:

| S |= [tr(ST9)])*.

The Euclidean norm is invariant to rotation matrices,
that is, | SR |=|] RS |=| S |, where R is a rotation
matrix (RTR = I, | det(R) |= 1). If S is invertible,
then S~! exists, and one can define the adjoint matrix

of S:
adj (S) = o S71,
where o = det(S).

One can easily show that the following relationships
hold for the Jacobian matrix:

| Ap |2 = | €n+ln |2 + | €n+2.n |2 +
| entsn |?, and
| adj (An) |2 = |entin X €ntan |2 +
| €n+2,n X €nt3.n |2 +
| €n43n X Entln |2 .

These provide a geometric interpretation of the
norms. The norm-squared of A, is the sum of the
lengths-squared of the attached edge vectors and the
norm-squared of the adjoint is the sum of the squares
of the areas of the attached triangular faces.

Unlike the determinant, «,, the norms of A, and
adj (Ay) are not independent of n because not all of
the lengths and areas of the tetrahedron affect the
result for A,. This situation can be remedied, as will
be shown next.

Define an equilateral tetrahedron 7. to have

sides of length one and four vertices with the
coordinates (0,0,0), (1,0,0), (1/2,4/3/2,0), and
(1/2,4/3/6,v/2/\/3). This tetrahedron serves as the
logical element. Let W, be the Jacobian matrix at
the nth vertex of T,. For example,

112 1/2
Wo=1| 0 v3/2 3/6
0 0 V2/V3



and wy = det(Wy) = \/5/2

Theorem 2.

Let T be any tetrahedron, with Jacobian matrices
A, . Let S, be the linear transformation that takes
W, to A,. Then S, = Ag Wy !, that is, S, is inde-
pendent of n.

Proof.

By definition, S,W,, = A,. If n =0, Sy = A, Wy '.
Theorem 1 applies to the matrices W, of T,. Thus
Wyp = Wo M™ for n = 1,2,3. Since A, = Ag M", we
have the stated result. §

In other words, there exists a unique linear transfor-
mation between the logical tetrahedron 7, and the
physical tetrahedron 7. Because of this result, let us
denote Wy by W and wy by w.

Theorem 3.

| AgW=t |=| AgW =1 | and | WA |=| WAG? |.
Proof.

The result for n = 0 is immediate. Define the matrix
R = WMW~!, where M is defined in the proof of
Theorem 1. A direct calculation shows that R is a
rotation matrix with a positive determinant. There-
fore, det(R") = 1 and (R")T R® = I for n = 1,2, 3;

that is, R" is a rotation matrix. Hence

| AW = | AM"W|
| AW R™ |

| AgW 1.

Similarly, the second result can be proved by observ-
ing that WAl = (A, W)™t = (R*)"' W 47"
and showing that (R")~! is a rotation matrix. §
This theorem shows that the norms | A,W~! | and
| WA, | are independent of n.

2.2 Tetrahedral Condition Numbers

Let Ty be any tetrahedron with positive volume.
Then A7 ! exists, and one can compute the weighted
condition number of the matrix A,

Ko (An) = AW (AW TH 7]

Since (A, W1~ = WAZ Theorem 3 shows
that £y (An) is independent of n. This 1is
not true for the unweighted condition number
k(An) =| An || A1 |. Now let A be any of the

four Jacobian matrices of an invertible tetrahedron.

Let ky(A) =] AW=L || WAL |. Recall that S is

the linear transformation taking T, to Tl; hence
kw(A) =| S || S71 |= k(S). That is, x(S) measures
the condition number of the linear transformation
between the logical and physical tetrahedra.

Theorem 4.

Let S be derived from a tetrahedron with positive
volume. Then 3/x(S) is a tetrahedral shape measure.
Proof.

We use the formal definition given in [4] to prove this
assertion.

