Chapter 1

IVY: A PREPROCESSOR AND PROOF
CHECKER FOR FIRST-ORDER LOGIC

William McCune

Mathematics and Computer Science Division

Argonne National Laboratory

mccune@mcs.anl.gov

Olga Shumsky
Department of Flectrical and Computer Engineering

Northwestern University

shumsky®@ece.nwu.edu

Abstract

This case study shows how non-ACL2 programs can be combined with
ACL2 functions in such a way that useful properties can be proved about
the composite programs. Nothing is proved about the non-ACL2 pro-
grams. Instead, the results of the non-ACL2 programs are checked at
run time by ACL2 functions, and properties of these checker functions
are proved. The application is resolution/paramodulation automated
theorem proving for first-order logic. The top ACL2 function takes a
conjecture, preprocesses the conjecture, and calls a non-ACL2 program
to search for a proof or countermodel. If the non-ACL2 program suc-
ceeds, ACL2 functions check the proof or countermodel. The top ACL2
function is proved sound with respect to finite interpretations.

Introduction

Our ACL2 project arose from a different kind of automated theorem
proving. We work with fully automatic resolution/paramodulation theo-

*This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Depart-
ment of Energy, under Contract W-31-109-Eng-38.

9

10 USING THE ACL2 THEOREM PROVER

rem provers for (quantified) first-order logic with equality. Such provers
are quite distinct from ACL2, both in use and in applicability. Let’s
call them Otter-class provers [McCune, 1994¢c, McCune and Wos, 1997].
Otter-class provers rely heavily on search and are usually coded in low-
level languages such as C, with numerous tricks, hacks, and optimiza-
tions, so formally proving things about them is not practical. But we
are starting to rely on (e.g., publish, see [McCune, 1998]) complicated
proofs from Otter-class provers, so we need a high level of confidence
that the proofs are correct.

Fortunately, the resolution/paramodulation parts of Otter-class
proofs can be presented explicitly, as proof objects that can be easily
checked by relatively simple programs. If we write, in ACL2, a proof
checker for these proof objects, we can prove, with ACL2, that if the
checker accepts a proof object, the proof object is correct. To accom-
plish this, we define a first-order logic in ACL2 and use it to prove various
soundness theorems about the checker.

Unfortunately, Otter-class provers have to preprocess the conjectures
they receive (typically by normal-form transformation and Skolemiza-
tion), and it is impractical to include the preprocessing steps in the proof
objects. Therefore, we write the preprocessing functions in ACL2 and
prove those functions sound in our logic. This approach leads to a hybrid
system we call Ivy,! in which part of the proof burden (preprocessing) is
on ACL2 functions, and the rest (resolution/paramodulation search) on
an Otter-class prover. To drive the proof attempt, we have a top ACL2
function (proved conjecture) in which calls to the preprocessing func-
tions, external Otter-class prover, and the checker are embedded in such
a way that we can prove the soundness of proved without relying on
any properties of the Otter-class prover.

Otter-class provers include programs such as MACE [McCune, 1994a,
McCune, 1994b] that attempt to disprove conjectures by searching
for finite countermodels. A secondary program in Ivy (disproved
conjecture) incorporates an external disprover in the same way that
(proved conjecture) incorporates an external prover.

A deficiency of Ivy is that the soundness proofs are with respect to
interpretations with finite domains. We chose finite domains because
recursion on the domain allows a straightforward evaluation function.
However, we believe that Ivy is sound for all domains, because our proof
procedures and soundness proofs do not seem to depend on finiteness

vy stands for “Ivy verifies your <problem type>.”

Ivy Proof Checker 11

in important ways. Section 4. contains remarks on generalizing our ap-
proach for infinite domains.

We assume familiarity with first-order logic. Some knowledge of res-
olution style theorem proving [Wos et al., 1992] will be helpful as well.
The reader should keep in mind that we are using ACL2 as a metalogic
to specify and prove things about a first-order logic. Although the logic
of ACL2 is also a first-order logic, it has no direct connection to our

defined logic.

Disclaimer. We are not ACL2 experts. This is our first substantial
project. Although we believe our definitions and higher-level theorems
are nice and reasonable, readers should not look to our ACL2 books for
examples of good ACL2 style or economical proofs.

