
Numerical Simulation and Immersive Visualization of HairpinVorticesH. M. Tufo,1 P. F. Fischer,2 M. E. Papka,2 K. Blom3August 20, 1999AbstractTo better understand the vortex dynamics of coherent structures in turbulent and transitional bound-ary layers, we consider direct numerical simulation of the interaction between a 
at-plate-boundary-layer
ow and an isolated hemispherical roughness element. Of principal interest is the evolution of hairpinvortices that form an interlacing pattern in the wake of the hemisphere, lift away from the wall, and arestretched by the shearing action of the boundary layer. Using animations of unsteady three-dimensionalrepresentations of this 
ow, produced by the vtk toolkit and enhanced to operate in a CAVE virtualenvironment, we identify and study several key features in the evolution of this complex vortex topologynot previously observed in other visualization formats.1 IntroductionWe present visualization results of numerically generated hairpin vortex formation and evolution in in-compressible boundary layer 
ows. At moderate 
ow speeds, hairpin vortices provide an example of anobservable, organized transition process from steady, two-dimensional laminar 
ows to unsteady, three-dimensional turbulent 
ows. Consequently, hairpin vortices are of interest in the study of transitional andturbulent boundary layers, where they have been frequently observed experimentally. In this study, thehairpin vortices are generated in the wake of a hemispherical roughness element embedded in a 
at-plateboundary layer, following closely the experiments of Acalar and Smith [1] and, to a lesser extent, those ofKlebano� et al. [13]. Numerical studies of hairpin vortices have also been undertaken by Singer and hiscolleagues under slightly di�erent 
ow conditions [2, 20, 21].The basic 
ow con�guration is shown in Fig. 1. A time-independent velocity pro�le is prescribed acrossthe upstream entrance of the domain. Experimental observations [1] indicate that the 
ow is symmetric aboutthe plane y=0, so the 
ow is computed only in the half-domain shown. At su�ciently high nondimensional
ow speeds, or Reynolds numbers, the steady boundary layer region near the plate is destabilized by thehemisphere, resulting in periodic shedding of hairpin vortices in the wake.The simulation results are analyzed by using X-window-based software developed speci�cally for thenumerical methods employed and using interactive software built on top of the \Visualization Toolkit" (vtk)to drive stereo visualization environments such as the CAVETM (Cave Automatic Virtual Environment) andImmersaDeskTM. The resulting immersive visualization proceeds at a su�ciently high frame rate that the1Center on Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637.2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.3Electrical and Computer Eng., Iowa State University, Ames, IA, 500111
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 ZFigure 1: Computational domain showing inlet velocity pro�le, 
at plate, hemisphere, and isolated hairpinvortex in hemisphere wake. For clarity, the vortex has been re
ected about the symmetry plane.hairpin evolution can be readily integrated by eye, thereby allowing one a comprehensive understanding ofthe dynamics of this complex 
ow.The remainder of this paper is organized as follows. Section 2 provides a brief overview of the numericalmethod and speci�c 
ow conditions considered. Section 3 describes the immersive visualization environmentand software tools used. Section 4 presents a mixture of quantitative and qualitative visual results used toanalyze this 
ow. We close in Section 5 with a summary of our results.2 Numerical Method and Flow SimulationThis section describes the underlying discretizations, domain con�guration, and boundary conditions for thethe hairpin vortex simulations.2.1 Spectral Element MethodThe hairpin vortex simulation is based on numerical integration of the unsteady incompressible Navier-Stokesequations, @u@t + u � ru = �rP + 1Rer2u�r � u = 0;coupled with appropriate boundary conditions on the velocity, u. Semi-implicit time stepping is employedin which the nonlinear convective terms are treated explicitly, while the viscous and pressure terms aretreated implicitly. Spatial discretization is based on the spectral element method (SEM), which is a high-order weighted residual technique similar to the �nite element method. Within each element, basis functionsare based on tensor-products of N th-order Lagrange polynomials [5, 6, 14]. The nodes of the Lagrangepolynomials are taken to be the Gauss-Lobatto-Legendre (GLL) quadrature points, so that high-order GLLquadrature can be substituted for the integrals required for the residual evaluation. The discretization isillustrated in Fig. 2, which shows a three-element mesh in lR2 with the GLL grid for the case N = 4. Alsoshown is the reference (r; s) coordinate system used for all function evaluations. Functions in the mapped2