First, it is clear that | S | is a continuous function
of the coordinates of T4, and likewise so is | S7! |.
Therefore (S) is a continuous function of the coor-
dinates of any tetrahedron with positive volume.

Second, the Jacobian matrix is invariant to trans-
lations so &(S) is invariant to translations. Let
A = AMRA with A > 0 and R be a rotation ma-
trix corresponding to a uniform scaling and rotation
of the tetrahedron. Let S = AW=!. Since the Eu-
clidean norm is invariant under rotations, it is clear

that &(5) = x(S).

Third, it is clear that 0 < 3/k(S). Apply the Polar
Decomposition Theorem [13] to S. Then there exist a
rotation matrix R and a symmetric, positive definite
matrix U such that S = RU. Let A\;, ¢ = 1,2,3, be
the eigenvalues of U. The eigenvalues are real and
positive. Then &(S) =| U || U~! |. One can show
that | U |2= A + A2 4+ A3, so

K= (Ni/A)%
i
This is a continuous function of three variables and
its minimum may be found by computing the solution
to Ok?/X\; = 0 with 7 = 1,2, 3. The solution is \; = A
where X is any positive constant. Hence x > 3. This
shows that 0 < 3/k < 1, as required for a tetrahedral
shape measure.

Fourth, suppose 3/k = 1. Then the eigenvalues of U
must be constant and U = AI. Then the Jacobian
matrix associated with the tetrahedron must have the
form A = A RW, in other words, 3/k attains its max-
imum value only if the tetrahedral element 1s a rota-
tion and uniform scaling of the logical tetrahedron.
The converse 1s easy to show.

Fifth, the definition of a degenerate tetrahedral el-
ement given in [4] is somewhat vague. As noted,
a tetrahedron with a small volume is not necessar-



ily degenerate. This is reflected in the properties of
the condition number. For example, if A = e W,
where 0 < € << 1, then a = ¢ det(W) is small, but
3/kw(eW) = 1. Thus a tetrahedron with small vol-
ume does not necessarily make 3/k(S) large. Refer-
ence [4] gives an example of a degenerate tetrahedron,
one whose volume goes to zero but at least some of
the lengths do not. Suppose there exist constants b
and ¢ such that 0 < b <| S | and 0 < ¢ <] adj (5) |.
Then both | A | and | adj(A) | are bounded below by

a positive constant. Since
k(S) =[S [ adj(S) | /o,

the limit of 3/k(S5) as o« — 0 is zero. Hence, the con-
dition number satisfies the requirement that a shape
measure go to zero for a degenerate element, at least
for the given example. The second author reported
numerical experiments in [15] like those described in
[17] which show that the common tetrahedral shape
degeneries can be detected by the condtion number.
In fact, the condition number provides a rigorous def-
inition of a degenerate element. Let 0 < € << 1 be
given. Then T} is degnerate if 3/k(S) < €. §

It is possible to show that at least some of the other
weighted nondimensional objective functions given in
[15] are also tetrahedral shape measures. The distin-
guishing feature between the condition number and
these other measures is given in the following well-
known theorem [3] adapted to our current setting.

Theorem 5.

1/&(S) is the greatest lower bound for the distance
of S to the set of singular matrices.

Proof.

Let S and X be 3 x 3 matrices with S non-singular
and S + X singular. Write S + X = S(I + S71X).
If | ST1X |< 1, then I+ S™'X is nonsingular. This
would mean that S 4+ X is nonsingular, so we must
have | STLX |> 1. But 1 <| S7IX || S| X |;
hence | X | /| S |> 1/k(S). Therefore

min{| X | /| S |: S+ X singular} = 1/£(S5).

§

Since S is singular if and only if A is singular, we are
guaranteed that minimization of x(S) will increase
the distance between A and the set of singular ma-
trices.

Results similar to those presented in this section can
be given for triangular elements.

