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the phenomena of prime interest (e.g., convective), suggesting the need forimplicit methods. In addition, many applications are geometrically complexand possess a wide range of length scales, requiring an unstructured meshto adequately resolve the problem without requiring an excessive number ofmesh points and to accomplish mesh generation and adaptation (almost) au-tomatically. The best algorithms for solving nonlinear implicit problems areoften Newton methods, which themselves require the solution of very large,sparse linear systems. The best algorithms for these sparse linear problems,particularly at very large sizes, are often preconditioned iterative methods.This nested hierarchy of tunable algorithms has proved e�ective in solv-ing complex problems in areas such as aerodynamics, combustion, radiationtransport, and global circulation. Typically, for steady-state solutions froma trivial initial guess, the number of \work units" (evaluations of the discreteresiduals on the �nest mesh on which the problem is represented) is around103 (to achieve reductions in the norm of the residual of 10�8 to 10�12).Although these algorithms are e�cient (in the sense of using relatively fewoating-point operations to arrive at the �nal result), they do not necessarilyachieve the absolute ops-per-second (op/s) ratings that less e�cient or lessversatile algorithms may [3].Our submission focuses on the time to solution rather than the achievedoating-point performance as the �gure of merit. We have achieved a perfor-mance of 36 microseconds per degree of freedom on a mesh with 2.8 millionnodes using 1024 processors of an SGI/Cray T3E. This represents a sustainedoating-point rate of 76 Gop/s, which shows that the code is running atclose to the aggregate memory-bandwidth limit on performance. The code isalso scalable, showing nearly linear scaling between 128 and 1024 processorsfor a �xed-size problem. Achieving this level of performance has required acombination of scalable algorithms, data structure optimizations, and pow-erful computers and represents a level of performance well above what iscommonly considered achievable for sparse-matrix and unstructured meshcomputations. See, for example, the comments by the \High End Crusader"[6, 7], who has called for a sparse-matrix benchmark.As a bonus, our message-passing code is completely portable, allowingthe application to take advantage of continuing improvements in hardwareperformance without further software development.
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2 The ApplicationThe application code, FUN3D, is a tetrahedral vertex-centered unstructuredmesn code developed by W. K. Anderson of the NASA Langley ResearchCenter for compressible and incompressible Euler and Navier-Stokes equa-tions [1, 2]. FUN3D uses a control volume discretization with variable-orderRoe schemes for approximating the convective uxes and a Galerkin dis-cretization for the viscous terms. FUN3D is being used for design optimiza-tion of airplanes, automobiles, and submarines, with irregular meshes com-prising several million mesh points. The optimization loop involves manyanalysis cycles. Thus, reaching the steady-state solution in each analysiscycle in a reasonable amount of time is crucial to conducting the designoptimization. From the beginning, our e�ort has been focused on minimiz-ing the time to convergence without compromising scalability, by means ofappropriate algorithms and architecturally e�cient data structures.We have ported FUN3D into the PETSc framework and tuned it for goodcache performance and distributed parallel systems, using the single-programmultiple-data (SPMD) programmingmodel. This new variant (PETSc-FUN3D)is being used to run Navier-Stokes applications with the Spalart-Almaras tur-bulence model on modest-sized problems, and we expect to scale up thesemore phenomenologically complex problems in the coming months, while alsobeginning to cope with parallelization of the preprocessing.Thus far, our large-scale parallel experience with PETSc-FUN3D is withthe compressible and incompressible Euler subsets, but nothing in the solu-tion algorithms or software changes with additional physical phenomenology.Of course, the convergence rate will vary with conditioning, as determined byMach and Reynolds numbers and the correspondingly induced mesh adap-tivity. Furthermore, robustness becomes more of an issue in problems ad-mitting shocks or using turbulence models. The lack of nonlinear robustnessis a fact of life that is largely outside of the domain of parallel scalability.In fact, when nonlinear robustness is restored in the usual manner, throughpseudo-transient continuation, the conditioning of the linear inner iterationsis enhanced, and parallel scalability may be improved. In some sense, theEuler code, with its smaller number of ops per point per iteration and itsaggressive pseudotransient buildup toward the steady-state limit, may be amore, not less, severe test of parallel performance.
