
Tetrahedral Element Shape Optimization via the JacobianDeterminant and Condition NumberLori A. FreitagMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439freitag@mcs.anl.govPatrick M. KnuppParallel Computing Sciences DepartmentSandia National LaboratoriesM/S 0441, P.O. Box 5800Albuquerque, NM 87185-0441pknupp@sandia.govAbstract. We present a new shape measure for tetrahedral elements that is optimal in the sense thatit gives the distance of a tetrahedron from the set of inverted elements. This measure is constructedfrom the condition number of the linear transformation between a unit equilateral tetrahedron andany tetrahedron with positive volume. We use this shape measure to formulate two optimizationobjective functions that are di�erentiated by their goal: the �rst seeks to improve the average qualityof the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. Becausethe element condition number is not de�ned for tetrahedra with negative volume, these objectivefunctions can be used only when the initial mesh is valid. Therefore, we formulate a third objectivefunction using the determinant of the element Jacobian that is suitable for mesh untangling. Wereview the optimization techniques used with each objective function and present experimentalresults that demonstrate the e�ectiveness of the mesh improvement and untangling methods. Weshow that a combined optimization approach that uses both condition number objective functionsobtains the best-quality meshes.Keywords. Mesh Improvement, Optimization-based Mesh Smoothing, Mesh Quality, Mesh Untangling1 IntroductionLocal mesh smoothing algorithms are commonly usedfor simplicial mesh improvement. These methods re-locate a set of adjustable vertices, one at a time,to improve mesh quality in a neighborhood of thatvertex. The new grid point position is determinedby considering a local submesh containing the ad-justable, or free vertex, v, and its incident vertices and elements. For example, in Figure 1, we showa two-dimensional local submesh with three possiblelocations for v. The leftmost local submesh showsa valid but poor-quality mesh, the middle submeshshows a higher-quality valid mesh, and the rightmostshows an invalid mesh with inverted elements. Over-all improvement in the mesh is obtained by perform-ing some number of sweeps over the set of adjustablevertices.1
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vFigure 1: A local submesh with three possible locations for v.The most commonly used local mesh smoothing tech-nique is Laplacian smoothing [6, 16] which moves thefree vertex to the geometric center of its incident ver-tices. Laplacian smoothing is computationally inex-pensive but does not guarantee improvement in theelement quality.To address this problem, several optimization-basedapproaches to mesh smoothing have been developedin recent years, for example, [19, 11, 1, 18, 14]. Inthese techniques, the local submesh is evaluated ac-cording to some objective function based on a qual-ity metric, qi, such as element angle or aspect ra-tio. Function and, possibly, gradient information areused to relocate the free vertex in such a way thatthe objective function is optimized. For example, ifthe quality metric under consideration is element an-gle, the leftmost submesh in Figure 1 shows an initialposition for v that results in three poor-quality ele-ments, t1, t2, and t7. The middle submesh in Figure1 shows the position of v that optimizes the elementangle. We note that if the initial mesh contains in-verted elements, objective functions that work wellfor mesh quality improvement may not be appropri-ate for mesh untangling [10].Several optimization objective functions based on ge-ometric criteria have been proposed for a priori im-provement of a simplicial mesh. For example, Bankproposed a ratio of triangle area to edge lengthsquared for two-dimensional meshes [2], Shephardand Georges proposed a similar ratio of volume toface areas for tetrahedral meshes [19], Freitag et al.used angle-based measures for both two- and three-dimensional meshes [9, 11], and Knupp has proposeda number of shape quality measures derived from sim-plicial element Jacobian matrices [14, 15]. Canannet al. proposed a distortion metric for both trianglesand quadrilaterals that could be used with both validand inverted elements [18]. In addition, a posteriori