3 Optimization-based Smoothing Techniques

We derive two objective functions using the element
condition number that are useful for optimization-
based mesh improvement. We also derive an objec-
tive function based on the determinant of the Jaco-
bian that is useful for mesh untangling. We then
briefly describe the three algorithms used for opti-
mizing the objective functions. In each case we give
references to previously published work for more de-
tailed descriptions.

3.1 Optimization Objective Functions

To build objective functions for mesh improvement
based on the condition number of the tetrahedron,
consider a node in the interior of a valid tetrahe-
dral mesh with M attached tetrahedra. Let A,,
be the Jacobian matrix corresponding to the mth
element and S, = A,W=! Let &y, = &(Sn),
m=0,1,.... M — 1 be the weighted condition num-
ber of the mth attached tetrahedron normalized so
that an equilateral tetrahedra has a k value of one,
and K = (Ko, K1, ..., kar—1). The vector p-norm of K
can be used to construct a local objective function to
minimize the condition number

M-1

p= Z "‘ffn]l/p~

m=0

| K

The choice p = 2 gives the 5 norm of K

M-1

| K |2: [ Z Krzn]l/za

m=0

(1)

which can be used to minimize the average condition
number, while p — oo gives the £, norm

(2)

which can be used to minimize the maximum condi-
tion number. For the results presented in Section 4,

| K |oo: maxm {’fma}

we reformulate the objective function as the equiva-
lent maximization problem as follows:

Kpnin = Ming {—Kkm }-

(3)

Because the condition number is defined only for
tetrahedra with positive volume, a different objec-
tive function must be used for mesh untangling. Let



Ay, m = 0,1,..,M — 1 be the Jacobian deter-
minant of the mth attached tetrahedron and A =
(—ag, —aq, ..., —apr—1). Because oy, corresponds to
the volume of tetrahedron m, we can use the follow-
ing to create an objective function suitable for mesh
untangling:

Amax = maxrm {_am}'

As with the £;,; objective function, we can reformu-
late this into an objective function for the equivalent
maximization problem using «,, rather than —a,,:

(4)

This 1s the form of the objective function used for the
results presented in Section 4.

Apmin = ming, {am}.

We note that some optimization techniques require
the gradient of the condition number £(S) with re-
spect to the free vertex position x. Let S = AW ™1,
o = det(S). One can apply the chain rule and the
formulas given in [15] to compactly write the gradi-
ent:

Ok

_ 9Kk 7
Vk = 3SW U

with «” = [1, 1, 1]. An explicit calculation shows that

Ok S2s _
55 = %Hsﬁ I—S8Ts)—w(S)s~T
S
-1 2
+ 15| w9

3.2 Optimization Procedures

We now formulate the optimization problem associ-
ated with each of the objective functions given above.
In each case, the characteristics of the objective func-
tion demand different solution techniques, and we
briefly describe the methods used.

Optimization of the /5 objective function. The
formulation of the optimization problem for the /,
objective function given in (1) is

M-1

min [Z rom (%) 2142,

m=0

(5)

This objective function 1s smooth with continuous
derivatives, and the problem can be solved with var-
1ous techniques for unconstrained optimization.

For gradient-based optimization of the £» objective
function, one can use the expression given in [15].
However, attemps to apply a gradient-based approach
to the condition number objective function were un-
successful. The difficulty may have been due to the
fact that the objective function is not continuous over
all of R3, that is, singularities in the objective func-
tion occur when the elements have zero-volume. A
more sophisticated approach may overcome the prob-
lem.