1. BASIC DEFINITIONS

The ACL2 book "base" contains the specification of our first-order
logic. It contains the core definitions which must be accepted by users
in order for the soundness theorems to be meaningful. It includes def-
initions of well-formed formula, interpretation, and evaluation. A lack
of space prevents us from presenting the full specification here, so some
functions are omitted and others are described informally.

1.1 TERMS AND FORMULAS

A nonstandard property of our definition of well-formed term is that
it includes members of the domains of interpretations as well as standard
well-formed terms. The reason for this is that when we evaluate terms
in an interpretation, we substitute members of the domain for variables,
and we wish to retain well-formedness. The predicates variable-term
and domain-term are defined so that the corresponding sets are dis-
joint. Aside from domain-term, our definitions of terms and formulas

are straightforward.
(defun wft-list (1) ;; well-formed list of terms
(declare (xargs :guard t))
(if (atom 1)
(null 1)
(and (or (variable-term (car 1))
(domain-term (car 1))
(and (consp (car 1))
(function-symbol (caar 1))
(wft-1list (cdar 1))))
(wft-1list (cdr 1)))))
(defmacro wft (x) ;; well-formed term
(list ’wft-list (list ’list x)))

12 USING THE ACL2 THEOREM PROVER

(defun wfatom (a) ;; well-formed atomic formula
(declare (xargs :guard t))
(and (consp a)
(relation-symbol (car a))
(wft-1list (cdr a))))

The connectives for well-formed formulas are not, and, or, imp, and
iff. Conjunctions and disjunctions are binary only (see Exercise 5 for
a relaxation of this constraint). The predicates wfnot, wfand, wfor,
wfimp, and wfiff recognize true-listps of the appropriate length
whose first member is the corresponding connective.

The quantifiers are all and exists; the predicates wfall and
wfexists recognize true-listps of length 3 with a quantifier as the
first member and a variable-term as the second member.

For situations in which the type of binary connective or quantifier
is irrelevant, the predicates wfbinary and wfquant are recommended,
because they cause fewer cases during proof attempts. These are used,
for example, in the following definition of well-formed formula. A1 and a2
(meaning argument 1 and argument 2) are simple macros that retrieve

the second and third members of a list.
(defun wff (£) ;; well-formed formula
(declare (xargs :guard t))
(cond ((equal f ’true) t)
((equal f ’false) t)
((wfatom f) t)
((wfnot f) (wff (al £)))
((wfbinary f) (and (wff (al £)) (wff (a2 £))))
((wfquant £) (wff (a2 £)))
(t nil)))

For example, the following expression satisfies wff.
(all x (iff (p x)
(exists y (and (q y)
(all z (imp (r z)
(or (not (s z (f (a))))
(or (= z (b))
(t xy2))))))))

1.2 INTERPRETATIONS

A first-order interpretation is ordinarily defined as a nonempty do-
main, a set of (total) functions from the domain to the domain, and a
set of relations over the domain. We have an implicit notion of well-
formed interpretation, but we do not have a predicate that recognizes
well-formed interpretations. If we attempt to evaluate a term or for-

Ivy Proof Checker 13

mula in a non-well-formed interpretation, or if the interpretation does
not contain a relation or function for a symbol in the formula, a default
value (0 for terms and nil for formulas) is returned. If a default value is
returned for any well-formed variable-free subterm or well-formed closed
subformula, the result of the evaluation is as if the interpretation had
been “fixed” into a well-formed interpretation.

A domain is a set of domain-terms that contains 0. We have organized
it as a binary tree with domain-terms as leaves. (See the book "base"

for notes on this choice.)
(defun domainp (dom) ;; predicate that recognizes domains
(declare (xargs :guard t))
(and (domain-term-list (fringe dom))
(setp (fringe dom))
(member-equal 0 (fringe dom))))

Interpretations are arranged as (domain . (relations . functions)). The
following three access functions retrieve the three components of inter-
pretations.
(defun domain (i)
(declare (xargs :guard t))
(cond ((and (consp i) (domainp (car i))) (car i))
(t 0)))
(defun relations (i)
(declare (xargs :guard t))
(cond ((and (consp i) (consp (cdr i))) (cadr i))
(t nil)))
(defun functions (i)
(declare (xargs :guard t))
(cond ((and (consp i) (consp (cdr i))) (cddr i))
(t nil)))