metrics have been proposed to improve �nite elementmeshes by optimizing solution error indicators [1].In Section 2, we propose a new shape quality metricconstructed from the element condition number forthe a priori improvement of tetrahedral meshes. Weintroduce the Jacobian matrix, Ai, associated witheach tetrahedral vertex and show that its determinantis invariant with respect to the vertex at which it isevaluated. The condition numbers of the Jacobianmatrices can also be made invariant by introducinga weighting that gives the linear transformation fromthe physical tetrahedron to the logical tetrahedron.We show that this weighted condition number is atetrahedral shape measure according to the formalde�nition given in [4] and that it is optimal in thatit gives the distance of a tetrahedron from the set ofinverted elements.In Section 3, we formulate two optimization objec-tive functions using the element condition numberthat are suitable for mesh improvement if the ini-tial mesh is valid. The �rst objective function tar-gets the improvement of average element quality; thesecond targets the improvement of the worst elementquality. If the initial mesh is not valid, this shapemeasure cannot be used for mesh improvement as itis not de�ned for inverted elements. In this case weuse an objective function based on the determinantof the Jacobian that is suitable for untangling theinverted elements. In previous papers, we have inde-pendently proposed optimization techniques for meshuntangling [10], mesh improvement as measured byaverage element quality [14], and mesh improvementas measured by extremal element quality [11], and wereview these optimization techniques in Section 3.2.In Section 4, we present numerical results for each ofthe mesh improvement strategies using the conditionnumber shape measure on four tetrahedral meshes.



We compare each technique to a baseline Laplaciansmoother, and illustrate that in each test case, acombined optimization approach produces the best-quality meshes. We also show that the techniques canachieve high-quality meshes even when starting withan invalidmesh, by combining the mesh improvementstrategies with the mesh untangling approach. Fi-nally, in Section 5, we o�er concluding remarks anddirections for future research.2 Tetrahedral Jacobian Matrices and Condi-tion NumbersIn this section we discuss the Jacobian matrices as-sociated with tetrahedral elements. We show thatthe Jacobian determinants are invariant for each ele-ment and that a new tetrahedral shape measure canbe constructed from the Jacobian matrix conditionnumber. The measure is optimal in the sense that itmeasures the distance of a given tetrahedron to theset of inverted tetrahedra.2.1 Tetrahedral Jacobian MatricesLet T be an arbitrary tetrahedral element consist-ing of four vertices vn, n = 0; 1; 2; 3 with coordinatesxn 2 R3. Let V(T ) denote the volume of the tetrahe-dron. De�ne edge vectors ek;n = xk � xn with k 6= nand k = 0; 1; 2; 3 (note that en;k = �ek;n). Vertex vnhas three attached edge vectors, en+1;n, en+2;n, anden+3;n, where the indices are taken modulo four. De-�ne the Jacobian matrix at node n (denoted by An)to consist of the columns of the triplet of attachededge vectors, namely,An = (�1)n � en+1;n en+2;n en+3;n � :Let �n be the determinant of An.Theorem 1. The determinants �n = �0 for n =1; 2; 3.Proof.Let M be the following constant matrixM = 0@ 1 1 1�1 0 00 �1 0 1A :The determinant of M equals 1. A direct calculationshows that An = A0Mn

for n = 1; 2; 3. Taking the determinant of thisexpression gives �n = �0. xIt is well known that the volume of a tetrahedronis one-sixth of the Jacobian determinant [12], hence�0 = 6V(T ) and V(T ) > 0 if and only if �0 > 0. Anelement is said to be invertible if and only if �0 > 0.Matrix norms are a critical part of the theory to bepresented. Let I be the identity matrix and S be anarbitrary matrix. The Euclidean norm of S is de�nedin terms of the trace:j S j= [ tr(STS) ]1=2:The Euclidean norm is invariant to rotation matrices,that is, j SR j=j RS j=j S j, where R is a rotationmatrix (RTR = I, j det(R) j= 1). If S is invertible,then S�1 exists, and one can de�ne the adjointmatrixof S: adj (S) = � S�1;where � = det(S).One can easily show that the following relationshipshold for the Jacobian matrix:j An j2 = j en+1;n j2 + j en+2;n j2 +j en+3;n j2; andj adj (An) j2 = j en+1;n � en+2;n j2 +j en+2;n � en+3;n j2 +j en+3;n � en+1;n j2 :These provide a geometric interpretation of thenorms. The norm-squared of An is the sum of thelengths-squared of the attached edge vectors and thenorm-squared of the adjoint is the sum of the squaresof the areas of the attached triangular faces.Unlike the determinant, �n, the norms of An andadj (An) are not independent of n because not all ofthe lengths and areas of the tetrahedron a�ect theresult for An. This situation can be remedied, as willbe shown next.De�ne an equilateral tetrahedron Te to havesides of length one and four vertices with thecoordinates (0; 0; 0), (1; 0; 0), (1=2;p3=2; 0), and(1=2;p3=6;p2=p3). This tetrahedron serves as thelogical element. Let Wn be the Jacobian matrix atthe nth vertex of Te. For example,W0 = 0@ 1 1=2 1=20 p3=2 p3=60 0 p2=p3 1A