For the time being, we use a robust minimization al-
gorithm that requires only objective function values.
M search directions are computed from the sum of
en+1,n for each of the attached tetrahedra. The ob-
jective function is then evaluated at various distances
along the scaled search directions, and the node is
moved to the position that provides the greatest de-
crease 1n the value of the objective function. If no
decrease is found, the node is not moved. More pre-
cisely, let  be the current node position. Set toler-
ance ¢ = 17% and stopping criteria 7 = 17°, 0y = 1,
om =173, and flag = true.

while (flag)
flag = false
compute f(x)
o = 0p
while (o> o )
oc=0c/8
Tnew = T, fnew = 120
loop over M attached elements
T = (1 — 0') r+ (xn+1 + Zn42 + xn+3)/2
compute f(¥)
Zf(f(j) < fnew )7 fnew == f(j)y Tnew — z
end loop over elements
Zf(f_fnew>€|f|)

d:|x_xnew|

T = Tpew

c=10

if (d>1 ), flag = true
end while

end while

Optimization of the /;,; objective function.
The optimization problem for the £;, ; objective func-
tion given in (3) is formulated as

min
0<m<M-1

max —Km (X),

where each &, 1s a nonlinear, smooth, and continu-
ously differentiable function of the free vertex posi-



tion. Let the maximum value of the functions eval-
uated at x be called the active value, and the set of
functions that obtain that value, the active set, be de-
noted by S(x). Because multiple elements can obtain
the maximum value, the composite objective function
has discontinuous partial derivatives where the active
set changes from one set of functions to another set.

We solve this nonsmooth optimization problem
using an analogue of the steepest descent method
for smooth functions. The search direction, s, at
each step is the steepest descent direction derived
from all possible convex linear combinations of the
gradients in S(x). The line search subproblem along
s 1s solved by predicting the points at which the
active set & will change. These points are found by
computing the intersection of the projection of a cur-
rent active function in the search direction with the
linear approximation of each —kp,(x) given by the
first-order Taylor series approximation. The distance
to the nearest intersection point from the current
location gives the initial step length, 8. The initial
step 1s accepted if the actual improvement achieved
by moving v exceeds 90 percent of the estimated im-
provement or the subsequent step results in a smaller
function improvement.  Otherwise, [ is halved
recursively until a step 1s accepted, or 3 falls below
some minimum step length tolerance. More detail
on this optimization algorithm can be found in [11, 7].

Optimization of the mesh untangling objective
function. The formulation of the optimization prob-
lem for the mesh untangling objective function given

in (4) is
(6)

where «, i1s a linear function of the free vertex posi-
tion, x. Thus, the solution of the optimization prob-
lem can be formulated as a linear programming prob-
lem, the details of which are given in [10].

min
0<m<M-1

max am (%),

The problem is well posed if (1) the vertices of the
subproblem do not all lie in a lower-dimensional sub-
space than the original problem and (2) none of the
vertices are co-located at the same point in space.
If the problem is well posed, it is solved by using
the computationally inexpensive and robust simplex
method. For well posed problems, we proved that
the level sets of the objective functions are convex in
both two and three dimensions and, hence, the local
subproblem is guaranteed to converge.

We note that optimizing a,, results in poor-quality

meshes because the technique has no motivation to
create good-quality elements. In fact, this technique
can distort small equilateral elements in an effort to
increase their volume. In practice, meshes untangled
by this procedure often contain elements with angles
as small as 1073 degrees, and this technique must be
followed by one or more of the mesh improvement
techniques discussed previously.

4 Numerical Experiments

We now demonstrate the effectiveness of each of
the optimization techniques in improving tetrahe-
dral meshes compared with a baseline Laplacian
smoother. We use four tetrahedral meshes generated
by the CUBIT package [5] for duct, gear, hook, and
foam geometries. These meshes are shown in Figure
2. In Table 1, we give the number of elements in each
mesh, N, and the initial mesh quality as measured
by the following metrics:

1. The number of slivers in the mesh, Ng, namely
those with a mnormalized condition number
greater than 3.0.

2. The average normalized condition number for all
of the elements in the mesh, £4y4.

3. The maximum normalized condition number of
any element in the mesh, K40

4. The average and maximum tetrahedral aspect
ratio given by the sum of the edge lengths
squared divided by the volume of the element,

Av(wg and A, respectively [17]. This metric

is reported to provide a comparison between the

new condition number metric and a metric that

1s familiar to most readers.