1.3 EVALUATION

We allow arity-overloading of function symbols and relation symbols.
For example the two occurrences of £ in term (f (£) x) are different
function symbols, because they have different arities (2 and 0). There-
fore, the functions (also relations) in an interpretation are identified by
symbol-arity pairs. To look up the value of a function for a tuple (i.e.,
list) of domain-terms, we first find the function in the function list of the
interpretation, then find the tuple in the function, and return the value.
Because function lists and functions do not necessarily satisfy alistp,

we have defined fassoc, an unguarded version of assoc-equal.
(defun flookup (fsym tuple i) ;; function retrieval and application
(declare (xargs :guard (and (function-symbol fsym)
(domain-term-list tuple))))

14 USING THE ACL2 THEOREM PROVER

(if (or (mot (function-symbol fsym))

(not (domain-term-list tuple)))

0 ;; default value: bad arguments
(let ((sym-func (fassoc (cons fsym (len tuple)) (functions i))))

(if (not (consp sym-func))

0 ;; function s not in function list

(let ((val (fapply (cdr sym-func) tuple)))
(if (member-equal val (fringe (domain i)))
val
0 ;; function value is not in the domain

))))))

If evaluation is applied to a domain-term that is not in the domain
of the interpretation, or to a variable-term, or to a non-well-formed

term, the default value O is returned.
(defun eval-term-list (1 i)
(declare (xargs :guard (wft-list 1)))
(if (atom 1)
nil
(cons (cond ((domain-term (car 1))
(if (member-equal (car 1) (fringe (domain i)))
(car 1)
0)) ;; default value
((variable-term (car 1)) 0) ;; default value
((wf-ap-term-top (car 1))
(flookup (caar 1) (eval-term-list (cdar 1) i) 1))
(t 0)) ;5 default value
(eval-term-list (cdr 1) 1))))
(defmacro eval-term (tm i)
(list ’car (list ’eval-term-list (list ’list tm) 1)))

Evaluation of formulas is analogous to term evaluation. Rlookup re-

trieves a relation and applies it to a tuple.
(defun rlookup (rsym tuple i) ;; relation retrieval and application
(declare (xargs :guard (and (relation-symbol rsym)
(domain-term-list tuple))))
(cond ((not (relation-symbol rsym)) nil) ;; default value
((not (domain-term-list tuple)) nil) ;; default value
((consp (fassoc (cons rsym (len tuple))
(relations i)))
(rapply (cdr (fassoc (cons rsym (len tuple))
(relations i))) tuple))
(t nil))) ;; default value

Evaluation of atomic formulas involves equality. The predicate wfeq
recognizes true-listps of length 3 with = as the first member. An
equality atom is true in an interpretation if and only if its two arguments

evaluate to the same object.
(defun eval-atomic (a i)
(declare (xargs :guard (wfatom a)))

Ivy Proof Checker 15

(cond ((or (not (consp a))
(not (relation-symbol (car a)))
(not (true-listp (cdr a))) nil)) ;; default value
((wfeq a) (equal (eval-term (al a) i)
(eval-term (a2 a) 1i)))
(t (rlookup (car a) (eval-term-list (cdr a) i) 1))))

Evaluation of nonatomic formulas is done by a pair of mutually recursive
functions. (Feval f i) recurses through the formula; when it reaches
a quantified subformula, it gets a fresh copy of the domain from the
interpretation and calls (feval-d £ dom i), which recurses through the
domain, substituting elements for variables and calling (feval f i).?
(mutual-recursion
(defun feval (f i) ;; recurse through formula

(declare (xargs :measure (cons (cons (wff-count f) 2) 0)

:guard (wff £)))
(cond ((equal f ’true) t)
((equal £ ’false) nil)

((wfnot f) (not (feval (a1l £) 1)))

((wfand f) (and (feval (al f) i) (feval (a2 f) 1i)))
((wfor f) (or (feval (al f) i) (feval (a2 f) 1i)))
((wfimp £) (implies (feval (al f) i) (feval (a2 £f) 1i)))
((ufiff £) (iff (feval (al £f) i) (feval (a2 f) i)))

