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Abstract

We describe the development and implementation of a spectral element code for multimillion
gridpoint simulations of incompressible flows in general two- and three-dimensional domains.
Parallel performance is present on up to 2048 nodes of the Intel ASCI-Red machine at Sandia.

1 Introduction

We consider numerical solution of the unsteady incompressible Navier-Stokes equations,
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coupled with appropriate boundary conditions on the velocity, u. We are developing a spec-
tral element code to solve these equations on modern large-scale parallel platforms featuring
cache-based nodes. As illustrated in Fig. 1, the code is being used with a number of outside
collaborators to address challenging problems in fluid mechanics and heat transfer, including the
generation of hairpin vortices resulting from the interaction of a flat-plate boundary layer with
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a hemispherical roughness element; modeling the geophysical fluid flow cell space laboratory ex-
periment of buoyant convection in a rotating hemispherical shell; Rayleigh-Taylor instabilities;
flow in a carotid artery; and forced convective heat transfer in grooved-flat channels.

This paper discusses some of the critical algorithmic and implementation features of our
numerical approach that have led to efficient simulation of these problems on modern parallel
architectures. Section 2 gives a brief overview of the spectral element discretization. Section
3 discusses components of the time advancement procedure, including a projection method
and parallel coarse-grid solver that are applicable to other problem classes and discretizations.
Section 4 presents performance results and Section b gives a brief conclusion.

2 Spectral Element Discretization

The spectral element method is a high-order weighted residual technique developed by Patera
and coworkers in the ’80s that couples the tensor product efficiency of global spectral methods
with the geometric flexibility of finite elements [9, 11]. Locally, the mesh is structured, with
the solution, data, and geometry expressed as sums of Nth-order tensor product Lagrange
polynomials based on the Gauss or Gauss-Lobatto (GL) quadrature points. Globally, the mesh
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Figure 1: Recent spectral element simulations. To the right, from the top: hairpin vortex generation
in wake of hemispherical roughness element (Res = 850); spherical convection simulation of the
geophysical fluid flow cell at Ra = 1.1 x 10°, Ta = 1.4 x 10%; two-dimensional Rayleigh-Taylor
instability; flow in a carotid artery; and temporal-spatial evolution of convective instability in
heat-transfer augmentation simulations.

is an unstructured array of K deformed hexahedral elements and can include geometrically
nonconforming elements. The discretization is illustrated in Fig. 2, which shows a mesh in IR?
for the case (K, N) = (3,4). Also shown is the reference (r,s) coordinate system used for all
function evaluations. The use of the GL basis for the interpolants leads to efficient quadrature for
the weighted residual schemes and greatly simplifies operator evaluation for deformed elements.

For problems having smooth solutions, such as the incompressible Navier-Stokes equations,
exponential convergence is obtained with increasing N, despite the fact that only C° continuity
1s enforced across elemental interfaces. This is demonstrated in Table 1, which shows the
computed growth rates when a small-amplitude Tollmien-Schlichting wave is superimposed on
plane Poiseuille channel flow at Re = 7500, following [6]. The amplitude of the perturbation
is 107°, implying that the nonlinear Navier-Stokes results can be compared with linear theory
to about five significant digits. Three error measures are computed: error; and errors are the
relative amplitude errors at the end of the first and second periods, respectively, and errorg is
the error in the growth rate at a convective time of 50. From Table 1, it is clear that doubling
the number of points in each spatial direction yields several orders of magnitude reduction in
error, implying that just a small increase in resolution is required for very good accuracy. The



Figure 2: Spectral element discretization in IR? showing GL nodal lines for (K, N) = (3,4).

significance of this is underscored by the fact that, in three dimensions, the effect on the number
of gridpoints scales as the cube of the relative savings in resolution.