and w0 = det(W0) = p2=2.Theorem 2.Let T be any tetrahedron, with Jacobian matricesAn. Let Sn be the linear transformation that takesWn to An. Then Sn = A0W�10 , that is, Sn is inde-pendent of n.Proof.By de�nition, SnWn = An. If n = 0, S0 = A0W�10 .Theorem 1 applies to the matrices Wn of Te. ThusWn = W0Mn for n = 1; 2; 3. Since An = A0Mn, wehave the stated result. xIn other words, there exists a unique linear transfor-mation between the logical tetrahedron Te and thephysical tetrahedron T . Because of this result, let usdenote W0 by W and w0 by w.Theorem 3.j AnW�1 j=j A0W�1 j and jWA�1n j=jWA�10 j.Proof.The result for n = 0 is immediate. De�ne the matrixR = WMW�1, where M is de�ned in the proof ofTheorem 1. A direct calculation shows that R is arotation matrix with a positive determinant. There-fore, det(Rn) = 1 and (Rn)T Rn = I for n = 1; 2; 3;that is, Rn is a rotation matrix. Hencej AnW�1 j = j A0MnW�1 j= j A0W�1Rn j= j A0W�1 j :Similarly, the second result can be proved by observ-ing that W A�1n = (AnW�1)�1 = (Rn)�1W A�10and showing that (Rn)�1 is a rotation matrix. xThis theorem shows that the norms j AnW�1 j andjWA�1n j are independent of n.2.2 Tetrahedral Condition NumbersLet T+ be any tetrahedron with positive volume.Then A�1n exists, and one can compute the weightedcondition number of the matrix An�w(An) =j AnW�1 j j (AnW�1)�1 j :Since (AnW�1)�1 = WA�1n , Theorem 3 showsthat �w(An) is independent of n. This isnot true for the unweighted condition number�(An) =j An j j A�1n j. Now let A be any of thefour Jacobian matrices of an invertible tetrahedron.Let �w(A) =j AW�1 j j WA�1 j. Recall that S is

the linear transformation taking Te to T+; hence�w(A) =j S j j S�1 j= �(S). That is, �(S) measuresthe condition number of the linear transformationbetween the logical and physical tetrahedra.Theorem 4.Let S be derived from a tetrahedron with positivevolume. Then 3=�(S) is a tetrahedral shape measure.Proof.We use the formal de�nition given in [4] to prove thisassertion.First, it is clear that j S j is a continuous functionof the coordinates of T+, and likewise so is j S�1 j.Therefore �(S) is a continuous function of the coor-dinates of any tetrahedron with positive volume.Second, the Jacobian matrix is invariant to trans-lations so �(S) is invariant to translations. Let~A = �RA with � > 0 and R be a rotation ma-trix corresponding to a uniform scaling and rotationof the tetrahedron. Let ~S = ~AW�1. Since the Eu-clidean norm is invariant under rotations, it is clearthat �( ~S) = �(S).Third, it is clear that 0 < 3=�(S). Apply the PolarDecomposition Theorem [13] to S. Then there exist arotation matrix R and a symmetric, positive de�nitematrix U such that S = RU . Let �i, i = 1; 2; 3; bethe eigenvalues of U . The eigenvalues are real andpositive. Then �(S) =j U j j U�1 j. One can showthat j U j2= �21 + �22 + �23, so�2 =Xi;j (�i=�j)2:This is a continuous function of three variables andits minimummay be found by computing the solutionto @�2=�i = 0 with i = 1; 2; 3. The solution is �i = �where � is any positive constant. Hence � � 3. Thisshows that 0 < 3=� � 1, as required for a tetrahedralshape measure.Fourth, suppose 3=� = 1. Then the eigenvalues of Umust be constant and U = � I. Then the Jacobianmatrix associated with the tetrahedron must have theformA = �RW , in other words, 3=� attains its max-imum value only if the tetrahedral element is a rota-tion and uniform scaling of the logical tetrahedron.The converse is easy to show.Fifth, the de�nition of a degenerate tetrahedral el-ement given in [4] is somewhat vague. As noted,a tetrahedron with a small volume is not necessar-