((wfquant f) (feval-d £ (domain i) 1))
(t (eval-atomic f i))))
(defun feval-d (f dom i) ;; recurse through domain
(declare (xargs :measure (cons (cons (wff-count f) 1)
(acl2-count dom))
:guard (and (wff f)
(wfquant f)
(subsetp-equal (fringe dom)
(fringe (domain i))))))
(cond ((not (wfquant f)) nil) ;; default value
((atom dom) (feval (subst-free (a2 f) (al £f) dom) 1))
((wfall £) (and (feval-d f (car dom) i)
(feval-d f (cdr dom) i)))
((ufexists f) (or (feval-d f (car dom) i)
(feval-d f (cdr dom) i)))
(t nil))) ;; default value
) ;; end of mutual recursion

Recall that proofs involving induction on mutually recursive functions
require special-purpose induction schemes. We use function (feval-i
flg £ dom i) defined in the book "base".

2The name feval stands for “finite evaluation”.

16 USING THE ACL2 THEOREM PROVER

2. THE PROOF PROCEDURE

Our refutation procedure starts with a closed well-formed formula
that represents the negation of a conjecture. It consists of the following
steps.

1. Convert to negation normal form. This transformation eliminates
the connectives imp and iff, and moves all not connectives so that
they apply to atomic formulas.

2. Rename bound variables. This transformation renames variables
so that each quantifier occurrence has a unique variable.

3. Skolemize. This replaces all existentially quantified variables with
terms containing new (Skolem) functions.

4. Move universal quantifiers to the top of the formula.
5. Convert to conjunctive normal form.

6. Search for a refutation by resolution and/or paramodulation.

Steps 1 through 5 are the preprocess phase; after step 5, the formula
is a closed universal-prefix conjunctive normal form formula, that is,
the universal closure of a conjunction of clauses. Step 6, the hard and
interesting part of the procedure, is the search phase.

2.1 PREPROCESSING

Each of steps 1, 2, 4, and 5 produces an equivalent formula, and
Skolemization produces an equiconsistent formula, so steps 1 through 5
together produce a formula that is unsatisfiable if and only if the input
to step 1 is unsatisfiable.

Steps 1 through 5 are implemented as ACL2 functions, and three
types of theorem are proved about the main ACL2 function for each
step: syntactic-correctness theorems, preservation-of-property theorems,
and soundness theorems. For example, negation normal form transla-
tion is done by ACL2 function (anf £), with guard (wff £). A pred-
icate (nnfp f) recognizes formulas in negation normal form, and the

syntactic-correctness theorem is
(defthm nnf-nnfp
(implies (wff x)
(nnfp (nnf x)))).

The two preservation-of-property theorems we need for nnf are that it

preserves well-formedness and closedness:
(defthm nnf-wff

Ivy Proof Checker 17

(implies (wff f)
(wff (nnf £)))),
(defthm nnf-preserves-free-vars
(equal (free-vars (nnf f))
(free-vars £))).

The soundness theorem for nnf is
(defthm nnf-fsound
(equal (feval (unf f) i)
(feval £ 1))
:hints ...).

The ACL2 functions for the steps of the procedure have very restric-
tive guards, and the syntactic-correctness and preservation-of-property
theorems are used extensively in verifying guards for the procedure that

composes all of the steps. For example, the guard on (skolemize f) is
(and (wff f)

(nnfp £)

(not (free-vars f))

(setp (quantified-vars £))).

Verification of that guard requires four theorems about the preceding
step (variable renaming): preservation-of-property theorems for the first
three conditions of the guard, and a syntactic-correctness theorem for
the fourth.

The soundness theorem for (skolemize f) deserves special mention
because Skolemization produces an equiconsistent formula rather than
an equivalent formula. Skolemization introduces new function symbols
that must be interpreted appropriately when evaluating the Skolemized
formula. This task is handled by the function (skolemize-extend f
i), which takes a formula and an interpretation and extends the interpre-
tation with functions for the function symbols introduced by (skolemize

f). The soundness theorem is
(defthm skolemize-fsound
(equal (feval (skolemize f) (skolemize-extend f i))
(feval f i))).