The computational efficiency of spectral element methods derives from the use of tensor-
product forms. Functions in the mapped coordinates are expressed as

u(x"(r,8)) | = Zzufjhfv(r)h;v(s), (1)
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k
where uj;

the GL quadrature points, {é’j\f}é\;o; and x*(r, s) is the coordinate mapping from the reference

is the nodal basis coefficient; A is the Lagrange polynomial of degree N based on

domain, Q := [—1,1]% to Q. With this basis, the stiffness matrix for an undeformed element
k in IR? can be written as a tensor-product sum of one-dimensional operators,

A = B,® A, + Ay @ B,, (2)
where ﬁ* and B* are the one-dimensional stiffness and mass matrices associated with the re-
spective spatial dimensions. If u* = ufj 1s the matrix of nodal values on element k, then a
typical matrix-vector product required of an iterative solver takes the form
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Similar forms result for other operators and for complex geometries. The latter form illustrates
how the tensor-product basis leads to matrix-vector products (Au) being recast as matriz-
matriz products, a feature central to the efficiency of spectral element methods. These typically
account for roughly 90% of the work and are usually implemented with calls to DGEMM, unless
hand-unrolled F77 loops prove faster on a given platform.

Table 1: Spatial convergence, O-S problem: K = 15, At = .003125

N E(t1) error, E(t2) errors error,
7 1.11498657 0.003963 1.21465285 0.037396 0.313602
9 1.11519192 0.003758 1.24838788 0.003661 0.001820

11 1.11910382 0.000153 1.25303597 0.000986 0.004407
13 1.11896714 0.000016 1.25205855 0.000009 0.000097
15 1.11895646 0.000006 1.25206398 0.000014 0.000041




Global matrix products, Au, also require a gather-scatter step to assemble the elemental
contributions. Since all data is stored on an element-by-element basis, this amounts to sum-
ming nodal values shared by adjacent elements and redistributing the sums to the nodes. The
parallel implementation of this follows the standard message-passing-based SPMD model, in
which contiguous groups of elements are distributed to processors and data on shared interfaces
is exchanged and summed. A stand-alone MPI-based utility has been developed for this opera-
tion that has an easy-to-use interface requiring only two calls:

handle=gs-init(global-node-numbers,n) and ierr=gs-op(u,op,handle),

where global-node-numbers() associates the n local values contained in the vector u() with their
global counterparts, and op denotes the reduction operation performed on shared elements of ()
[14]. The utility supports a general set of commutative/associative operations as well as a vector
mode for problems having multiple degrees of freedom per vertex. Communication overhead
is further reduced through the use of a recursive spectral bisection based element partitioning
scheme to minimize the number of vertices shared among processors [12].

3 Time Advancement and Solvers

The Navier-Stokes timestepping is based on the second-order operator splitting methods devel-
oped in [1, 10]. The convective term is expressed as a material derivative, and the resultant
form is discretized using a stable second-order backward difference formula:

gn—Z _ 4@77,—1 4 3277,
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where S(u”) is the linear symmetric Stokes problem to be solved implicitly, and @"~ 7 is the
velocity field at time step n — ¢ computed as the explicit solution to a pure convection problem.
The subintegration of the convection term permits values of At corresponding to convective
CFL numbers of 2-5, thus significantly reducing the number of (expensive) Stokes solves.

The Stokes problem is of the form

o ()= ()

and is also treated by second-order splitting, resulting in subproblems of the form

Hg?:i?’ Egnzgn’

=S(u"),

for the velocity components, «, (i = 1,...,3), and pressure, p”. Here, H is a diagonally

dominant Helmholtz operator representing the parabolic component of the momentum equations
and is readily treated by Jacobi-preconditioned conjugate gradients; £/ := DB~'D7 is the Stokes
Schur complement governing the pressure; and B is the (diagonal) velocity mass matrix.

E is a consistent Poisson operator and is effectively preconditioned by using the overlapping
additive Schwarz procedure of Dryja and Widlund [2, 6, 7]. In addition, a high-quality initial
guess 1s generated by projecting the solution onto the space of previous solutions. The procedure
is summarized in the following steps

!
(7) p= Zaiﬁi, a; = ETQ"
i=1
(¢%) Solve : EAp =g" — Ep to tolerance c. (4)
! !
(iii) By, = (Ap= > B2/ 10— Biblle, B =] EAp.
i=1 i=1

The first step computes an initial guess, p, as a projection in the E-norm (||p||g = (BTEB)%)

of p” onto an existing basis, @1, : ,E) The second computes the remaining (orthogonal)
perturbation to a specified absolute tolerance, €. The third augments the approximation space
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1,658,880 degree-of-freedom pressure system associated with the spherical convection problem of
Fig. 1.

with the most recent (orthonormalized) solution. The approximation space is restarted once
(l > L) by setting p := p"/||p"[|p- The projection scheme (steps (i) and (ii)) requires two
matrix-vector products per timestep, one in step (i) and one in step (). (Note that it is not
possible to use ¢" — Ep in place of EAp in (iii) because (ii} is satisfied only to within e.)