ily degenerate. This is reected in the properties ofthe condition number. For example, if A = �W ,where 0 < � << 1, then � = �3 det(W ) is small, but3=�w(�W ) = 1. Thus a tetrahedron with small vol-ume does not necessarily make 3=�(S) large. Refer-ence [4] gives an example of a degenerate tetrahedron,one whose volume goes to zero but at least some ofthe lengths do not. Suppose there exist constants band c such that 0 < b �j S j and 0 < c �j adj (S) j.Then both j A j and j adj(A) j are bounded below bya positive constant. Since�(S) =j S j j adj(S) j =� ;the limit of 3=�(S) as �! 0 is zero. Hence, the con-dition number satis�es the requirement that a shapemeasure go to zero for a degenerate element, at leastfor the given example. The second author reportednumerical experiments in [15] like those described in[17] which show that the common tetrahedral shapedegeneries can be detected by the condtion number.In fact, the condition number provides a rigorous def-inition of a degenerate element. Let 0 < � << 1 begiven. Then T+ is degnerate if 3=�(S) < �. xIt is possible to show that at least some of the otherweighted nondimensional objective functions given in[15] are also tetrahedral shape measures. The distin-guishing feature between the condition number andthese other measures is given in the following well-known theorem [3] adapted to our current setting.Theorem 5.1=�(S) is the greatest lower bound for the distanceof S to the set of singular matrices.Proof.Let S and X be 3 � 3 matrices with S non-singularand S + X singular. Write S + X = S(I + S�1X).If j S�1X j< 1, then I + S�1X is nonsingular. Thiswould mean that S + X is nonsingular, so we musthave j S�1X j� 1. But 1 �j S�1X j�j S�1 j j X j;hence j X j = j S j� 1=�(S). Thereforeminfj X j = j S j: S +X singularg = 1=�(S):xSince S is singular if and only if A is singular, we areguaranteed that minimization of �(S) will increasethe distance between A and the set of singular ma-trices.Results similar to those presented in this section canbe given for triangular elements.

3 Optimization-basedSmoothingTechniquesWe derive two objective functions using the elementcondition number that are useful for optimization-based mesh improvement. We also derive an objec-tive function based on the determinant of the Jaco-bian that is useful for mesh untangling. We thenbriey describe the three algorithms used for opti-mizing the objective functions. In each case we givereferences to previously published work for more de-tailed descriptions.3.1 Optimization Objective FunctionsTo build objective functions for mesh improvementbased on the condition number of the tetrahedron,consider a node in the interior of a valid tetrahe-dral mesh with M attached tetrahedra. Let Ambe the Jacobian matrix corresponding to the mthelement and Sm = AmW�1. Let �m = �(Sm),m = 0; 1; :::;M � 1 be the weighted condition num-ber of the mth attached tetrahedron normalized sothat an equilateral tetrahedra has a � value of one,and K = (�0; �1; :::; �M�1). The vector p-norm of Kcan be used to construct a local objective function tominimize the condition numberj K jp= [M�1Xm=0 �pm]1=p:The choice p = 2 gives the `2 norm of Kj K j2= [M�1Xm=0 �2m]1=2; (1)which can be used to minimize the average conditionnumber, while p!1 gives the `1 normj K j1= maxm f�m; g (2)which can be used to minimize the maximum condi-tion number. For the results presented in Section 4,we reformulate the objective function as the equiva-lent maximization problem as follows:Kmin = minm f��mg: (3)Because the condition number is de�ned only fortetrahedra with positive volume, a di�erent objec-tive function must be used for mesh untangling. Let



