
Hairpin Vortex Formation, a Case Study for Unsteady VisualizationH. M. Tufo,1 P. F. Fischer,2 M. E. Papka,2, M. Szymanski2July 28, 1999AbstractTo better understand the vortex dynamics of coherent structures in turbulent and transitional bound-ary layers, we consider direct numerical simulation of the interaction between a at-plate-boundary-layerow and an isolated hemispherical roughness element. Of principal interest is the evolution of hairpinvortices that form an interlacing pattern in the wake of the hemisphere, lift away from the wall, and arestretched by the shearing action of the boundary layer. Using animations of unsteady three-dimensionalrepresentations of this ow, produced by the vtk toolkit and enhanced to operate in a CAVE virtualenvironment, we identify and study several key features in the evolution of this complex vortex topologynot previously observed in other visualization formats.1 IntroductionFluid ow is an inherently visual phenomenon. In our daily experience it holds a special visual fascination,to the point where the term uid itself has become a descriptor of motion and shapes. Early quantitativeexperiments in uid mechanics were largely based on or inspired by qualitative visualization. For instance,Osborne Reynolds's famous demonstration of the transition of ow in a pipe from a laminar to a turbulentstate was based on the observation that a thin trace of dye introduced into the ow would suddenly expandinto a chaotic cloud when the ow speed was increased.Ironically, this branch of science, so amenable to visual observation and so pervasive in our daily lives,has proven quite di�cult to quantify in detail. Advanced experimental methods, such as particle imagevelocimetry, currently allow temporal quanti�cation of unsteady velocity �elds in only two-dimensionalslices. Three-dimensional histories of entire ow �elds are still beyond the reach of experimental methods.Numerical methods for the solution of the governing Navier-Stokes equations have been under developmentfor almost a century, with adequate computing power for full, unsteady three-dimensional ows becomingavailable only in the past two decades. While such simulations have permitted detailed pointwise inter-rogation of a ow �eld, the amount of data generated by unsteady ows has made it di�cult to visualizethe dynamic evolution of ow structures. However, the advent of powerful three-dimensional graphics sys-tems with closely coupled compute engines now allows interactive visualization of numerically generated1Center on Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637.2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.1
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 ZFigure 1: Computational domain showing inlet velocity pro�le, at plate, hemisphere, and isolated hairpinvortex in hemisphere wake. For clarity, the vortex has been reected about the symmetry plane.unsteady three-dimensional ow �elds in an immersive environment that provides visual cues similar tothose that led to Osborne Reynolds's insight over a century ago.In this paper, we present ow visualization results of numerically generated hairpin vortex formationand evolution. At moderate ow speeds, hairpin vortices provide an example of an observable, organizedtransition process from steady, two-dimensional laminar ows to unsteady, three-dimensional turbulentows. Consequently, hairpin vortices are of interest in the study of transitional and turbulent boundarylayers, where they have been frequently observed experimentally. In this study, the hairpin vortices aregenerated in the wake of a hemispherical roughness element embedded in a at-plate boundary layer,following closely the experiments of Acalar and Smith [1] and, to a lesser extent, those of Klebano� etal. [12]. Numerical studies of hairpin vortices have also been undertaken by Singer under slightly di�erentow conditions [2, 16, 17].The basic ow con�guration is shown in Fig. 1. A time-independent velocity pro�le is prescribed acrossthe upstream entrance of the domain. Based on experimental observations [1], the ow is symmetric aboutthe plane y=0, so the ow is computed only in the half-domain shown. At su�ciently high nondimensionalow speeds, or Reynolds numbers, the steady boundary layer region near the plate is destabilized by thehemisphere, resulting in periodic shedding of hairpin vortices in the wake.The simulation results are analyzed by using X-window-based software developed speci�cally for thenumerical methods employed and using interactive software built on top of the \Visualization Toolkit" (vtk)to drive stereo visualization environments such as the CAVETM (Cave Automatic Virtual Environment)and ImmersaDeskTM . The resulting immersive visualization proceeds at a su�ciently high frame rate thatthe hairpin evolution can be readily integrated by eye, thereby allowing one a comprehensive understandingof the dynamics of this complex ow.The remainder of this paper is organized as follows. Section 2 provides a brief overview of thenumerical method and speci�c ow conditions considered. Section 3 describes the immersive visualizationenvironment and software tools used. Section 4 presents a mixture of quantitative and qualitative visual2