As shown in [4], the projection procedure can be extended to any parameter-dependent
problem and has many desirable properties. It can be coupled with any iterative solver, which
is treated as a black box (4i:). Tt gives the best fit in the space of prior solutions and is therefore
superior to extrapolation. It converges rapidly, with the magnitude of the perturbation scaling

s O(At) + O(e).

low communication requirements because the inner products for the basis coefficients can be

The classical Gram-Schmidt procedure is observed to be stable and has

computed in concert. Under normal production tolerances, the projection technique yields a
two- to fourfold reduction in work. This is illustrated in Fig. 3, which shows the reduction in
residual and iteration count for the buoyancy-driven spherical convection problem of Fig. 1,
computed with K = 7680 elements of order N = 7 (1,658,880 pressure degrees of freedom). The
iteration count is reduced by a factor of 2.5 to 5 over the unprojected (L = 0) case, and the
initial residual is reduced by two and one-half orders of magnitude.

The perturbed problem (44i) is solved using conjugate gradients, preconditioned by an ad-
ditive overlapping Schwarz method [2] developed in [6, 7]. The preconditioner,

K
M~ :=R{AT'Ry + > RIAD'R,,
k=1

requires a local solve ([I,Zl) for each (overlapping) subdomain, plus a global solve (A;') for a
coarse-grid problem based on the mesh of spectral element vertices. The operators R, and Rg
are simply Boolean restriction and prolongation matrices that map data between the global and
local representations, while R, and RE map between the fine and coarse grids. The method is
naturally parallel because the subdomain problems can be solved independently. Parallelization
of the coarse-grid component is less trivial and is discussed below. The local subdomain solves
exploit the tensor product basis of the spectral element method. Elements are extended by a
single gridpoint in each of the directions normal to their boundaries. Bilinear finite element
Laplacians, flk, and lumped mass matrices, Bk, are constructed on each extended element,
Qk, in a form similar to (2). The tensor-product construction allows the inverse of fl;l to be
expressed as

A7l = (Sy@S)lIl@ A, + Ay @ I7H(S] @ ST,



where S, is the matrix of eigenvectors, and A, the diagonal matrix of eigenvalues, solving the
generalized eigenvalue problem fl*g = /\B*g associated with each respective spatial direction.
The complexity of the local solves is consequently of the same order as the matrix-vector product
evaluation (O(K N?) storage and O(K N*) work in IR?) and can be implemented as in (3) using
fast matrix-matrix product routines. While the tensor product form (2) is not strictly applicable
to deformed elements, it suffices for preconditioning purposes to build flk on a rectilinear domain
of roughly the same dimensions as Q [7].

The coarse-grid problem, z = Aalﬁ, is central to the efficiency of the overlapping Schwarz
procedure, resulting in an eightfold decrease in iteration count in model problems considered
in [6, 7]. Tt is also a well-known source of difficulty on large distributed-memory architectures
because the solution and data are distributed vectors, while Aal is completely full, implying a
need for all-to-all communication [3, 8]. Moreover, because there is very little work on the coarse
grid (typ. O(1) d.o.f. per processor), the problem is communication intensive. We have recently
developed a fast coarse-grid solution algorithm that readily extends to thousands of processors
[5, 13]. If Ay, € IR™™" is symmetric positive definite and X := (%,,...,Z,) is a matrix of
Agy-orthonormal vectors satisfying L’TAoij = J;,, then the coarse-grid solution is computed as

» &,
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z =Y oji; = XXTb, o, :=i]b. (5)
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Since Z is the best fit in R(X) = IR”, we have # = z and XX7 = Aj'. The projection
procedure (5) is similar to (4¢), save that the basis vectors {Z,} are chosen to be sparse. Such
sparse sets can be readily found by recognizing that, for any gridpoint ¢ exterior to the stencil of
J, there exists a pair of Aj-conjugate unit vectors, ¢; and ¢;. For example, for a regular n-point
mesh in IR? discretized with a standard five-point stencil, one can immediately identify half of
the unit vectors (associated, e.g., with the “red” squares) in IR" as unnormalized elements of
X. The remainder of X can be created by applying Gram-Schmidt orthogonalization to the
remainder of IR". In [5, 13], it is shown that nested dissection provides a systematic approach to
identifying a sparse basis and yields a factorization of Aal with O(nm{T_l) nonzeros for n-point
grid problems in ]Rd, d > 2. Moreover, the required communication volume on a P-processor
machine is bounded by 3T log, P, a clear gain over the O(n) or O(nlog, P) costs incurred
by other commonly employed approaches.