By using the soundness theorems for steps 1 through 5, we can show
that the preprocess phase produces a formula that has a (finite) model if
and only if the original formula has a (finite) model. However, we delay
definition of a composite function and its soundness proof so that we
can include the search function refute-n-check defined in Section 2.2.

By using the preservation-of-property and syntactic-correctness the-
orems for steps 1 through 5, we can show that the preprocess phase
produces a formula with the properties expected by step 6, the search

18 USING THE ACL2 THEOREM PROVER

phase. This is proved as part of guard verification for the composite
function refutation-attempt, defined on page 20.

2.2 SEARCHING

Up to this point, we could be describing a theorem prover imple-
mented entirely in ACL2. But now we take advantage of Otter [Mc-
Cune, 1994c, McCune and Wos, 1997], a theorem prover coded in an-
other programming language (C). Step 6 is coded as an ACL2 function
(refute-n-check f) that receives a closed universal-prefix-cnf for-
mula. Within (refute-n-check f), formula f is annotated, then given
to the ordinary (non-ACL2) Common Lisp program external-prover
that makes operating system calls to create an input file for Otter, run
Otter, and extract any refutation from Otter’s output. The refutation is
returned by external-prover to the ACL2 function refute-n-check,
which calls ACL2 function check-proof to check the refutation; if the
refutation is approved, it is conjoined to refute-n-check’s input and
returned; if a refutation is not found, or if the refutation is rejected,
refute-n-check returns its input unchanged. In any case, the follow-
ing soundness theorem shows that the output of refute-n-check is

equivalent to its input.
(defthm refute-n-check-fsound
(equal (feval (refute-n-check f) i)
(feval £ 1))
thints ...)

From ACL2’s point of view, external-prover is a defstub; that is,

ACL2 knows it exists, but doesn’t know anything else about it. We
think of it as a black box. At load time, when preparing to run Ivy,
the ACL2 code (including the external-prover defstub) is loaded
first; then the Common Lisp program external-prover is loaded,
overriding the defstub.?> Because we cannot prove any properties of
external-prover, we use properties of check-proof to prove the
soundness of refute-n-check.

Otter can present its refutations is as proof objects, which are detailed
line-by-line derivations, in which each line is justified as an applica-
tion of a rule to preceding lines. The justification for initial steps is
named (1) input. The other rules are (2) instantiate, which applies
an explicit substitution to a clause, (3) resolve, which applies binary
resolution on identical atoms to a pair of clauses, (4) paramod, which
applies equality substitution on identical terms to a pair of clauses, (5)

3 According to the ACL2 designers, having an ACL2 function call a Common Lisp function
in this way is not officially endorsed, but it is acceptable in this situation.

Ivy Proof Checker 19

flip, which swaps the arguments of an equality atom of a clause, and
(6) propositional, which applies a propositional simplification to a
clause (in particular, merging identical literals). The justifications for
the resolution and paramodulation steps include the positions of the
resolved atoms or paramodulated terms. Because instantiation is a sep-
arate step, and because resolution and equality substitution operate on
identical atoms and terms, no unification is involved in proof objects.
Our ACL2 predicate wfproof recognizes well-formed proof objects
(ignoring soundness), and the predicate check-proof (with guard
wiproof) recognizes sound proof objects. For example, here is a form
that satisfies both wfproof and check-proof.
((1 (input) (or (= (b) (a)) (p x)))
(2 (input) (p (a)))
(3 (input) (not (p (b))))
(4 (flip 1 (1)) (or (= (a) (b)) (p x)))
(5 (paramod 4 (1 1) 2 (1)) (or (p (®)) (p x)))
(6 (instantiate 5 ((x . (b)))) (or (p (b)) (p (b))))
(7 (propositional 6) (p (b)))
(8 (resolve 3 () 7 ()) false))

The function check-proof checks each step by simply applying the
rule and checking the result. Excluding steps of type input, there are
five types of step, and each has a checker. For example, for a paramod
step, the checker retrieves the two parents from preceding steps, applies
equality substitution at the indicated positions of the parents, and checks
that the result is equal to the clause in the proof step. Soundness of
proof-check is proved by proving that the checker for each type of step
is sound. For paramod, this involves proving that if the universal closures
of the two parents are true in some interpretation, and the checker for
that step succeeds, then the paramodulant is true in that interpretation.
If all steps are approved by the checkers, then the universal closure of the
steps in the proof is a consequence of the universal closure of the input
steps. Function refute-n-check also checks that external-prover
does not modify any input steps. This gives us what we need to prove
the theorem refute-n-check-fsound stated on page 18.