Both the condition number and aspect ratio qual-
ity measures are normalized so that a value of one
corresponds to an equilateral tetrahedron, and in-
creasingly larger values correspond to increasingly
distorted tetrahedra. The overall quality of each ini-
tial mesh as measured by 404 and Av(wg 1s quite
good, but each mesh contains a number of sliver ele-
ments.

Mesh improvement results are obtained by using the
CUBIT and Opt-MS [8] software packages developed
at Sandia National Laboratories and Argonne Na-
tional Laboratory, respectively. An interface between



5
BR
AN
K
N

1%%/
i

=0 ‘V%“"‘él%‘;:‘

WA/ 4 = /\

S S VAR
Y. SPRIA
Ao ELERE

A,
X
VAVA
WA
s
AN

X 7 EoRIR, N ==
RAEEE AR S
S5 SR HIEKTN
! . L (S
D S I\
77 \onep
AT
Wbz g

Figure 2: The four tetrahedral mesh test cases for duct, gear, hook and foam geometries

Table 1: Initial quality of the four test cases

Geom. || N | Ng || Kavg | Kmaz || Av(wq | A
Duct 4267 | 39 || 1.305 | 3.790 || 1.441 5.191
Gear 3116 | 25 || 1.423 | 3.448 || 1.622 | 4.782
Hook 4675 | 30 || 1.360 | 5.176 || 1.533 | 6.151
Foam 4847 | 47 || 1.392 | 4.362 || 1.579 | 8.197

these two packages has been developed, and we also
report the results of a combined optimization ap-
proach that uses the two software packages in concert.
We will measure the success of our smoothing tech-
niques by their ability to eliminate sliver elements
and to reduce both the average and the maximum
quality metric values.

5. restricted f;,; smoothing that is applied only if
Kmae > 3.0 in the local submesh; and

6. a combined optimization-based approach that
uses £ smoothing on each local submesh fol-
lowed by the restricted ¢;,; approach.

In each case, we iterate over the interior nodes in the
mesh until the change in all node point positions is

4.1 Mesh Improvement by Condition Num- smaller than some tolerance.

ber Optimization In Table 2 we report the results of each technique

in terms of the number of slivers remaining in the
mesh after smoothing, the values of the quality met-
rics, ¢; =Kavg, Kmaz, Av(wg, Ay e a8 well as the
percentage change from the initial value as computed
by the formula

We now present results for the £2 and ¢;,; smoothers
using the condition number objective functions de-
scribed in Section 3. We attempt to improve each
initial mesh described in Table 1 with six different
smoothing techniques: b Qi final = Qiinitial 100,
Tiinitial

1. Laplacian smoothing; Because of the way the metrics are normalized, a
negative P; value indicates an improvement in mesh
quality whereas a positive P; value indicates a wors-
ening of mesh quality. We also report the number
of nodes moved during the mesh smoothing process,
Cs, which corresponds to the number of calls made
to each smoother. For the combined approach, Cs is
reported as the number of calls to the ¢5 smoother

plus the number of calls to the ¢,s smoother.

2. “smart” Laplacian smoothing, which accepts a
Laplacian step only if the local submesh is im-
proved as measured by the maximum condition
number;

3. £5 smoothing as described in Section 3;

4. ;7 smoothing as described in Section 3;



Table 2: Mesh quality improvement results for the optimization-based smoothing techniques

