
Chapter 1IVY: A PREPROCESSOR AND PROOFCHECKER FOR FIRST-ORDER LOGICWilliam McCuneMathematics and Computer Science DivisionArgonne National Laboratorymccune@mcs.anl.govOlga ShumskyDepartment of Electrical and Computer EngineeringNorthwestern Universityshumsky@ece.nwu.eduAbstract This case study shows how non-ACL2 programs can be combined withACL2 functions in such a way that useful properties can be proved aboutthe composite programs. Nothing is proved about the non-ACL2 pro-grams. Instead, the results of the non-ACL2 programs are checked atrun time by ACL2 functions, and properties of these checker functionsare proved. The application is resolution/paramodulation automatedtheorem proving for �rst-order logic. The top ACL2 function takes aconjecture, preprocesses the conjecture, and calls a non-ACL2 programto search for a proof or countermodel. If the non-ACL2 program suc-ceeds, ACL2 functions check the proof or countermodel. The top ACL2function is proved sound with respect to �nite interpretations.IntroductionOur ACL2 project arose from a di�erent kind of automated theoremproving. We work with fully automatic resolution/paramodulation theo-�This work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Advanced Scienti�c Computing Research, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38.9



10 USING THE ACL2 THEOREM PROVERrem provers for (quanti�ed) �rst-order logic with equality. Such proversare quite distinct from ACL2, both in use and in applicability. Let'scall them Otter-class provers [McCune, 1994c, McCune and Wos, 1997].Otter-class provers rely heavily on search and are usually coded in low-level languages such as C, with numerous tricks, hacks, and optimiza-tions, so formally proving things about them is not practical. But weare starting to rely on (e.g., publish, see [McCune, 1998]) complicatedproofs from Otter-class provers, so we need a high level of con�dencethat the proofs are correct.Fortunately, the resolution/paramodulation parts of Otter-classproofs can be presented explicitly, as proof objects that can be easilychecked by relatively simple programs. If we write, in ACL2, a proofchecker for these proof objects, we can prove, with ACL2, that if thechecker accepts a proof object, the proof object is correct. To accom-plish this, we de�ne a �rst-order logic in ACL2 and use it to prove varioussoundness theorems about the checker.Unfortunately, Otter-class provers have to preprocess the conjecturesthey receive (typically by normal-form transformation and Skolemiza-tion), and it is impractical to include the preprocessing steps in the proofobjects. Therefore, we write the preprocessing functions in ACL2 andprove those functions sound in our logic. This approach leads to a hybridsystem we call Ivy,1 in which part of the proof burden (preprocessing) ison ACL2 functions, and the rest (resolution/paramodulation search) onan Otter-class prover. To drive the proof attempt, we have a top ACL2function (proved conjecture) in which calls to the preprocessing func-tions, external Otter-class prover, and the checker are embedded in sucha way that we can prove the soundness of proved without relying onany properties of the Otter-class prover.Otter-class provers include programs such as MACE [McCune, 1994a,McCune, 1994b] that attempt to disprove conjectures by searchingfor �nite countermodels. A secondary program in Ivy (disprovedconjecture) incorporates an external disprover in the same way that(proved conjecture) incorporates an external prover.A de�ciency of Ivy is that the soundness proofs are with respect tointerpretations with �nite domains. We chose �nite domains becauserecursion on the domain allows a straightforward evaluation function.However, we believe that Ivy is sound for all domains, because our proofprocedures and soundness proofs do not seem to depend on �niteness1Ivy stands for \Ivy veri�es your <problem type>."