A Detailed Example. Consider the conjecture
(imp (and (all x (imp (p x) (q x)))
(p (2)))
(exists x (q x))).

Preprocessing the negation of the conjecture gives us the following,

which is input to refute-n-check.
(all v1 (all v2 (and (or (mot (p v1)) (q v1))

20 USING THE ACL2 THEOREM PROVER

(and (p (a))
(not (q v2))))))

Derive strips off the universal quantifiers and builds the following initial

proof object, which is sent to external-prover:
((1 (input) (or (mot (p v1)) (q v1)))

(2 (input) (p (a)))

(3 (input) (not (q v2)))).

Suppose external-prover claims to have found a refutation:*
((1 (input) (or (mot (p v1)) (q v1)) nil)

(2 (input) (p (a)) nil)

(3 (input) (nmot (q v2)) nil)

(4 (instantiate 1 ((v1l . v0))) (or (mot (p v0)) (q v0)) (1))

(5 (instantiate 3 ((v2 . v0))) (not (q v0)) (2))

(6 (instantiate 2 ()) (p (a)) (3))

(7 (instantiate 4 ((vO . (a)))) (or (not (p (a))) (q (a))) nil)

(8 (resolve 7 (1) 6 ()) (q (a)) (4))

(9 (instantiate 5 ((vO . (a)))) (not (q (a))) nil)

(10 (resolve 9 () 8 ()) false (5))).

The function refute-n-check calls check-proof on the preceding
proof object, and it is approved. The clauses are extracted from the
proof object and conjoined, and the universal closure is returned by
refute-n-check:’

(all v1 (all v2 (all vO (and (or (mot (p v1)) (q v1))

(and (p (a))
(and (not (q v2))
(and (or (mot (p v0)) (q v0))
(and (not (q v0))
(and (p (a))
(and (or (not (p (a))) (q (a)))
(and (q (a))
(and (not (q (a)))
(and false true))))))))))))).

The soundness theorem for refute-n-check (page 18) assures us that
its output is equivalent to its input. The formula is then given to function
simp-tf, which simplifies it to false.

The Top Procedures and Soundness Theorems. We compose
all of the preprocessing steps, refute-n-check, and the simplification
function into a function refutation-attempt, which takes the denial of

a conjecture:®

4Proof objects built by Otter frequently contain extraneous instantiation steps. Also, steps
in proof objects may contain additional data after the clause.

5The true at the end is an artifact of building a conjunction from a list. Exercise: fix this.
6 A deficiency of Otter requires us to right-associate conjunctions and disjunctions.

Ivy Proof Checker 21

(defun refutation-attempt (f)
(declare (xargs :guard (and (wff f) (not (free-vars £)))))
(simp-tf
(refute-n-check
(right-assoc
(enf
(pull-quants
(skolemize
(rename-all

(nnf £))))))))).

The soundness theorem for refutation-attempt follows easily from
the soundness of the components. Note that the soundness theorem for
skolemize requires that we skolemize-extend the interpretation for
the initial part of the refutation attempt:

(defthm refutation-attempt-fsound

(equal (feval (refutation-attempt f)

(skolemize-extend (rename-all (nnf f)) i))
(feval f i))).

A formula is refuted if it is closed and well formed, and if
refutation-attempt gives false. We check the guard, because this
is a top function.

(defun refuted (f)
(declare (xargs :guard (and (wff f) (not (free-vars £)))))
(if (and (wff f) (not (free-vars f)))

(equal (refutation-attempt f) ’false)
nil))

A refuted formula is false in all (finite) interpretations:
(defthm refutation-is-fsound
(implies (refuted f)
(and (wff f)
(not (free-vars f))
(not (feval f 1))))
thints ...).