Technique || Ns (P) | Kavg (P) || Kmaz (P) | Ay g (P) || Ay (P) | Cs
Duct Geometry
Laplacian 78 (+100) - - 1.452 (4.76) || 24.25 (+367) 1303
Smart Lap. 31 (-20.5) | 1.300 (-.38) 3.691 (-2.6) 1.433 (-.56) 4.964 (4.3) 732
£y Opt. 15 (-62) 1.275 (-2.2) 3.690 (-2.6) 1.400 (-2.8) 4578 (-11.8) 2773
Ling Opt. 4 (-90) 1.379 (45.7) 3.045 (-19.7) | 1.571 (+9.0) 3.979 (-23.3) 5498
Restricted £;,, ¢ 4 (-90) 1.313 (+.61) 3.045 (-19.7) | 1.493 (+3.6) 3.979 (-23.3) 32
Combined 4 (-90) 1.280 (-2.2) 3.045 (-19.7) 1.409 (-2.2) 3.980 (-23.3) | 2773+13
Gear Geometry
Laplacian 63 (+152) - - 1.661 (4+2.4) || 84.80 (4+1673) 10561
Smart Lap. 11 (-56) 1.414 (-.63) 3.309 (-4.0) 1.610 (-.74) 4.782 (0) 492
£y Opt. 3 (-88) 1.378 (-3.2) 3.657 (+6.1) 1.560 (-3.8) 5.201 (+8.8) 2141
Ling Opt. 0 (-100) 1.455 (42.2) 2.996 (-13.1) | 1.682 (+3.6) 3.703 (-22.5) 2213
Restricted £;,, ¢ 0 (-100) 1.425 (+.14) 2.996 (-13.1) | 1.627 (+.31) 4.744 (-13.1) 24
Combined 0 (-100) 1.380 (-3.0) 2.996 (-13.1) 1.562 (-3.6) 3.953 (-17.3) 214143
Hook Geometry
Laplacian 64 (+113) | 1.393 (+2.4) || 74.28 (+1335) | 1.569 (+2.3) || 88.19 (+1334) 1443
Smart Lap. 27 (-10) 1.356 (-.25) 5.176 (0) 1.529 (-.26) 6.151 (0) 798
£y Opt. 7(-77) 1.331 (-2.1) 3.747 (-27.6) 1.495 (-2.4) 4.437 (-27.9) 2933
Ling Opt. 0 (-100) 1.429 (+5.1) 2.973 (-48.0) | 1.659 (+8.2) 4.331 (-29.6) 5970
Restricted £;,, ¢ 0 (-100) 1.367 (+.51) 2.990 (-42.2) | 1.549 (+1.0) 4.331 (-29.6) 34
Combined 0 (-100) 1.332 (-2.1) 2.973 (-42.6) 1.497 (-2.3) 4.331 (-29.6) 293345
Foam Geometry
Laplacian 82 (+74) - - 1.622 (42.7) || 83.17 (+914) 916
Smart Lap. 42 (-11) 1.390 (-.14) 4.362 (0) 1.575 (-.25) 8.197 (0) 555
£y Opt. 21 (-55) 1.372 (-1.4) 4.310 (-1.2) 1.552 (-1.7) 6.760 (-17.5) 2637
Ling Opt. 25 (-47) 1.447 (4+4.0) 4.310 (-1.2) 1.672 (+5.8) 6.596 (-19.5) 3376
Restricted £;,, ¢ 25 (-53) 1.398 (+.43) 4.310 (-1.2) 1.590 (4.70) 6.596 (-19.5) 33
Combined 24 (-49) 1.375 (-1.2) 4.310 (-1.2) 1.556 (-1.4) 6.596 (-19.5) | 2637+11

In three of the four cases, Laplacian smoothing results
in a mesh containing inverted elements. The CUBIT
software defines the condition number of inverted el-
ements to be 10°%, which skews the Kavg and Kmax
values for those meshes; we do not report those re-
sults. In all four cases, Laplacian smoothing worsens
mesh quality by every measure reported: the number
of slivers is approximately doubled, A,  increases
by more than two percent, and A, issignificantly
worsened in all four cases. By design, the “smart”
Laplacian smoother improves the mesh in each case,
but the improvement in the average element quality
is less than .5 percent in all cases, and the improve-
ment in the maximum quality values is zero in two of
the four cases.