Ivy Proof Checker 11in important ways. Section 4. contains remarks on generalizing our ap-proach for in�nite domains.We assume familiarity with �rst-order logic. Some knowledge of res-olution style theorem proving [Wos et al., 1992] will be helpful as well.The reader should keep in mind that we are using ACL2 as a metalogicto specify and prove things about a �rst-order logic. Although the logicof ACL2 is also a �rst-order logic, it has no direct connection to ourde�ned logic.Disclaimer. We are not ACL2 experts. This is our �rst substantialproject. Although we believe our de�nitions and higher-level theoremsare nice and reasonable, readers should not look to our ACL2 books forexamples of good ACL2 style or economical proofs.1. BASIC DEFINITIONSThe ACL2 book "base" contains the speci�cation of our �rst-orderlogic. It contains the core de�nitions which must be accepted by usersin order for the soundness theorems to be meaningful. It includes def-initions of well-formed formula, interpretation, and evaluation. A lackof space prevents us from presenting the full speci�cation here, so somefunctions are omitted and others are described informally.1.1 TERMS AND FORMULASA nonstandard property of our de�nition of well-formed term is thatit includes members of the domains of interpretations as well as standardwell-formed terms. The reason for this is that when we evaluate termsin an interpretation, we substitute members of the domain for variables,and we wish to retain well-formedness. The predicates variable-termand domain-term are de�ned so that the corresponding sets are dis-joint. Aside from domain-term, our de�nitions of terms and formulasare straightforward.(defun wft-list (l) ;; well-formed list of terms(declare (xargs :guard t))(if (atom l)(null l)(and (or (variable-term (car l))(domain-term (car l))(and (consp (car l))(function-symbol (caar l))(wft-list (cdar l))))(wft-list (cdr l)))))(defmacro wft (x) ;; well-formed term(list 'wft-list (list 'list x)))



12 USING THE ACL2 THEOREM PROVER(defun wfatom (a) ;; well-formed atomic formula(declare (xargs :guard t))(and (consp a)(relation-symbol (car a))(wft-list (cdr a))))The connectives for well-formed formulas are not, and, or, imp, andiff. Conjunctions and disjunctions are binary only (see Exercise 5 fora relaxation of this constraint). The predicates wfnot, wfand, wfor,wfimp, and wfiff recognize true-listps of the appropriate lengthwhose �rst member is the corresponding connective.The quanti�ers are all and exists; the predicates wfall andwfexists recognize true-listps of length 3 with a quanti�er as the�rst member and a variable-term as the second member.For situations in which the type of binary connective or quanti�eris irrelevant, the predicates wfbinary and wfquant are recommended,because they cause fewer cases during proof attempts. These are used,for example, in the following de�nition of well-formed formula. A1 and a2(meaning argument 1 and argument 2) are simple macros that retrievethe second and third members of a list.(defun wff (f) ;; well-formed formula(declare (xargs :guard t))(cond ((equal f 'true) t)((equal f 'false) t)((wfatom f) t)((wfnot f) (wff (a1 f)))((wfbinary f) (and (wff (a1 f)) (wff (a2 f))))((wfquant f) (wff (a2 f)))(t nil)))For example, the following expression satis�es wff.(all x (iff (p x)(exists y (and (q y)(all z (imp (r z)(or (not (s z (f (a))))(or (= z (b))(t x y z)))))))))1.2 INTERPRETATIONSA �rst-order interpretation is ordinarily de�ned as a nonempty do-main, a set of (total) functions from the domain to the domain, and aset of relations over the domain. We have an implicit notion of well-formed interpretation, but we do not have a predicate that recognizeswell-formed interpretations. If we attempt to evaluate a term or for-



Ivy Proof Checker 13mula in a non-well-formed interpretation, or if the interpretation doesnot contain a relation or function for a symbol in the formula, a defaultvalue (0 for terms and nil for formulas) is returned. If a default value isreturned for any well-formed variable-free subterm or well-formed closedsubformula, the result of the evaluation is as if the interpretation hadbeen \�xed" into a well-formed interpretation.A domain is a set of domain-terms that contains 0. We have organizedit as a binary tree with domain-terms as leaves. (See the book "base"for notes on this choice.)(defun domainp (dom) ;; predicate that recognizes domains(declare (xargs :guard t))(and (domain-term-list (fringe dom))(setp (fringe dom))(member-equal 0 (fringe dom))))Interpretations are arranged as (domain . (relations . functions)). Thefollowing three access functions retrieve the three components of inter-pretations.(defun domain (i)(declare (xargs :guard t))(cond ((and (consp i) (domainp (car i))) (car i))(t 0)))(defun relations (i)(declare (xargs :guard t))(cond ((and (consp i) (consp (cdr i))) (cadr i))(t nil)))(defun functions (i)(declare (xargs :guard t))(cond ((and (consp i) (consp (cdr i))) (cddr i))(t nil)))1.3 EVALUATIONWe allow arity-overloading of function symbols and relation symbols.For example the two occurrences of f in term (f (f) x) are di�erentfunction symbols, because they have di�erent arities (2 and 0). There-fore, the functions (also relations) in an interpretation are identi�ed bysymbol-arity pairs. To look up the value of a function for a tuple (i.e.,list) of domain-terms, we �rst �nd the function in the function list of theinterpretation, then �nd the tuple in the function, and return the value.Because function lists and functions do not necessarily satisfy alistp,we have de�ned fassoc, an unguarded version of assoc-equal.(defun flookup (fsym tuple i) ;; function retrieval and application(declare (xargs :guard (and (function-symbol fsym)(domain-term-list tuple))))