results used to analyze this ow. We close in Section 5 with a summary of our results.2 Numerical Method and Flow SimulationThe hairpin vortex simulation is based on numerical integration of the unsteady incompressible Navier-Stokes equations, @u@t + u � ru = �rP + 1Rer2u�r � u = 0;coupled with appropriate boundary conditions on the velocity, u. Semi-implicit time stepping is employedin which the nonlinear convective terms are treated explicitly, while the viscous and pressure terms aretreated implicitly. Spatial discretization is based on the spectral element method, which is a high-orderweighted residual technique similar to the �nite element method. Within each element, basis functionsare based on tensor-products of Nth-order Lagrange polynomials [5, 6, 13]. The nodes of the Lagrangepolynomials are taken to be the Gauss-Lobatto-Legendre (GLL) quadrature points, so that high-order GLLquadrature can be substituted for the integrals required for the residual evaluation. This strategy leadsto signi�cant sparsity in the resultant matrix operators and, in particular, yields a diagonal mass matrix.For problems having smooth solutions, such as the incompressible Navier-Stokes equations, convergence isexponential in N , so that little numerical dissipation or dispersion results. This is ideal for transitionalows of the type considered here, which can be very sensitive to such nonphysical e�ects.The spatial discretization, coupled with the semi-implicit time stepping, leads to a number of symmet-ric positive-de�nite linear systems to be solved at each time step. There is one Helmholtz problem for eachvelocity component, and a Poisson-like problem for the pressure. These are solved with preconditionedconjugate gradient iteration, using Jacobi preconditioning for the diagonally dominant Helmholtz prob-lems, and an overlapping Schwarz additive procedure developed by Dryja and Widlund for the pressureproblem [4, 5, 6]. Work is further reduced by using a high-quality initial approximation to the pressure ateach step. This approximation is generated at low cost as a projection onto a few (� 1 to 40) previoussolutions, and typically reduces the iteration count by a factor of two to four, depending on the problemand iteration tolerances. All of these steps are readily parallelized, save for a \coarse-grid" solve associatedwith the additive Schwarz procedure. This can become problematic when the number of processors growsmuch beyond 100, as it involves all-to-all communication with little work per processor. To address this,we have developed a fast parallel coarse-grid solver that involves minimal communication and readily scalesto at least 10,000 processors [19].We considered several meshes and computational domains to test grid and domain independence, withour two primary production meshes having K = 1021 and K = 1535 spectral elements. All of the mesheswe tested had a unit-radius hemisphere located with its center at (x; y; z) = (0; 0; :1). A short cylinderof height dz = :1 connects the hemisphere to the at plate, which is located at z = 0. The cylinder wasadded so that a thin layer of elements could be placed near the plate to ensure that the boundary layerwas adequately resolved. The resultant 10% increase in the height of the hemisphere closely corresponds3
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(a) (b)Figure 2: (a) Transition from Re =675 to 700. (b) Strouhal number versus Reynolds number for theK = 1021 and K = 1535 meshes.to height increases resulting from glue used to fasten the hemispheres in the experiments of Klebano�et al. [12]. We consider a Reynolds number range of ReR := UR=� = 450{700, where U is the free-stream velocity, R is the hemisphere radius, and � is the kinematic viscosity of the uid. Flow is in thepositive x direction with incoming ow u = (uB(y); 0; 0), where uB(y) represents a Blasius pro�le with�99 = 1:2R. The inow boundary is located at x = �8:4 for the K = 1021 mesh and at x = �10:0 forthe K = 1535 mesh. To reduce the computational burden, we impose reection symmetry about the y-plane. Homogeneous Neumann boundary conditions are prescribed for the velocity at the outlet, located atx = 30. The upper boundary and the right boundary are also taken to be symmetry planes, correspondingto stress-free boundary conditions. These are located at z = �6:5 and y = �6:4 for K = 1021 andz = �8:0 and y = �8:4 for K = 1535. We note that, in addition to having di�erent size domains andnumber of elements, the two meshes have di�erent transitions between spherical and rectangular elementsand between the inow boundary and hemisphere, with the K = 1535 mesh having a smoother transitionfor both.To transition between Reynolds numbers, we employ a sine ramp, Re(t) = Rei + (Ref �Rei) sin(gt),where Rei is the initial Reynolds number, Ref is the �nal Reynolds number, and g is the growth rate,typically set such that duration of the ramp is 40{80 convective time units. Figure 2a shows the pressuretrace at x = (2:4; 0:0; 1:2) for an 80 time unit transition between Reynolds number 675 and 700. Oncethe transition has been made, the ow is driven until it settles into a steady periodic state. Of particularinterest in these simulations is determination of the Strouhal number, S = fk=Uk, where f is the sheddingfrequency, k = 1:1 is the total height of the roughness element, and Uk is the tip velocity without thehemisphere present. Uk is calculated from a two-dimensional channel ow simulation on a domain identicalin dimension to the hemisphere symmetry plane (centerplane) but without the hemisphere. The frequency,4