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3 Algorithms and Data StructuresAchieving high sustained performance, in terms of solutions per second, in-volves three aspects. The �rst is a scalable algorithm in the sense of con-vergence rate. The second is good per-processor performance on contempo-rary cache-based microprocessors. The third is a scalable implementation,in the sense of time per iteration as the number of processors increases. Ournonlinear method, pseudo-transient Newton-Krylov-Schwarz (	NKS), is ane�cient algorithm, as the chart of nonlinear iterations in Figure 3 shows.The per-processor performance is also quite good; in fact, it is close to thememory-bandwidth limit (a more realistic measure of achievable performancethan peak oating-point for sparse problems [8]). Moreover, on any archi-tecture with a su�ciently rich interconnection network, 	NKS leads to goodper-iteration scalability, as argued from a simple analytical model in [14].3.1 	NKS SolverOur implicit algorithmic framework for advancing toward an assumed steadystate, f(u) = 0, has the form ( 1�t` )u` + f(u`) = ( 1�t` )u`�1; where �t` !1 as `!1; u represents the fully coupled vector of unknowns, and f(u) isthe vector of nonlinear conservation laws.Each member of the sequence of nonlinear problems, ` = 1; 2; : : :, is solvedwith an inexact Newton method. The resulting Jacobian systems for theNewton corrections are solved with a Krylov method, relying directly onlyon matrix-free operations. The Krylov method needs to be preconditionedfor acceptable inner iteration convergence rates, and the preconditioning canbe the \make-or-break" feature of an implicit code. A good preconditionersaves time and space by permitting fewer iterations in the Krylov loop andsmaller storage for the Krylov subspace. An additive Schwarz preconditioner[5] accomplishes this in a concurrent, localized manner, with an approxi-mate solve in each subdomain of a partitioning of the global PDE domain.The coe�cients for the preconditioning operator are derived from a lower-order, sparser, and more di�usive discretization than that used for f(u),itself. Applying any preconditioner in an additive Schwarz manner tends toincrease op rates over the same preconditioner applied globally, since thesmaller subdomain blocks maintain better cache residency, even apart fromconcurrency considerations [17]. Combining a Schwarz preconditioner with aKrylov iteration method inside an inexact Newton method leads to a syner-4



gistic, parallelizable nonlinear boundary value problem solver with a classicalname: Newton-Krylov-Schwarz (NKS) [9]. We combine NKS with pseudo-timestepping [13] and use the shorthand 	NKS to describe the algorithm.To implement this algorithm in FUN3D, we employ the PETSc pack-age [4], which features distributed data structures|index sets, vectors, andmatrices|as fundamental objects. Iterative linear and nonlinear solvers areimplemented within PETSc in a data structure-neutral manner, providing auniform application programmer interface. Portability is achieved in PETScthrough MPI, but message-passing detail is not required in the application.We use MeTiS [10] to partition the unstructured mesh.3.2 Memory-Centric ComputationWe view a PDE computation predominantly as a mix of loads and stores withembedded oating-point operations (ops). Since ops are cheap relative tomemory references, we concentrate on minimizing the memory references andemphasize strong sequential performance as one of the factors needed for ag-gregate performance worthy of the theoretical peak of a parallel machine.We use interlacing (creating spatial locality for the data items needed suc-cessively in time), structural blocking for a multicomponent system of PDEs(cutting the number of integer loads signi�cantly, and enhancing reuse of dataitems in registers), and vertex and edge reorderings (increasing the level oftemporal locality). Applying these techniques required whole-program trans-formations of certain loops of the original vector-oriented FUN3D, but raisedthe per-processor performance by a factor of between 2.5 and 7 (Figure 1),depending on the microprocessor and optimizing compiler [12].The importance of memory bandwidth to the overall performance is sug-gested by the single-processor performance of PETSc-FUN3D shown in Fig-ure 2. The performance of PETSc-FUN3D is compared with the peak per-formance and the result of the STREAM benchmark [15] which measuresachievable performance for memory bandwidth-limited computations. Thesecomparisons show that the STREAM results are much better indicators ofrealized performance than are the peak numbers. The parts of the code thatare memory-bandwidth limited (e.g. the sparse triangular matrix solutionphase, which is responsible for 25% of the overall execution time) show poorperformance, as compared with the dense matrix-matrix operations, whichoften achieve 80{90% of peak. Even parts of the code that are not memoryintensive might achieve much less than peak performance because of the lim-5