14 USING THE ACL2 THEOREM PROVER(if (or (not (function-symbol fsym))(not (domain-term-list tuple)))0 ;; default value: bad arguments(let ((sym-func (fassoc (cons fsym (len tuple)) (functions i))))(if (not (consp sym-func))0 ;; function is not in function list(let ((val (fapply (cdr sym-func) tuple)))(if (member-equal val (fringe (domain i)))val0 ;; function value is not in the domain))))))If evaluation is applied to a domain-term that is not in the domainof the interpretation, or to a variable-term, or to a non-well-formedterm, the default value 0 is returned.(defun eval-term-list (l i)(declare (xargs :guard (wft-list l)))(if (atom l)nil(cons (cond ((domain-term (car l))(if (member-equal (car l) (fringe (domain i)))(car l)0)) ;; default value((variable-term (car l)) 0) ;; default value((wf-ap-term-top (car l))(flookup (caar l) (eval-term-list (cdar l) i) i))(t 0)) ;; default value(eval-term-list (cdr l) i))))(defmacro eval-term (tm i)(list 'car (list 'eval-term-list (list 'list tm) i)))Evaluation of formulas is analogous to term evaluation. Rlookup re-trieves a relation and applies it to a tuple.(defun rlookup (rsym tuple i) ;; relation retrieval and application(declare (xargs :guard (and (relation-symbol rsym)(domain-term-list tuple))))(cond ((not (relation-symbol rsym)) nil) ;; default value((not (domain-term-list tuple)) nil) ;; default value((consp (fassoc (cons rsym (len tuple))(relations i)))(rapply (cdr (fassoc (cons rsym (len tuple))(relations i))) tuple))(t nil))) ;; default valueEvaluation of atomic formulas involves equality. The predicate wfeqrecognizes true-listps of length 3 with = as the �rst member. Anequality atom is true in an interpretation if and only if its two argumentsevaluate to the same object.(defun eval-atomic (a i)(declare (xargs :guard (wfatom a)))



Ivy Proof Checker 15(cond ((or (not (consp a))(not (relation-symbol (car a)))(not (true-listp (cdr a))) nil)) ;; default value((wfeq a) (equal (eval-term (a1 a) i)(eval-term (a2 a) i)))(t (rlookup (car a) (eval-term-list (cdr a) i) i))))Evaluation of nonatomic formulas is done by a pair of mutually recursivefunctions. (Feval f i) recurses through the formula; when it reachesa quanti�ed subformula, it gets a fresh copy of the domain from theinterpretation and calls (feval-d f dom i), which recurses through thedomain, substituting elements for variables and calling (feval f i).2(mutual-recursion(defun feval (f i) ;; recurse through formula(declare (xargs :measure (cons (cons (wff-count f) 2) 0):guard (wff f)))(cond ((equal f 'true) t)((equal f 'false) nil)((wfnot f) (not (feval (a1 f) i)))((wfand f) (and (feval (a1 f) i) (feval (a2 f) i)))((wfor f) (or (feval (a1 f) i) (feval (a2 f) i)))((wfimp f) (implies (feval (a1 f) i) (feval (a2 f) i)))((wfiff f) (iff (feval (a1 f) i) (feval (a2 f) i)))((wfquant f) (feval-d f (domain i) i))(t (eval-atomic f i))))(defun feval-d (f dom i) ;; recurse through domain(declare (xargs :measure (cons (cons (wff-count f) 1)(acl2-count dom)):guard (and (wff f)(wfquant f)(subsetp-equal (fringe dom)(fringe (domain i))))))(cond ((not (wfquant f)) nil) ;; default value((atom dom) (feval (subst-free (a2 f) (a1 f) dom) i))((wfall f) (and (feval-d f (car dom) i)(feval-d f (cdr dom) i)))((wfexists f) (or (feval-d f (car dom) i)(feval-d f (cdr dom) i)))(t nil))) ;; default value) ;; end of mutual recursionRecall that proofs involving induction on mutually recursive functionsrequire special-purpose induction schemes. We use function (feval-iflg f dom i) de�ned in the book "base".2The name feval stands for \�nite evaluation".