�m, m = 0; 1; :::;M � 1 be the Jacobian deter-minant of the mth attached tetrahedron and A =(��0;��1; :::;��M�1). Because �m corresponds tothe volume of tetrahedron m, we can use the follow-ing to create an objective function suitable for meshuntangling: Amax = maxm f��mg:As with the `inf objective function, we can reformu-late this into an objective function for the equivalentmaximization problem using �m rather than ��m:Amin = minm f�mg: (4)This is the form of the objective function used for theresults presented in Section 4.We note that some optimization techniques requirethe gradient of the condition number �(S) with re-spect to the free vertex position x. Let S = AW�1,� = det(S). One can apply the chain rule and theformulas given in [15] to compactly write the gradi-ent: r� = � @�@S W�T uwith uT = [1; 1; 1]. An explicit calculation shows that@�@S = j S j2 S�2 �(S) [ j S j2 I � STS ]� �(S)S�T+ j S�1 j2 S�(S) :3.2 Optimization ProceduresWe now formulate the optimization problem associ-ated with each of the objective functions given above.In each case, the characteristics of the objective func-tion demand di�erent solution techniques, and webriey describe the methods used.Optimization of the `2 objective function. Theformulation of the optimization problem for the `2objective function given in (1) ismin [M�1Xm=0 �m(x)2]1=2: (5)This objective function is smooth with continuousderivatives, and the problem can be solved with var-ious techniques for unconstrained optimization.

For gradient-based optimization of the `2 objectivefunction, one can use the expression given in [15].However, attemps to apply a gradient-based approachto the condition number objective function were un-successful. The di�culty may have been due to thefact that the objective function is not continuous overall of R3, that is, singularities in the objective func-tion occur when the elements have zero-volume. Amore sophisticated approach may overcome the prob-lem.For the time being, we use a robust minimization al-gorithm that requires only objective function values.M search directions are computed from the sum ofen+1;n for each of the attached tetrahedra. The ob-jective function is then evaluated at various distancesalong the scaled search directions, and the node ismoved to the position that provides the greatest de-crease in the value of the objective function. If nodecrease is found, the node is not moved. More pre-cisely, let x be the current node position. Set toler-ance � = 1�4 and stopping criteria � = 1�5, �0 = 1,�m = 1�3, and flag = true.while (ag)ag = falsecompute f(x)� = �0while ( � > �m )� = �=8xnew = x, fnew = 120loop over M attached elements~x = (1� �)x+ (xn+1 + xn+2 + xn+3)=2compute f(~x)if ( f(~x) < fnew ), fnew = f(~x), xnew = ~xend loop over elementsif ( f � fnew > � j f j )d =j x� xnew jx = xnew� = 0if ( d > � ), ag = trueend whileend whileOptimization of the `inf objective function.The optimization problem for the `inf objective func-tion given in (3) is formulated asmax min0�m�M�1��m(x);where each �m is a nonlinear, smooth, and continu-ously di�erentiable function of the free vertex posi-



tion. Let the maximum value of the functions eval-uated at x be called the active value, and the set offunctions that obtain that value, the active set, be de-noted by S(x). Because multiple elements can obtainthe maximumvalue, the composite objective functionhas discontinuous partial derivatives where the activeset changes from one set of functions to another set.We solve this nonsmooth optimization problemusing an analogue of the steepest descent methodfor smooth functions. The search direction, s, ateach step is the steepest descent direction derivedfrom all possible convex linear combinations of thegradients in S(x). The line search subproblem alongs is solved by predicting the points at which theactive set S will change. These points are found bycomputing the intersection of the projection of a cur-rent active function in the search direction with thelinear approximation of each ��m(x) given by the�rst-order Taylor series approximation. The distanceto the nearest intersection point from the currentlocation gives the initial step length, �. The initialstep is accepted if the actual improvement achievedby moving v exceeds 90 percent of the estimated im-provement or the subsequent step results in a smallerfunction improvement. Otherwise, � is halvedrecursively until a step is accepted, or � falls belowsome minimum step length tolerance. More detailon this optimization algorithm can be found in [11, 7].Optimization of the mesh untangling objectivefunction. The formulation of the optimization prob-lem for the mesh untangling objective function givenin (4) is max min0�m�M�1 �m(x); (6)where �m is a linear function of the free vertex posi-tion, x. Thus, the solution of the optimization prob-lem can be formulated as a linear programming prob-lem, the details of which are given in [10].The problem is well posed if (1) the vertices of thesubproblem do not all lie in a lower-dimensional sub-space than the original problem and (2) none of thevertices are co-located at the same point in space.If the problem is well posed, it is solved by usingthe computationally inexpensive and robust simplexmethod. For well posed problems, we proved thatthe level sets of the objective functions are convex inboth two and three dimensions and, hence, the localsubproblem is guaranteed to converge.We note that optimizing �m results in poor-quality