Finally, by fiddling with not, we can easily define a proof procedure
and prove it sound:
(defun proved (f)
(declare (xargs :guard (and (wff f) (not (free-vars £)))))
(if (and (wff f) (not (free-vars f)))
(refuted (list ’not f))
nil)),
(defthm proof-is-fsound
(implies (proved f)
(and (wff f)
(not (free-vars f))
(feval £ i)))
:hints ...).

22 USING THE ACL2 THEOREM PROVER

That is, a proved formula is true in all (finite) interpretations.

3. DISPROVING CONJECTURES

Otter has a complementary companion MACE [McCune, 1994a, Mc-
Cune, 1994b], which searches for finite models of first-order sentences.
If MACE is given the denial of a conjecture, any models found are coun-
termodels to the conjecture. Like Otter, MACE is coded in C, and we
call it in the same way we call Otter.

MACE can receive its input as an initial proof object, and it can
output models in the form of interpretations that can be given directly
to our evaluation function feval. The operation of checking MACE’s
models is simply evaluation with the function feval.

Model-attempt is analogous to a combination of
refutation-attempt and refute-n-check. External-modeler is
a defstub that is analogous to external-prover.

(defun model-attempt (£) ;; return a model of £ or nil
(declare (xargs :guard (and (wff f) (not (free-vars £)))))
(if (or (mot (wff f)) (free-vars f))

nil
(let* ((preprocessed (cnf
(pull-quants
(skolemize (rename-all (nnf £))))))
(mace-result (external-modeler
(assign-ids-to-prf
(initial-proof
(remove-leading-alls preprocessed))
1))
(if (feval f mace-result)
mace-result

nil))))

The soundness theorem for model-attempt is trivial, because the prop-

erty we need to prove is checked by model-attempt.
(defthm model-attempt-fsound
(implies (model-attempt f)
(and (wff f)
(not (free-vars f))
(feval f (model-attempt £)))))

Or, we can state this positively, for unnegated conjectures:
(defun countermodel-attempt (f)

(declare (xargs :guard (and (wff f) (not (free-vars £)))))

(cond ((or (not (wff f)) (free-vars f)) nil)

(t (model-attempt (list ’mot £))))),

(defthm countermodel-attempt-fsound

(implies (countermodel-attempt f)

(and (wff f)

Ivy Proof Checker 23

(not (free-vars f))
(not (feval f (countermodel-attempt £))))))
thints ...).

In other words, if countermodel-attempt produces an interpretation
for a formula, the formula is false in that interpretation, that is, is not
a theorem.

4. INFINITE DOMAINS

Our approach of proving soundness with respect to finite interpreta-

tions is certainly questionable. Consider the sentence
(imp (all x (all y (imp (= (£ x) (f y))
(=xy))))
(all x (exists y (= (£ y) x)))),

that is, one-to-one functions are onto. It is not valid, but it is true for
finite domains. Could Ivy claim to have a proof of such a nontheorem?

Any proof, for finite domains, of a such a sentence must use the finite-
ness hypotheses. But that seems inexpressible in a first-order language,
so that the proof would have to be higher order or model theoretic.” Ivy
works entirely within first-order logic. However, our function (proved
f) is a “black box” in that the user is not supposed to know anything
about it in order to be confident in using Ivy. One could argue that
proved contains a bug that arises only for infinite interpretations, or
that there might be something higher-order lurking there. So, even
though we have high confidence that Ivy is sound, we are pursuing a
general approach that covers infinite interpretations.

ACL2’s encapsulation feature allows it to reason safely about incom-
pletely specified functions. We believe we can use encapsulation to ab-
stract the finiteness.® In our current specification, the important way
in which finiteness enters the picture is by the definition of feval-d,
which recurses through the domain. This function, in effect, expands
universally quantified formulas into conjunctions and existentially quan-
tified formulas into disjunctions. Instead of feval-d, we can consider a
constrained function that chooses an element of the domain, if possible,
that makes a formula true. When evaluating an existentially quantified
formula, we substitute the chosen element for the existentially quantified
variable and continue evaluating. (Evaluation of universally quantified
variables requires some fiddling with negation.) However, proving the
soundness of Skolemization may present complications. If this approach

"We are putting aside the argument that set theory and higher-order logics can be encoded
in first-order logic.
8This approach was suggested by Matt Kaufmann.