16 USING THE ACL2 THEOREM PROVER2. THE PROOF PROCEDUREOur refutation procedure starts with a closed well-formed formulathat represents the negation of a conjecture. It consists of the followingsteps.1. Convert to negation normal form. This transformation eliminatesthe connectives imp and iff, and moves all not connectives so thatthey apply to atomic formulas.2. Rename bound variables. This transformation renames variablesso that each quanti�er occurrence has a unique variable.3. Skolemize. This replaces all existentially quanti�ed variables withterms containing new (Skolem) functions.4. Move universal quanti�ers to the top of the formula.5. Convert to conjunctive normal form.6. Search for a refutation by resolution and/or paramodulation.Steps 1 through 5 are the preprocess phase; after step 5, the formulais a closed universal-pre�x conjunctive normal form formula, that is,the universal closure of a conjunction of clauses. Step 6, the hard andinteresting part of the procedure, is the search phase.2.1 PREPROCESSINGEach of steps 1, 2, 4, and 5 produces an equivalent formula, andSkolemization produces an equiconsistent formula, so steps 1 through 5together produce a formula that is unsatis�able if and only if the inputto step 1 is unsatis�able.Steps 1 through 5 are implemented as ACL2 functions, and threetypes of theorem are proved about the main ACL2 function for eachstep: syntactic-correctness theorems, preservation-of-property theorems,and soundness theorems. For example, negation normal form transla-tion is done by ACL2 function (nnf f), with guard (wff f). A pred-icate (nnfp f) recognizes formulas in negation normal form, and thesyntactic-correctness theorem is(defthm nnf-nnfp(implies (wff x)(nnfp (nnf x)))).The two preservation-of-property theorems we need for nnf are that itpreserves well-formedness and closedness:(defthm nnf-wff



Ivy Proof Checker 17(implies (wff f)(wff (nnf f)))),(defthm nnf-preserves-free-vars(equal (free-vars (nnf f))(free-vars f))).The soundness theorem for nnf is(defthm nnf-fsound(equal (feval (nnf f) i)(feval f i)):hints ... ).The ACL2 functions for the steps of the procedure have very restric-tive guards, and the syntactic-correctness and preservation-of-propertytheorems are used extensively in verifying guards for the procedure thatcomposes all of the steps. For example, the guard on (skolemize f) is(and (wff f)(nnfp f)(not (free-vars f))(setp (quantified-vars f))).Veri�cation of that guard requires four theorems about the precedingstep (variable renaming): preservation-of-property theorems for the �rstthree conditions of the guard, and a syntactic-correctness theorem forthe fourth.The soundness theorem for (skolemize f) deserves special mentionbecause Skolemization produces an equiconsistent formula rather thanan equivalent formula. Skolemization introduces new function symbolsthat must be interpreted appropriately when evaluating the Skolemizedformula. This task is handled by the function (skolemize-extend fi), which takes a formula and an interpretation and extends the interpre-tation with functions for the function symbols introduced by (skolemizef). The soundness theorem is(defthm skolemize-fsound(equal (feval (skolemize f) (skolemize-extend f i))(feval f i))).By using the soundness theorems for steps 1 through 5, we can showthat the preprocess phase produces a formula that has a (�nite) model ifand only if the original formula has a (�nite) model. However, we delayde�nition of a composite function and its soundness proof so that wecan include the search function refute-n-check de�ned in Section 2.2.By using the preservation-of-property and syntactic-correctness the-orems for steps 1 through 5, we can show that the preprocess phaseproduces a formula with the properties expected by step 6, the search