The performance of the X X7 scheme on ASCI-Red is illustrated in Fig. 4 for a (63 x 63)
and (127 x 127) point Poisson problem (n = 3069 and n = 16129, respectively) discretized by
a standard five-point stencil. Also shown are the times for the commonly used approaches of
redundant banded-LU solves and row-distributed Aal. The latencyx2log P curve represents a
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Figure 4: ASCI-Red solve times for a 3969 (left) and 16129 (right) d.o.f. coarse grid problem.



lower bound on the solution time, assuming that the required all-to-all communication uses a
contention free fan-in/fan-out binary tree routing. We see that the X X7 solution time decreases
until the number of processors is roughly 16 for the n = 3969 case, and 256 for the n = 16129
case. Above this, it starts to track the latency curve, offset by a finite amount corresponding to
the bandwidth cost. We note that X X7 approach is superior to the distributed Aal approach
from a work and communication standpoint, as witnessed by the substantially lower solution
times in each of the work- and communication-dominated regimes.

4 Performance Results

We have run our spectral element code on a number of distributed-memory platforms, including
the Paragon at Caltech, T3E-600 at NASA Goddard, Origin2000 and SP at Argonne, ASCI-
Blue at Los Alamos, and ASCI-Red at Sandia. We present recent timing results obtained using
up to 2048 nodes of ASCI-Red. Each node on ASCI-Red consist of two Zeon 333 MHz Pentium
IT processors that can be run in single- and dual-processor mode. The dual mode is exploited for
the matrix-vector products associated with H, F, and fllzl by partitioning the element lists on
each node into two parts and looping through these independently on each of the processors. The
timing results presented are for the timestepping portion of the runs only. During production
runs, usually 14 to 24 hours in length, our setup and I1/O costs are typically in the range of
2-5%. The test problem is the transitional boundary layer/hemisphere calculation of Fig. 1 at
Res = 1600, using a Blasius profile of thickness § = 1.2R as an initial condition. The mesh is
an oct-refinement of the production mesh with (K, N) = (8168, 15) corresponding to 27,799,110
grid points for velocity and 22,412,992 for pressure.

Figure 5 shows the time per step (left) and the iteration counts for the pressure and (-
component) Helmholtz solves (right) over the first 26 timesteps. The significant reduction in
pressure iteration count is due to the difficulty of computing the initial transients and the benefits
gained from the pressure projection procedure. Table 2 presents the total time and sustained
performance for the 26 timesteps using a combination of unrolled f77 loops and assembly coded
DGEMM routines. Two versions of DGEMM were considered: the standard version (csmath), and
a specially-tuned version (perf) written by Greg Henry at Intel. We note that the average time
per step for the last five steps of the 319 GF run is 17.5 seconds. Finally, the coarse grid for this
problem has 10,142 distributed degrees of freedom and accounts for 4.0% of the total solution
time in the worst-case scenario of 2048 nodes in dual-processor mode. If the A~! approach were
used instead this would have increased to 15%.
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Figure 5: P = 2048 ASCI-Red-333 dual-processor mode results for the first 26 time steps for
(K,N) = (8168,15): solution time-per-step (left) and number of pressure and (z-component)
Helmholtz iterations per-step (right).



Table 2: ASCI-Red-333: total time and GrLopPs, K = 8168, N = 15.

5

single (csmath) dual (csmath) single (perf) dual (perf)
P time(s) GFLOPsS | time(s) GFLOPS | time(s) GFLOPS | time(s) GFLOPS
512 6361 47 4410 67 5969 50 3646 81
1024 3163 93 2183 135 2945 100 1816 163
2048 1617 183 1106 267 1521 194 927 319
Conclusion

We have developed a highly accurate spectral element code based on scalable solver technology

that exhibits excellent parallel efficiency and sustains high MFLOPS.

It attains exponential

convergence, allows a convective CFL of 2-5, and has efficient multilevel elliptic solvers including
a coarse-grid solver with low communication requirements.
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