24 USING THE ACL2 THEOREM PROVER

succeeds, an interesting (and probably difficult!) exercise would be to
try to use ACL2’s functional instantiation rule to derive the soundness
results for finite interpretations.

Note that the current soundness proofs for (disproved conjecture)
and (modeled formula) are adequate because a finite model is a model.

5. COMPLETENESS

Traditionally, the “interesting” properties of proof procedures are
about completeness rather than soundness. Aside from the syntactic
correctness of the preprocessing functions, we have no results on com-
pleteness. In fact, it is impossible to prove completeness of (proved
conjecture) unless we can prove completeness of the external Otter-
class prover. Even if (proved conjecture) is sound, it may have bugs
that block proofs, for example in the calling sequence for the external
prover. As an extreme example, consider (defun proved (f) nil)—it
is unquestionably sound, but not very useful. The user must rely on ex-
perience with Ivy for evidence that it is complete enough. The computer
files that accompany this chapter contain everything needed to run Ivy,
including examples, and we invite readers to check it out.

6. EXERCISES

Each exercise has two corresponding files in the exercise direc-
tory. Numbered startup files contain comments, relevant include-book
forms, and definitions of related functions. Numbered solution books
contain solutions.

1. Define a function to check whether a given variable occurs freely
in a formula. Prove that substitution for a variable that does not
occur in the formula has no effect.

2. Prove that if an interpretation contains a function func, and if a
formula does not contain the corresponding function symbol, then
evaluation of the formula in the interpretation is independent of
the occurrence of func. Assume that func is the first function in
the interpretation.

3. Define a function (cnf f£) that converts negation normal form
formulas (see book "nnf") to conjunctive normal form and a pred-
icate (cnfp f) that recognizes conjunctive normal form formulas.
Prove that cnf (1) preserves the property wff, (2) converts nnfp
formulas to cnfp, and (3) is sound.

Ivy Proof Checker 25

4. The current proof checker for resolution steps generates all resol-
vents of the parent clauses and checks whether the clause from
the proof object follows from the conjunction of all the resolvents.
Define a proof-checking procedure that computes the specified re-
solvent directly. Prove that the procedure is sound.

5. Conjunctions and disjunctions are binary, which makes it inconve-
nient to write conjectures with several hypotheses. Define a func-
tion to convert a formula with multiple-arity conjunctions and dis-
junctions to a formula with binary conjunctions and disjunctions.
Decide what properties have to be proved to demonstrate that your
approach is acceptable, and prove those properties.

6. We rely on the ability to generate a new symbol with respect to
a given symbol list in steps 2 and 3 of the search procedure. In
variable renaming, step 2, we generate a new variable. In Skolem-
ization, step 3, we generate a Skolem function name. Common Lisp
has a function gensym , but it is state dependent and therefore not
available in ACL2. Define an ACL2 function that generates a sym-
bol that is not in a given list of symbols, and prove its correctness.

References

[McCune, 1994a] McCune, W. (1994a). A Davis-Putnam program and
its application to finite first-order model search: Quasigroup existence
problems. Tech. Report ANL/MCS-TM-194, Argonne National Lab-
oratory, Argonne, IL.

[McCune, 1994b] McCune, W. (1994b). MACE: Models and Counterex-
amples. URL http://www.mcs.anl.gov/AR/mace/.

[McCune, 1994c] McCune, W. (1994c). Otter 3.0 Reference Manual and
Guide. Tech. Report ANL-94/6, Argonne National Laboratory, Ar-
gonne, IL. See also URL http://www.mcs.anl.gov/AR/otter/.

[McCune, 1998] McCune, W. (1998). Automatic proofs and counterex-
amples for some ortholattice identities. Information Processing Let-
ters, 65:285-291.

[McCune and Wos, 1997] McCune, W. and Wos, L. (1997). Otter:
The CADE-13 Competition incarnations. .J. Automated Reasoning,
18(2):211-220.

[Wos et al., 1992] Wos, L., Overbeek, R., Lusk, E., and Boyle, J. (1992).
Automated Reasoning: Introduction and Applications, 2nd edition.
McGraw-Hill, New York.

27