18 USING THE ACL2 THEOREM PROVERphase. This is proved as part of guard veri�cation for the compositefunction refutation-attempt, de�ned on page 20.2.2 SEARCHINGUp to this point, we could be describing a theorem prover imple-mented entirely in ACL2. But now we take advantage of Otter [Mc-Cune, 1994c, McCune and Wos, 1997], a theorem prover coded in an-other programming language (C). Step 6 is coded as an ACL2 function(refute-n-check f) that receives a closed universal-prefix-cnf for-mula. Within (refute-n-check f), formula f is annotated, then givento the ordinary (non-ACL2) Common Lisp program external-proverthat makes operating system calls to create an input �le for Otter, runOtter, and extract any refutation from Otter's output. The refutation isreturned by external-prover to the ACL2 function refute-n-check,which calls ACL2 function check-proof to check the refutation; if therefutation is approved, it is conjoined to refute-n-check's input andreturned; if a refutation is not found, or if the refutation is rejected,refute-n-check returns its input unchanged. In any case, the follow-ing soundness theorem shows that the output of refute-n-check isequivalent to its input.(defthm refute-n-check-fsound(equal (feval (refute-n-check f) i)(feval f i)):hints ... )From ACL2's point of view, external-prover is a defstub; that is,ACL2 knows it exists, but doesn't know anything else about it. Wethink of it as a black box. At load time, when preparing to run Ivy,the ACL2 code (including the external-prover defstub) is loaded�rst; then the Common Lisp program external-prover is loaded,overriding the defstub.3 Because we cannot prove any properties ofexternal-prover, we use properties of check-proof to prove thesoundness of refute-n-check.Otter can present its refutations is as proof objects, which are detailedline-by-line derivations, in which each line is justi�ed as an applica-tion of a rule to preceding lines. The justi�cation for initial steps isnamed (1) input. The other rules are (2) instantiate, which appliesan explicit substitution to a clause, (3) resolve, which applies binaryresolution on identical atoms to a pair of clauses, (4) paramod, whichapplies equality substitution on identical terms to a pair of clauses, (5)3According to the ACL2 designers, having an ACL2 function call a Common Lisp functionin this way is not o�cially endorsed, but it is acceptable in this situation.



Ivy Proof Checker 19flip, which swaps the arguments of an equality atom of a clause, and(6) propositional, which applies a propositional simpli�cation to aclause (in particular, merging identical literals). The justi�cations forthe resolution and paramodulation steps include the positions of theresolved atoms or paramodulated terms. Because instantiation is a sep-arate step, and because resolution and equality substitution operate onidentical atoms and terms, no uni�cation is involved in proof objects.Our ACL2 predicate wfproof recognizes well-formed proof objects(ignoring soundness), and the predicate check-proof (with guardwfproof) recognizes sound proof objects. For example, here is a formthat satis�es both wfproof and check-proof.((1 (input) (or (= (b) (a)) (p x)))(2 (input) (p (a)))(3 (input) (not (p (b))))(4 (flip 1 (1)) (or (= (a) (b)) (p x)))(5 (paramod 4 (1 1) 2 (1)) (or (p (b)) (p x)))(6 (instantiate 5 ((x . (b)))) (or (p (b)) (p (b))))(7 (propositional 6) (p (b)))(8 (resolve 3 () 7 ()) false))The function check-proof checks each step by simply applying therule and checking the result. Excluding steps of type input, there are�ve types of step, and each has a checker. For example, for a paramodstep, the checker retrieves the two parents from preceding steps, appliesequality substitution at the indicated positions of the parents, and checksthat the result is equal to the clause in the proof step. Soundness ofproof-check is proved by proving that the checker for each type of stepis sound. For paramod, this involves proving that if the universal closuresof the two parents are true in some interpretation, and the checker forthat step succeeds, then the paramodulant is true in that interpretation.If all steps are approved by the checkers, then the universal closure of thesteps in the proof is a consequence of the universal closure of the inputsteps. Function refute-n-check also checks that external-proverdoes not modify any input steps. This gives us what we need to provethe theorem refute-n-check-fsound stated on page 18.A Detailed Example. Consider the conjecture(imp (and (all x (imp (p x) (q x)))(p (a)))(exists x (q x))).Preprocessing the negation of the conjecture gives us the following,which is input to refute-n-check.(all v1 (all v2 (and (or (not (p v1)) (q v1))