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Figure 1: The e�ect of cache optimizations on the average execution time forone nonlinear iteration. BASE denotes the case without any optimizations,and NOER denotes no edge reordering. The performance improves by afactor of about 2.5 on the Pentium and 7.5 on the IBM SP. The processordetails are 120 MHz IBM SP (P2SC \thin", 128 KB L1), 250 MHz Origin2000(R10000, 32 KB L1, and 4 MB L2), and 400 MHz Pentium II (runningWindows NT 4.0, 16 KB L1, and 512 KB L2).its on the number of basic operations that can be performed in a single clockcycle [8]. This is true for the ux calculation routine in PETSc-FUN3D,which consumes over 50% of the overall execution time. Instruction schedul-ing limits the performance to 47% of the peak on 250 MHz SGI Origin2000even under a perfect memory system (leading to an estimate of 235 Mops/s),which is close to the value of 209 Mops/s experimentally measured by theOrigin's hardware counters.In addition to the locality enhancing optimizations mentioned above, ourapproach for e�cient parallel computation is \owner computes," with mes-sage merging and overlapping communication with computation where possi-ble via split transactions. Each processor \ghosts" its stencil dependencies onits neighbors' data. Grid functions are mapped from a global (user) orderinginto contiguous local orderings (which, in unstructured cases, are designed6
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Figure 2: Sequential performance of PETSc-FUN3D for a coarse mesh of22,677 vertices (with 4 unknowns per vertex). The processor details for IBMSP and Origin2000 are the same as in Figure 1. The SGI/Cray T3E is basedon a 450 MHz DEC Alpha 21164 with 8 KB L1 cache and 96 KB uni�ed L2cache.to maximize spatial locality for cache line reuse). Scatter/gather operationsare created between local sequential vectors and global distributed vectors,based on runtime-deduced connectivity patterns.4 Measuring the Parallel PerformanceWe use PETSc's pro�ling and logging features to measure the parallel per-formance. PETSc logs many di�erent types of events and provides valuableinformation about time spent, communications, load balance, and so forth,for each logged event. PETSc uses manual counting of ops, which are after-wards aggregated over all the processors for parallel performance statistics.We have observed that the ops reported by PETSc are close to (within 10percent of) the values statistically measured by hardware counters on R10000processor.PETSc uses the best timers available in each processing environment.7



In our rate computations, we exclude the initialization time devoted to I/Oand data partitioning. To suppress timing variations caused by paging inthe executable from disk, we preload the code into memory with one non-linear iteration, then ush, reload the initial iterate, and begin performancemeasurements.Since we are solving large �xed-size problems on distributed memory ma-chines, it is not reasonable to base parallel scalability on a uniprocessor run,which would thrash the paging system leading to superscalar speedup. Ourbase processor number is such that the problem has just �t into the localmemory. We have employed smaller sequential cases to tune the performanceof the code, in particular the data reuse in cache [11, 12] as shown in Fig-ure 1. We believe that this procedure leads us to a fair de�nition of parallele�ciency. In the results below, we decompose the parallel e�ciency into twofactors: algorithmic e�ciency, measuring the e�ect of increased granularityon the number of iterations to convergence, and implementation e�ciency,measuring the e�ect of increased granularity on per-iteration performance.5 Scalability StudiesWe present three aspects of scalability in this section. Throughout we useunstructured tetrahedral meshes of the standard Onera M6 wing closed witha symmetry plane inboard, prepared for us by colleagues at the NASA Lan-gley Research Center. On the machine with the �nest granularity availableto us to date, a Cray T3E with 1024 600MHz processors, we show severalmetrics of �xed-size scalability on our �nest mesh. On three machines rep-resentative of the two ASCI Blue machines (an IBM SP and an SGI Origin)and a T3E with 450MHz processors, we compare executions of the samecode on an intermediate �xed-size problem on up to 80 processors (the max-imum available on our SP con�guration). Finally, to convey some idea ofthe sensitivity of the Newton method to the severity of the nonlinearity, andof the sensitivity of the preconditioned Krylov solver with respect to di�er-ent conditioning inherited from di�erent Mach numbers of the simulationwe present some comparisons across Mach number (incompressible to super-sonic). This study also gives an indication of the sensitivity of the oatingpoint performance to the blocksize of the unknown vector, which is four inthe incompressible case and �ve in the compressible cases.8