f , is determined from history plots similar to Fig. 2a. Strouhal numbers for the K = 1021 and 1535 meshesare shown in Fig. 2b. For this study 3 � N � 19, with the maximum N considered for Reynolds number450 being 9 and for Reynolds number 700 being 19. We note that the maximum discrepancy betweenthe two meshes is less than 2% over the range of Reynolds numbers considered here and that spatialand temporal convergence checks were performed at several Reynolds numbers to verify convergence. Wefurther note that our Strouhal numbers compare favorably to those in [1] and [12].3 Scienti�c VisualizationTwo modes of visualization are employed. The �rst is a menu-driven X-window-based postprocessordeveloped speci�cally for the spectral element method. It exploits the full accuracy of the high-orderLagrangian bases when interpolating o�-grid point values or computing derived quantities such as velocitygradients or vorticity. In addition, the postprocessor can map spectral element data onto unstructuredhexahedral meshes of arbitrary density. This data is then passed into a second visualization packagedesigned for stereo visualization of general mesh data. The primary components of this second modeare the vtk library, which is an open-source software system for visualization that provides a high-levelabstraction for constructing scienti�c visualization applications [15], and the CAVE library, which enablesprojection and exploration of immersive stereo images [3].3.1 Vortex Identi�cationVortex identi�cation is based on the �2 method of Jeong and Hussain [9]. Identi�cation of a vortex inviscous ows is challenging because the classic rules governing vortex dynamics generally apply only inthe inviscid limit. In boundary layer ows, viscosity is non-negligible, and standard approaches suchas integrating vortex lines or using pressure minima or vorticity maxima can lead to improper vortexidenti�cation. Jeong and Hussain have established a robust criterion for the identi�cation of vortex (orcoherent) structures in viscous ows based on the eigenvalues of the symmetric 3� 3 tensorAij := 3Xk=1 �
ik
kj + SikSkj� ; (1)where 
ij := 12  @ui@xj + @uj@xi! Sij := 12  @ui@xj � @uj@xi! (2)represent the symmetric and antisymmetric components of the velocity gradient tensor, ru. Given thethree (real) eigenvalues of A at each grid point, a vortex core is identi�ed as any contiguous region havingtwo negative eigenvalues. If the eigenvalues are sorted such that �1 � �2 � �3, then any region for which�2 < 0 corresponds to a vortex core. One advantage of this approach is that vortices can be identi�ed asisosurfaces of a well-de�ned scalar �eld. Moreover, the criterion �2(x) < 0 is scale invariant, so there isin principle no ambiguity in selecting which isosurface value to render. In practice, one usually biases theisosurface to a value that is below zero by a small fraction of the full dynamic range in order to avoid noisein regions where the velocity is close to zero. 5



3.2 Isosurface Extraction and Immersive VisualizationTo develop an unsteady immersive rendering of the vortex evolution, we begin with a set of full-volumedumps of the primitive variables (u; v; w; p) at a selected number of time steps (typ. 100) covering oneperiod of the vortex shedding cycle. For each time step, we compute �2 at each grid point with theX-based postprocessor. The resultant scalar �eld is then interpolated onto an unstructured mesh alongwith the pressure. In both phases the high-order accuracy of the spectral element bases is essential to theconstruction of high-quality data sets and their subsequent projection onto meshes of arbitrary size. Thisdata is then passed to a surface stripper (built on top of vtk) to extract isosurfaces at a given threshold �and produce a set of triangles corresponding to �2 = � . Typically, �2 � � � �1, out of a range of [�30; 40]for �2.Generation of isosurfaces is a complex task. Because the extraction of a single isosurface from thevolume data requires between 8{15 minutes per animation frame, o�ine processing of the surfaces is nec-essary. In addition to isosurface extraction, smoothing and triangulation algorithms are applied to thevolume data at a negligible increase in run time. Finally, the surface �les are saved to disk in the vtk poly-data format. This format contains all the information necessary to construct the geometric representationof the surface with the corresponding pressure at each vertex point.The surface �les are then loaded into another vtk-based application that is built on top of the CAVElibrary (the vtk classes for renderer and renderwindow have been extended to operate within the CAVE[7]) and is designed to run on all members of the CAVE family of display technology, including theImmersaDesk. The CAVE is a 10'x10'x10' cube of rear-projected screens, while the ImmersaDesk issingle 5' rear-projected screen. Both are capable of displaying immersive stereo images. The immersiveapplication makes full use of