20 USING THE ACL2 THEOREM PROVER(and (p (a))(not (q v2))))))Derive strips o� the universal quanti�ers and builds the following initialproof object, which is sent to external-prover:((1 (input) (or (not (p v1)) (q v1)))(2 (input) (p (a)))(3 (input) (not (q v2)))).Suppose external-prover claims to have found a refutation:4((1 (input) (or (not (p v1)) (q v1)) nil)(2 (input) (p (a)) nil)(3 (input) (not (q v2)) nil)(4 (instantiate 1 ((v1 . v0))) (or (not (p v0)) (q v0)) (1))(5 (instantiate 3 ((v2 . v0))) (not (q v0)) (2))(6 (instantiate 2 ()) (p (a)) (3))(7 (instantiate 4 ((v0 . (a)))) (or (not (p (a))) (q (a))) nil)(8 (resolve 7 (1) 6 ()) (q (a)) (4))(9 (instantiate 5 ((v0 . (a)))) (not (q (a))) nil)(10 (resolve 9 () 8 ()) false (5))).The function refute-n-check calls check-proof on the precedingproof object, and it is approved. The clauses are extracted from theproof object and conjoined, and the universal closure is returned byrefute-n-check:5(all v1 (all v2 (all v0 (and (or (not (p v1)) (q v1))(and (p (a))(and (not (q v2))(and (or (not (p v0)) (q v0))(and (not (q v0))(and (p (a))(and (or (not (p (a))) (q (a)))(and (q (a))(and (not (q (a)))(and false true))))))))))))).The soundness theorem for refute-n-check (page 18) assures us thatits output is equivalent to its input. The formula is then given to functionsimp-tf, which simpli�es it to false.The Top Procedures and Soundness Theorems. We composeall of the preprocessing steps, refute-n-check, and the simpli�cationfunction into a function refutation-attempt, which takes the denial ofa conjecture:64Proof objects built by Otter frequently contain extraneous instantiation steps. Also, stepsin proof objects may contain additional data after the clause.5The true at the end is an artifact of building a conjunction from a list. Exercise: �x this.6A de�ciency of Otter requires us to right-associate conjunctions and disjunctions.



Ivy Proof Checker 21(defun refutation-attempt (f)(declare (xargs :guard (and (wff f) (not (free-vars f)))))(simp-tf(refute-n-check(right-assoc(cnf(pull-quants(skolemize(rename-all(nnf f))))))))).The soundness theorem for refutation-attempt follows easily fromthe soundness of the components. Note that the soundness theorem forskolemize requires that we skolemize-extend the interpretation forthe initial part of the refutation attempt:(defthm refutation-attempt-fsound(equal (feval (refutation-attempt f)(skolemize-extend (rename-all (nnf f)) i))(feval f i))).A formula is refuted if it is closed and well formed, and ifrefutation-attempt gives false. We check the guard, because thisis a top function.(defun refuted (f)(declare (xargs :guard (and (wff f) (not (free-vars f)))))(if (and (wff f) (not (free-vars f)))(equal (refutation-attempt f) 'false)nil))A refuted formula is false in all (�nite) interpretations:(defthm refutation-is-fsound(implies (refuted f)(and (wff f)(not (free-vars f))(not (feval f i)))):hints ... ).Finally, by �ddling with not, we can easily de�ne a proof procedureand prove it sound:(defun proved (f)(declare (xargs :guard (and (wff f) (not (free-vars f)))))(if (and (wff f) (not (free-vars f)))(refuted (list 'not f))nil)),(defthm proof-is-fsound(implies (proved f)(and (wff f)(not (free-vars f))(feval f i))):hints ... ).