meshes because the technique has no motivation tocreate good-quality elements. In fact, this techniquecan distort small equilateral elements in an e�ort toincrease their volume. In practice, meshes untangledby this procedure often contain elements with anglesas small as 10�3 degrees, and this technique must befollowed by one or more of the mesh improvementtechniques discussed previously.4 Numerical ExperimentsWe now demonstrate the e�ectiveness of each ofthe optimization techniques in improving tetrahe-dral meshes compared with a baseline Laplaciansmoother. We use four tetrahedral meshes generatedby the CUBIT package [5] for duct, gear, hook, andfoam geometries. These meshes are shown in Figure2. In Table 1, we give the number of elements in eachmesh, N , and the initial mesh quality as measuredby the following metrics:1. The number of slivers in the mesh, NS , namelythose with a normalized condition numbergreater than 3.0.2. The average normalized condition number for allof the elements in the mesh, �avg.3. The maximum normalized condition number ofany element in the mesh, �max.4. The average and maximum tetrahedral aspectratio given by the sum of the edge lengthssquared divided by the volume of the element,Aavg and Amax, respectively [17]. This metricis reported to provide a comparison between thenew condition number metric and a metric thatis familiar to most readers.Both the condition number and aspect ratio qual-ity measures are normalized so that a value of onecorresponds to an equilateral tetrahedron, and in-creasingly larger values correspond to increasinglydistorted tetrahedra. The overall quality of each ini-tial mesh as measured by �avg and Aavg is quitegood, but each mesh contains a number of sliver ele-ments.Mesh improvement results are obtained by using theCUBIT and Opt-MS [8] software packages developedat Sandia National Laboratories and Argonne Na-tional Laboratory, respectively. An interface between
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XFigure 2: The four tetrahedral mesh test cases for duct, gear, hook and foam geometriesTable 1: Initial quality of the four test casesGeom. N NS �avg �max Aavg AmaxDuct 4267 39 1.305 3.790 1.441 5.191Gear 3116 25 1.423 3.448 1.622 4.782Hook 4675 30 1.360 5.176 1.533 6.151Foam 4847 47 1.392 4.362 1.579 8.197these two packages has been developed, and we alsoreport the results of a combined optimization ap-proach that uses the two software packages in concert.We will measure the success of our smoothing tech-niques by their ability to eliminate sliver elementsand to reduce both the average and the maximumquality metric values.4.1 Mesh Improvement by Condition Num-ber OptimizationWe now present results for the `2 and `inf smoothersusing the condition number objective functions de-scribed in Section 3. We attempt to improve eachinitial mesh described in Table 1 with six di�erentsmoothing techniques:1. Laplacian smoothing;2. \smart" Laplacian smoothing, which accepts aLaplacian step only if the local submesh is im-proved as measured by the maximum conditionnumber;3. `2 smoothing as described in Section 3;4. `inf smoothing as described in Section 3;

5. restricted `inf smoothing that is applied only if�max > 3:0 in the local submesh; and6. a combined optimization-based approach thatuses `2 smoothing on each local submesh fol-lowed by the restricted `inf approach.In each case, we iterate over the interior nodes in themesh until the change in all node point positions issmaller than some tolerance.In Table 2 we report the results of each techniquein terms of the number of slivers remaining in themesh after smoothing, the values of the quality met-rics, qi =�avg, �max, Aavg, Amax, as well as thepercentage change from the initial value as computedby the formulaPi = qifinal � qiinitialqiinitial � 100:Because of the way the metrics are normalized, anegative Pi value indicates an improvement in meshquality whereas a positive Pi value indicates a wors-ening of mesh quality. We also report the numberof nodes moved during the mesh smoothing process,CS, which corresponds to the number of calls madeto each smoother. For the combined approach, CS isreported as the number of calls to the `2 smootherplus the number of calls to the `inf smoother.