5.1 Parallel Scalability on the T3EThe parallel scalability of PETSc-FUN3D is shown in Figure 3 for a meshwith 2.8 million vertices running on up to 1024 Cray T3E processors. Wesee that the implementation e�ciency of parallelization (i.e., the e�ciencyon a per-iteration basis) is 82 percent in going from 128 to 1024 proces-sors. The number of iterations is also fairly at over the same eightfoldrange of processor number (rising from 37 to 42), reecting reasonable al-gorithmic scalability. This is much less serious degradation than predictedby the linear elliptic theory (see [16]); pseudo-timestepping|required by thenonlinearity|is responsible. The overall e�ciency is the product of the im-plementation e�ciency and the algorithmic e�ciency. The Mop/s per pro-cessor are also close to at over this range, even though the relevant workingsets in each subdomain vary by nearly a factor of eight. This emphasizes therequirement of good serial performance for good parallel performance.5.2 Parallel Scalability across ArchitecturesCross-platform performance comparisons of a medium-size wing problem aregiven in Table 1, which lists overall e�ciencies. The 16-processor run hasapproximately 22,369 vertices per processor; the 80-processor run has approx-imately 4,473. Decreasing volume-to-surface ratios in the subdomains andincreasing depth of the global reduction spanning tree of the processors leadto gradually decaying e�ciency. The convergence rate, in terms of pseudo-time steps to achieve a relative reduction of steady-state residual norm of10�12, degrades only slowly with increased partitioning. Exactly one Newtoniteration is performed on each pseudo-time step, and the Krylov space restartsize is 30, with a maximum of one restart. The slight di�erences in the num-bers of timesteps arise from slightly di�erent oating point arithmetic and/ornoncommutative summation of global inner products, which lead to slightlydi�erent trajectories to the same steady state. The Origin is the fastest perprocessor (achieving the highest percentage of peak sequentially). The T3Ehas the best scalability due to the fact that the communication network isfast compared with the achieved sequential processor performance. The fullproblem �ts on smaller numbers of processors on the Origin, but \false" su-perunitary parallel scalability results because of the cache thrashing whentoo many vertices are assigned to a processor; 5,000 to 20,000 vertices perprocessor is a reasonable load for this code.9
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Figure 3: Parallel performance for a �xed size mesh of 2.8 million verticesrun on upto 1024 Cray T3E 600 MHz processors10



Table 1: Transonic ow over M6 wing; �xed-size mesh of 357,900 vertices.No. Cray T3E IBM SP SGI OriginProcs. Steps Time E�. Steps Time E�. Steps Time E�.16 55 2406s | 55 1920s | 55 1616s |32 57 1331s .90 57 1100s .87 56 862s .9448 57 912s .88 57 771s .83 56 618s .8764 57 700s .86 56 587s .82 57 493s .8280 57 577s .83 59 548s .70 57 420s .775.3 Parallel Scalability across Flow RegimesTrans-Mach convergence comparisons of the same problem are given in Ta-ble 2. Here e�ciencies are normalized by the number of timesteps, to factorconvergence degradation out of the performance picture and measure im-plementation factors alone (though convergence degradation with increasinggranularity is modest). The number of steps increases dramatically with thenonlinearity of the ow, as Mach rises; however, the linear work per stepdecreases on average. Reasons for this include smaller pseudo-timesteps inearly nonlinear iterations and the increased hyperbolicity of the ow. Thecompressible Jacobian is far more complex to evaluate, but its larger blocks(5� 5 instead of 4� 4) concentrate locality, achieving much higher compu-tational rates than the corresponding incompressible Jacobian.6 ConclusionHigh sustained scalable performance has been demonstrated on simulationsthat use implicit algorithms of choice for unstructured PDEs. In the historyof the peak-performance Bell Prize competition, PDE-based computationshave led (or been part of leading entries containing multiple applications) in1988, 1989, 1990, and 1996. All of these leading entries have been obtainedon vector or SIMD architectures, and all were based on structured meshes.The 76 Gop/s sustained performance of our unstructured application on ahierarchical distributed memory multiprocessor in the SPMD programmingstyle is within a factor of 2.2 of the 1996 structured application.The achieved op/s rate is less important to computational engineers11



Table 2: Flow over M6 wing on SGI Origin; �xed-size mesh of 357,900 vertices(1,431,600 DOFs incompressible, 1,789,500 DOFs compressible).No. Time per Per-Step Impl. FcnEval JacEvalProcs. Steps Step Speedup E�. Mop/s Mop/sIncompressible (4� 4 blocks)16 19 41.6s | | 2,630 35932 19 20.3s 2.05 1.02 5,366 73648 21 14.1s 2.95 0.98 7,938 1,08064 21 11.2s 3.71 0.93 10,545 1,39880 21 10.1s 4.13 0.83 11,661 1,592Subsonic (Mach 0.30) (5� 5 blocks)16 17 55.4s | | 2,002 2,69832 19 29.8s 1.86 0.93 3,921 5,21448 19 20.5s 2.71 0.90 5,879 7,77064 20 14.3s 3.88 0.97 8,180 10,74380 20 12.7s 4.36 0.87 9,452 12,485Transonic (Mach 0.84) (5� 5 blocks)16 55 29.4s | | 2,009 2,73632 56 15.4s 1.91 0.95 4,145 5,43748 56 11.0s 2.66 0.89 5,942 7,96164 57 8.7s 3.39 0.85 8,103 10,53180 57 7.4s 3.99 0.80 9,856 12,774Supersonic (Mach 1.20) (5� 5 blocks)16 80 19.2s | | 2,025 2,67932 81 10.6s 1.81 0.90 3,906 5,27548 81 7.1s 2.72 0.91 6,140 7,96164 82 5.8s 3.31 0.83 7,957 10,39880 80 4.6s 4.20 0.84 9,940 12,889
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