22 USING THE ACL2 THEOREM PROVERThat is, a proved formula is true in all (�nite) interpretations.3. DISPROVING CONJECTURESOtter has a complementary companion MACE [McCune, 1994a, Mc-Cune, 1994b], which searches for �nite models of �rst-order sentences.If MACE is given the denial of a conjecture, any models found are coun-termodels to the conjecture. Like Otter, MACE is coded in C, and wecall it in the same way we call Otter.MACE can receive its input as an initial proof object, and it canoutput models in the form of interpretations that can be given directlyto our evaluation function feval. The operation of checking MACE'smodels is simply evaluation with the function feval.Model-attempt is analogous to a combination ofrefutation-attempt and refute-n-check. External-modeler isa defstub that is analogous to external-prover.(defun model-attempt (f) ;; return a model of f or nil(declare (xargs :guard (and (wff f) (not (free-vars f)))))(if (or (not (wff f)) (free-vars f))nil(let* ((preprocessed (cnf(pull-quants(skolemize (rename-all (nnf f))))))(mace-result (external-modeler(assign-ids-to-prf(initial-proof(remove-leading-alls preprocessed))1))))(if (feval f mace-result)mace-resultnil))))The soundness theorem for model-attempt is trivial, because the prop-erty we need to prove is checked by model-attempt.(defthm model-attempt-fsound(implies (model-attempt f)(and (wff f)(not (free-vars f))(feval f (model-attempt f)))))Or, we can state this positively, for unnegated conjectures:(defun countermodel-attempt (f)(declare (xargs :guard (and (wff f) (not (free-vars f)))))(cond ((or (not (wff f)) (free-vars f)) nil)(t (model-attempt (list 'not f))))),(defthm countermodel-attempt-fsound(implies (countermodel-attempt f)(and (wff f)



Ivy Proof Checker 23(not (free-vars f))(not (feval f (countermodel-attempt f)))))):hints ... ).In other words, if countermodel-attempt produces an interpretationfor a formula, the formula is false in that interpretation, that is, is nota theorem.4. INFINITE DOMAINSOur approach of proving soundness with respect to �nite interpreta-tions is certainly questionable. Consider the sentence(imp (all x (all y (imp (= (f x) (f y))(= x y))))(all x (exists y (= (f y) x)))),that is, one-to-one functions are onto. It is not valid, but it is true for�nite domains. Could Ivy claim to have a proof of such a nontheorem?Any proof, for �nite domains, of a such a sentence must use the �nite-ness hypotheses. But that seems inexpressible in a �rst-order language,so that the proof would have to be higher order or model theoretic.7 Ivyworks entirely within �rst-order logic. However, our function (provedf) is a \black box" in that the user is not supposed to know anythingabout it in order to be con�dent in using Ivy. One could argue thatproved contains a bug that arises only for in�nite interpretations, orthat there might be something higher-order lurking there. So, eventhough we have high con�dence that Ivy is sound, we are pursuing ageneral approach that covers in�nite interpretations.ACL2's encapsulation feature allows it to reason safely about incom-pletely speci�ed functions. We believe we can use encapsulation to ab-stract the �niteness.8 In our current speci�cation, the important wayin which �niteness enters the picture is by the de�nition of feval-d,which recurses through the domain. This function, in e�ect, expandsuniversally quanti�ed formulas into conjunctions and existentially quan-ti�ed formulas into disjunctions. Instead of feval-d, we can consider aconstrained function that chooses an element of the domain, if possible,that makes a formula true. When evaluating an existentially quanti�edformula, we substitute the chosen element for the existentially quanti�edvariable and continue evaluating. (Evaluation of universally quanti�edvariables requires some �ddling with negation.) However, proving thesoundness of Skolemization may present complications. If this approach7We are putting aside the argument that set theory and higher-order logics can be encodedin �rst-order logic.8This approach was suggested by Matt Kaufmann.