Table 2: Mesh quality improvement results for the optimization-based smoothing techniquesTechnique NS (P) �avg (P) �max (P) Aavg (P) Amax (P) CSDuct GeometryLaplacian 78 (+100) { { 1.452 (+.76) 24.25 (+367) 1303Smart Lap. 31 (-20.5) 1.300 (-.38) 3.691 (-2.6) 1.433 (-.56) 4.964 (4.3) 732`2 Opt. 15 (-62) 1.275 (-2.2) 3.690 (-2.6) 1.400 (-2.8) 4.578 (-11.8) 2773`inf Opt. 4 (-90) 1.379 (+5.7) 3.045 (-19.7) 1.571 (+9.0) 3.979 (-23.3) 5498Restricted `inf 4 (-90) 1.313 (+.61) 3.045 (-19.7) 1.493 (+3.6) 3.979 (-23.3) 32Combined 4 (-90) 1.280 (-2.2) 3.045 (-19.7) 1.409 (-2.2) 3.980 (-23.3) 2773+13Gear GeometryLaplacian 63 (+152) { { 1.661 (+2.4) 84.80 (+1673) 1051Smart Lap. 11 (-56) 1.414 (-.63) 3.309 (-4.0) 1.610 (-.74) 4.782 (0) 492`2 Opt. 3 (-88) 1.378 (-3.2) 3.657 (+6.1) 1.560 (-3.8) 5.201 (+8.8) 2141`inf Opt. 0 (-100) 1.455 (+2.2) 2.996 (-13.1) 1.682 (+3.6) 3.703 (-22.5) 2213Restricted `inf 0 (-100) 1.425 (+.14) 2.996 (-13.1) 1.627 (+.31) 4.744 (-13.1) 24Combined 0 (-100) 1.380 (-3.0) 2.996 (-13.1) 1.562 (-3.6) 3.953 (-17.3) 2141+3Hook GeometryLaplacian 64 (+113) 1.393 (+2.4) 74.28 (+1335) 1.569 (+2.3) 88.19 (+1334) 1443Smart Lap. 27 (-10) 1.356 (-.25) 5.176 (0) 1.529 (-.26) 6.151 (0) 798`2 Opt. 7 (-77) 1.331 (-2.1) 3.747 (-27.6) 1.495 (-2.4) 4.437 (-27.9) 2933`inf Opt. 0 (-100) 1.429 (+5.1) 2.973 (-48.0) 1.659 (+8.2) 4.331 (-29.6) 5970Restricted `inf 0 (-100) 1.367 (+.51) 2.990 (-42.2) 1.549 (+1.0) 4.331 (-29.6) 34Combined 0 (-100) 1.332 (-2.1) 2.973 (-42.6) 1.497 (-2.3) 4.331 (-29.6) 2933+5Foam GeometryLaplacian 82 (+74) { { 1.622 (+2.7) 83.17 (+914) 916Smart Lap. 42 (-11) 1.390 (-.14) 4.362 (0) 1.575 (-.25) 8.197 (0) 555`2 Opt. 21 (-55) 1.372 (-1.4) 4.310 (-1.2) 1.552 (-1.7) 6.760 (-17.5) 2637`inf Opt. 25 (-47) 1.447 (+4.0) 4.310 (-1.2) 1.672 (+5.8) 6.596 (-19.5) 3376Restricted `inf 25 (-53) 1.398 (+.43) 4.310 (-1.2) 1.590 (+.70) 6.596 (-19.5) 33Combined 24 (-49) 1.375 (-1.2) 4.310 (-1.2) 1.556 (-1.4) 6.596 (-19.5) 2637+11In three of the four cases, Laplacian smoothing resultsin a mesh containing inverted elements. The CUBITsoftware de�nes the condition number of inverted el-ements to be 106, which skews the �avg and �maxvalues for those meshes; we do not report those re-sults. In all four cases, Laplacian smoothing worsensmesh quality by every measure reported: the numberof slivers is approximately doubled, Aavg increasesby more than two percent, and Amax is signi�cantlyworsened in all four cases. By design, the \smart"Laplacian smoother improves the mesh in each case,but the improvement in the average element qualityis less than .5 percent in all cases, and the improve-ment in the maximum quality values is zero in two ofthe four cases.In contrast, the optimization-based smoothing ap-proaches preserve mesh validity in all four test cases,and each approach signi�cantly improves the mesh
by some measure of mesh quality. Both the `2 and`inf smoothers are able to eliminate a majority of theslivers. The `inf smoother typically does better than`2 with respect to this metric, and in two of the fourcases eliminates all of the slivers from the mesh. Asexpected, the `2 smoother improves the average ele-ment quality in all four cases by as much 3.2 percent.Although it is not designed to improve �max, thiscan happen serendipitously as is evidenced in threeof the four cases. In the gear geometry, however,�max worsens by about 6 percent. The results for the`inf smoother are the inverse of the `2 results. Theaverage element quality is worsened in each case byas much as 5.7 percent in the duct geometry, but the�max and Amax values are always signi�cantly im-proved. The restricted `inf smoother achieves nearlythe same improvement in �max and Amax as the`inf smoother without the corresponding decrease inaverage element quality. The combined optimization