In contrast, the optimization-based smoothing ap-
proaches preserve mesh validity in all four test cases,
and each approach significantly improves the mesh

by some measure of mesh quality. Both the ¢; and
liny smoothers are able to eliminate a majority of the
slivers. The /;,,; smoother typically does better than
£ with respect to this metric, and in two of the four
cases eliminates all of the slivers from the mesh. As
expected, the ¢; smoother improves the average ele-
ment quality in all four cases by as much 3.2 percent.
Although it is not designed to improve K4y, this
can happen serendipitously as is evidenced in three
of the four cases. In the gear geometry, however,
Kmae Worsens by about 6 percent. The results for the
liny smoother are the inverse of the {5 results. The
average element quality 1s worsened in each case by
as much as 5.7 percent in the duct geometry, but the
Kmaz and A, values are always significantly im-
proved. The restricted f;,; smoother achieves nearly
the same improvement in fmee and A, -~ as the
liny smoother without the corresponding decrease in
average element quality. The combined optimization



approach achieves the best overall improvement in
each of the four cases; all quality metrics are sig-
nificantly improved in all test cases, and its use is
recommended.

In each case the number of calls to the 5 smoother 1s
roughly equal to the number of vertices in the mesh;
that 1s, each local submesh is visited approximately
only once. In constrast the /;,; smoother is called
more times, indicating more grid point movement.
This is supported by the fact that the average element
quality changes approximately twice as much when
the {;,; smoother is called significantly more times
than the £ smoother. The restricted f¢;,; smoother
is called approximately once for each sliver in the
mesh when used alone, and far fewer times when used
in conjunction with the f5 smoother. Currently the
liny and fo smoothers are about ten and one hun-
dred times more expensive than smart Laplacian, re-
spectively, and work to reduce computational cost is
under way.

4.2 Mesh Untangling and Improvement

To demonstrate the effectiveness of optimization-
based untangling, we used a randomized smoothing
scheme on the original meshes given in Table 1 to
create “tangled” meshes with valid connectivity but
several hundred inverted elements. In Table 3, we
give the number of inverted elements, Ny, the number
of sliver elements, Ng, as well as the quality metrics
Kavgs Kmaz, Avy g, and Ay for each of the four
tangled meshes. The results of the untangling proce-
dure described in Section 3 are reported for each ge-
ometry in the rows labeled “Untangle”. In each case
the optimization-based procedure successfully elimi-
nates all of the inverted elements from the mesh, but,
as expected, the resulting mesh quality is quite poor.
We therefore follow the untangling procedure with
the combined optimization approach described in the
previous section. In each case, even though we are
starting from a significantly worse-quality mesh, we
obtain the nearly same final mesh quality as reported
in Table 2.

5 Conclusions

Our results indicate that Laplacian smoothing can
be detrimental to the quality of simplicial meshes on
complex geometries, and we do not recommend its

use. In contrast, the optimization approaches, par-
ticularly the combined ¢; and #;,; smoothing tech-
nique, significantly improved the quality of each of
the test cases. We showed that the behavior of the
more commonly accepted aspect ratio shape measure
was mirrored by the behavior of the condition num-
ber shape measure, and that the condition number
shape measure is theoretically optimal.

Strategically combining different local mesh smooth-
ing strategies is not a new idea; a number of re-
searchers have combined Laplacian smoothing with
their optimization-based approaches to achieve good
quality meshes at a low computational cost [19, 7].
However, this is the first instance we are aware of
in which two optimization strategies have been com-
bined to improve both the average element qual-
ity and the extremal element quality. Although
our results showed that these improvements can be
achieved for a small incremental cost to the f5 strat-
egy, further work is needed to reduce the overall cost
of the approach. Techniques that combine Laplacian
smoothing with the combined technique presented
here are under consideration.
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