the CAVE library's rich set of tools to enable users to explore and interrogateindividual surface �les, as well as conduct the exploration over a series of surface �les (typically a timeseries with �xed threshold or vice versa). For the Re = 700 surface �les, a rate of 15 frames per second wasachieved. This was more than su�cient to produce a realistic sense of motion to the user. Control overviewing location, frame rate, and playback are provided via combination of the navigational wand and avirtual menu. In addition, users can de�ne a color table to map other scalars onto the �2 isosurfaces. Atpresent, only the pressure is mapped.Within the immersive environment it is also possible to generate high-quality renderings of the surfacedata. The user can navigate to points of interest within the data set and take virtual snapshots or virtualmovies of the experience, capturing the needed information for high-resolution rendering. This is doneeither by immediately generating a RenderMan RIB �le using a class provided within vtk for a snapshot,or by capturing the camera position and orientation information in virtual movie mode to allow o�-linerendering. (Virtual movie mode requires an additional o�ine step for generating the RIB �les, because thesize of the �les would interfere with the required real-time response of the virtual environment.) Once theRIB �les are created, they are processed by using Blue Moon Rendering Tools (BMRT), a freely availablecollection of rendering tools that adhere to the RenderMan interface standard [8]. BMRT enables usersto capture points of interest from within the data set in a high-quality format suitable for publication orvideotape. 6



(a)(b)(c)(d)(e)Figure 3: Symmetry plane data for Re = 700, K = 1021, N = 11 (a-b), and N = 13 (c-e): (a) meanvelocity pro�les, < u >; (b) rms velocity < u02 > 12 ; (c) pressure contours ; (d) spanwise vorticity, !y ; (e)contours of �2 < 0.4 ResultsTo put the dynamic results into perspective, we begin with a series of two-dimensional renderings in thesymmetry plane, y = 0. Figure 3 shows the results of a simulation at Re = 700 using 1021 elements of orderN = 11. Time-averaged velocity pro�les are shown in (a), and corresponding rms values, urms :=< u02 > 12 ,are shown in (b). Here u0 := u� < u > is the uctuating component of u, and < : > denotes a single-periodtime average. The pro�les have maximum values of 1.075 and 0.282 for u and urms, respectively. Wesee in (a) the Blasius pro�le at the inlet, the separated and recirculating wake region at x = 2, followedby a gradual recovery until the outlet, where the mean velocity pro�le is fuller than the inow pro�le.7
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�(d)Figure 4: Key vortex structures at Re = 700: (a) standing horseshoe vortex (b) interlaced tails (c) hairpinhead (d) bridge. Contours mapped onto �2 = �1 surface represent pressure (light=high, dark=low).Ceiling lighting has been added to enhance depth perspective and is responsible for the shadows cast onthe plate.From the rms pro�les (b), it is clear that the ow upstream of the hemisphere is essentially steady. Theimmediate wake region at x = 2 exhibits remarkably little unsteadiness. The passage of the hairpin vorticesis evidenced by the strong rms uctuations in the wake region, which also reveal the lifting of the vorticesaway from the plate. Further downstream, there is a signi�cant growth in activity near the wall, as can beseen by the peak in the rms pro�le at the outlet.To indicate the structure of individual hairpin vortices at a �xed instance, we present contours ofseveral quantities in Fig. 3 (c{e). Pressure contours are shown in (c). The vortex cores are readilyidenti�ed by the low-pressure zones, shown in bold. Contours of spanwise vorticity (d) also show thehairpin vortices and, in particular, the movement of the heads and tips away from the plate. Finally, (e)shows contours of �2 2 [�30; 0], revealing the intersection of the vortex tips with the symmetry plane andthe presence of a steady horseshoe vortex at the base of the hemisphere near x = �1:While the views in Fig. 3 give a fair amount of information about the hairpin vortex evolution, theyfail to reveal any three-dimensional details. Figures 4 and 5 show �2 = �1 isosurfaces for Re = 700.We observe several vortex features, some of which we had not identi�ed prior to viewing the unsteadyanimation in an immersive environment. Figure 4 shows the classic horseshoe vortex (a) upstream of thehemisphere, which is also commonly found upstream of end-mounted cylinders (as evidenced by snow driftpatterns at the bases of trees and telephone poles). Moving downstream, we see the interlacing of thehairpin vortex tails (b), as observed by Acalar and Smith [1], the hairpin head (c), and a vortex \bridge"(d), which is a common form of vortex reconnection in viscous ows [10, 11, 14, 20]. Acalar and Smith [1]note that the bridge-head structure eventually separates from the hairpin and lifts o� as a separate vortexring. While we observe this phenomenon in our simulations, the ring is so quickly dissipated by viscosityat this Reynolds number that the lifto� is not pronounced.Because the bridge is quite thin and rather short lived, signi�cant resolution in space and time is8