approach achieves the best overall improvement ineach of the four cases; all quality metrics are sig-ni�cantly improved in all test cases, and its use isrecommended.In each case the number of calls to the `2 smoother isroughly equal to the number of vertices in the mesh;that is, each local submesh is visited approximatelyonly once. In constrast the `inf smoother is calledmore times, indicating more grid point movement.This is supported by the fact that the average elementquality changes approximately twice as much whenthe `inf smoother is called signi�cantly more timesthan the `2 smoother. The restricted `inf smootheris called approximately once for each sliver in themesh when used alone, and far fewer times when usedin conjunction with the `2 smoother. Currently the`inf and `2 smoothers are about ten and one hun-dred times more expensive than smart Laplacian, re-spectively, and work to reduce computational cost isunder way.4.2 Mesh Untangling and ImprovementTo demonstrate the e�ectiveness of optimization-based untangling, we used a randomized smoothingscheme on the original meshes given in Table 1 tocreate \tangled" meshes with valid connectivity butseveral hundred inverted elements. In Table 3, wegive the number of inverted elements, NI , the numberof sliver elements, NS , as well as the quality metrics�avg, �max, Aavg, and Amax for each of the fourtangled meshes. The results of the untangling proce-dure described in Section 3 are reported for each ge-ometry in the rows labeled \Untangle". In each casethe optimization-based procedure successfully elimi-nates all of the inverted elements from the mesh, but,as expected, the resulting mesh quality is quite poor.We therefore follow the untangling procedure withthe combined optimization approach described in theprevious section. In each case, even though we arestarting from a signi�cantly worse-quality mesh, weobtain the nearly same �nal mesh quality as reportedin Table 2.5 ConclusionsOur results indicate that Laplacian smoothing canbe detrimental to the quality of simplicial meshes oncomplex geometries, and we do not recommend its

use. In contrast, the optimization approaches, par-ticularly the combined `2 and `inf smoothing tech-nique, signi�cantly improved the quality of each ofthe test cases. We showed that the behavior of themore commonly accepted aspect ratio shape measurewas mirrored by the behavior of the condition num-ber shape measure, and that the condition numbershape measure is theoretically optimal.Strategically combining di�erent local mesh smooth-ing strategies is not a new idea; a number of re-searchers have combined Laplacian smoothing withtheir optimization-based approaches to achieve goodquality meshes at a low computational cost [19, 7].However, this is the �rst instance we are aware ofin which two optimization strategies have been com-bined to improve both the average element qual-ity and the extremal element quality. Althoughour results showed that these improvements can beachieved for a small incremental cost to the `2 strat-egy, further work is needed to reduce the overall costof the approach. Techniques that combine Laplaciansmoothing with the combined technique presentedhere are under consideration.AcknowledgmentsThe work of the �rst author was supported by theMathematical, Information, and Computational Sci-ences Division subprogram of the O�ce of AdvancedScienti�c Computing Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38. The workof the second author was supported by the De-partment of Energy's Mathematics, Information andComputational Sciences Program (SC-31) and wasperformed at Sandia National Laboratories. San-dia is a multiprogram laboratory operated by SandiaCorporation, a Lockheed Martin Company, for theUnited States Department of Energy under ContractDE-ACO4-94AL85000.References[1] R. E. Bank and R. K. Smith. Mesh smoothingusing a posteriori error estimates. SIAM Jour-nal on Numerical Analysis, 34(3):979{997, June1997.[2] Randy Bank. PLTMG: A Software Package forSolving Ellipitc Parital Di�erential Equations,
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