24 USING THE ACL2 THEOREM PROVERsucceeds, an interesting (and probably di�cult!) exercise would be totry to use ACL2's functional instantiation rule to derive the soundnessresults for �nite interpretations.Note that the current soundness proofs for (disproved conjecture)and (modeled formula) are adequate because a �nite model is a model.5. COMPLETENESSTraditionally, the \interesting" properties of proof procedures areabout completeness rather than soundness. Aside from the syntacticcorrectness of the preprocessing functions, we have no results on com-pleteness. In fact, it is impossible to prove completeness of (provedconjecture) unless we can prove completeness of the external Otter-class prover. Even if (proved conjecture) is sound, it may have bugsthat block proofs, for example in the calling sequence for the externalprover. As an extreme example, consider (defun proved (f) nil)|itis unquestionably sound, but not very useful. The user must rely on ex-perience with Ivy for evidence that it is complete enough. The computer�les that accompany this chapter contain everything needed to run Ivy,including examples, and we invite readers to check it out.6. EXERCISESEach exercise has two corresponding �les in the exercise direc-tory. Numbered startup �les contain comments, relevant include-bookforms, and de�nitions of related functions. Numbered solution bookscontain solutions.1. De�ne a function to check whether a given variable occurs freelyin a formula. Prove that substitution for a variable that does notoccur in the formula has no e�ect.2. Prove that if an interpretation contains a function func, and if aformula does not contain the corresponding function symbol, thenevaluation of the formula in the interpretation is independent ofthe occurrence of func. Assume that func is the �rst function inthe interpretation.3. De�ne a function (cnf f) that converts negation normal formformulas (see book "nnf") to conjunctive normal form and a pred-icate (cnfp f) that recognizes conjunctive normal form formulas.Prove that cnf (1) preserves the property wff, (2) converts nnfpformulas to cnfp, and (3) is sound.



Ivy Proof Checker 254. The current proof checker for resolution steps generates all resol-vents of the parent clauses and checks whether the clause fromthe proof object follows from the conjunction of all the resolvents.De�ne a proof-checking procedure that computes the speci�ed re-solvent directly. Prove that the procedure is sound.5. Conjunctions and disjunctions are binary, which makes it inconve-nient to write conjectures with several hypotheses. De�ne a func-tion to convert a formula with multiple-arity conjunctions and dis-junctions to a formula with binary conjunctions and disjunctions.Decide what properties have to be proved to demonstrate that yourapproach is acceptable, and prove those properties.6. We rely on the ability to generate a new symbol with respect toa given symbol list in steps 2 and 3 of the search procedure. Invariable renaming, step 2, we generate a new variable. In Skolem-ization, step 3, we generate a Skolem function name. Common Lisphas a function gensym , but it is state dependent and therefore notavailable in ACL2. De�ne an ACL2 function that generates a sym-bol that is not in a given list of symbols, and prove its correctness.





References
[McCune, 1994a] McCune, W. (1994a). A Davis-Putnam program andits application to �nite �rst-order model search: Quasigroup existenceproblems. Tech. Report ANL/MCS-TM-194, Argonne National Lab-oratory, Argonne, IL.[McCune, 1994b] McCune, W. (1994b). MACE: Models and Counterex-amples. URL http://www.mcs.anl.gov/AR/mace/.[McCune, 1994c] McCune, W. (1994c). Otter 3.0 Reference Manual andGuide. Tech. Report ANL-94/6, Argonne National Laboratory, Ar-gonne, IL. See also URL http://www.mcs.anl.gov/AR/otter/.[McCune, 1998] McCune, W. (1998). Automatic proofs and counterex-amples for some ortholattice identities. Information Processing Let-ters, 65:285{291.[McCune and Wos, 1997] McCune, W. and Wos, L. (1997). Otter:The CADE-13 Competition incarnations. J. Automated Reasoning,18(2):211{220.[Wos et al., 1992] Wos, L., Overbeek, R., Lusk, E., and Boyle, J. (1992).Automated Reasoning: Introduction and Applications, 2nd edition.McGraw-Hill, New York.

27