spikesBBBBBBBBBBBM tailsAAAAAAAKFigure 5: View showing distinction between \spikes" and tails of preceding vortex.required to see it. We carefully chose the frame in order to present the bridge here. However, initialdetection of the bridge and other similar unanticipated structures requires observation of a sequence ofimages from many viewing angles. Another structure detected as a result of such interactive viewing isshown in Fig. 5. The \spikes" seen jutting from the interior of the hairpin loop are readily visible in mostof the higher Reynolds number computations we've done to date. They appear at just about the timethat the tails of the preceding vortex disappear as a result of stretching-induced dissipation. Initially, webelieved the spikes were remnants of the dissipating tails. However, careful observation of the animationrevealed that the spikes and tails briey appear at the same time, indicating that they are not part ofthe same vortex structure. Downstream views of the head-spike structure seem to indicate that the spikeformation is induced by the close proximity of the tails to the head, as seen in Fig. 4b.5 Discussion and ConclusionWe have examined the structure of hairpin vortices in the near wake region of a hemispherical roughnesselement at ReR = 700 using spectral element simulations coupled with interactive immersive visualization.This is part of a wider investigation, with Reynolds numbers ranging from 450 (just above transition) to1200, into the role hairpin vortices play in the transition between laminar and turbulent ow. We haveshown excellent agreement between simulation and experimental data with regard to shedding frequencyand clear identi�cation of the principal features of the primary hairpin vortex and its evolution. We foundthat the combination of immersion and motion played a key role in the assimilation, integration, andunderstanding of this data set and believe that immersive visualization tools, such as those developed here,will be essential tools for future investigation of ows where coherent structures play a key role in owtransition and development.Further investigation is required into the nature of the secondary vortices that develop immediately9



downstream of the recirculation zone. Acalar and Smith observed two types of secondary vortices. The�rst formed in the wake of the hairpin and was entirely contained between the legs. It is an open questionas to whether the bridge we observed corresponds to this structure and whether this is an example ofclassic vortex reconnection via bridging [11]. The second is a pair of vortices that form several diame-ters downstream of the hemisphere on either side of the primary hairpin vortex. We do indeed see theformation of such structures, which become more pronounced in recent calculations at higher Reynoldsnumbers. Singer and Joslin have shown that a cascade of such hairpins ultimately evolves into a turbulentspot [17]. Their calculations were in a plane channel, which allowed them to track the (isolated) vortexas it moved downstream, resulting in considerable computational savings. A similar approach could beused here, exploiting the temporal periodicity of the solution to provide a well-de�ned inow boundarycondition. However, it is clear that straightforward calculation of spatially developing ows from transitionto turbulence in inhomogeneous geometries will require a signi�cant increase in resolution to capture therange of scales present in both the solution and geometry.Exploration of extremely large data sets is di�cult even with today's state-of-the-art visualizationtools. For example, to store the primitive variables (u; v; w; p) for a 150-frame \movie" requires 5{20 GB.Since we are interested in determining how vortex topology varies with Reynolds number, we anticipatehaving tens to hundreds of such \movies" in our database. There is a consequent need for advancedtechnology to archive, manipulate, and explore data sets in excess of a terabyte.We are currently working on methods that facilitate such investigation. One promising path is to usesubsampled or lower-resolution data sets for preliminary investigation and to record areas or paths wherehigh-resolution images are desired. These images can then be computed o�ine at full data set resolutions.We are developing this and other visualization software technology, such as automatic feature detectionand tracking, to assist in the interrogation of large data sets such as considered here.AcknowledgmentsThis work was supported by the Mathematical, Information, and Computational Sciences Division sub-program of the O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy, underContract W-31-109-Eng-38, and by the Department of Energy under Grant No. B341495 to the Center onAstrophysical Thermonuclear Flashes at University of Chicago.References[1] M. S. Acalar and C. R. Smith, \A study of hairpin vortices in a laminar boundary layer: Part 1,hairpin vortices generated by a hemisphere protuberance", J. Fluid Mech., 175, pp. 1{41 (1987).[2] D. C. Banks, T. Crockett, R. D. Joslin, B. A. Singer, \Parallel Rendering of Complex Vortical Flows",http://www.icase.edu/docs/hilites/banks/parallelRend.html.10
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