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Figure 2: Spectral element discretization in lR2 showing gll nodal lines for (K;N ) = (3; 4).coordinates are of the form u(xk(r; s))��
k = NXi=0 NXj=0 ukijhNi (r)hNj (s) ; (1)where ukij is the nodal basis coe�cient; hNi is the Lagrange polynomial of degree N based on the GLLquadrature points, f�Nj gNj=0; and xk(r; s) is the coordinate mapping from the reference domain, b
 := [�1; 1]d,to 
k. The use of the GLL basis for the interpolants leads to e�cient quadrature for the weighted residualschemes and greatly simpli�es operator evaluation in the case of deformed elements.For problems having smooth solutions, such as the incompressible Navier-Stokes equations, convergenceis exponential in N , despite the fact that only C0 continuity is enforced across elemental interfaces. Theresulting (minimal) numerical dissipation and dispersion are ideal for transitional 
ows of the type consideredhere, which can be very sensitive to such nonphysical e�ects. The rapid convergence is demonstrated in Table1, which shows the computed growth rates of a small-amplitude Tollmien-Schlichting wave superimposed onplane Poiseuille channel 
ow at Re = 7500, following [5, 16]. The amplitude of the perturbation is 10�5,so that the nonlinear Navier-Stokes results can be compared directly with linear theory to roughly �vesigni�cant digits. Three error measures are computed: error1 and error2 are the relative amplitude errorsat the end of the �rst and second periods, respectively, and errorg is the error in the growth rate at aconvective time of 50. From Table 1, it is clear that doubling the number of points in each spatial directionyields several orders of magnitude reduction in error, implying that just a small increase in resolution isrequired for very good accuracy. The signi�cance of this is underscored by the fact that, in three dimensions,the e�ect on the number of gridpoints scales as the cube of the relative savings in resolution.Table 1: Spatial convergence, O-S problem: K = 15; �t = :003125N E(t1) error1 E(t2) error2 errorg7 1.11498657 0.003963 1.21465285 0.037396 0.3136029 1.11519192 0.003758 1.24838788 0.003661 0.00182011 1.11910382 0.000153 1.25303597 0.000986 0.00440713 1.11896714 0.000016 1.25205855 0.000009 0.00009715 1.11895646 0.000006 1.25206398 0.000014 0.0000413



2.1.1 Time AdvancementThe Navier-Stokes time advancement is based on the second-order operator splitting methods developed in[15]. The convective term is expressed as a material derivative, and the resultant form is discretized via astable second-order backward di�erence formula:~un�2 � 4~un�1 + 3un2�t = S(un) ;where S(un) is the linear symmetric Stokes problem to be solved implicitly, and ~un�q is the velocity �eld attime step n � q computed as the explicit solution to a pure convection problem. The subintegration of theconvection term permits values of �t corresponding to convective CFL numbers of 2{5, thus signi�cantlyreducing the number of (expensive) Stokes solves.The Stokes problem is of the form" H �DT�D 0 # unpn ! =  Bf0 !and is also treated by second-order splitting, resulting in subproblems of the formHuni = f i ;for the velocity components (i = 1; : : : ; 3), andEpn = gn ;for the pressure. Here, H is a diagonally dominant Helmholtz operator representing the parabolic componentof the momentum equations and is readily treated via Jacobi-preconditioned conjugate gradients; E :=DB�1DT is the Stokes Schur complement governing the pressure; and B is the (diagonal) mass matrixin the velocity space. E is a consistent Poisson operator and is e�ectively preconditioned by using theoverlapping additive Schwarz procedure of Dryja and Widlund [4]. Further details of the discretization andsolvers may be found in [5, 6].2.1.2 Spectral Element OperatorsThe computational e�ciency of spectral element methods derives from their tensor-product basis. To illus-trate, we express the sti�ness matrix for an undeformed element k in lR2 as a sum of tensor products ofone-dimensional operators, Ak = bBy 
 bAx + bAy 
 bBx ; (2)where bA� and bB� are the one-dimensional sti�ness and mass matrices associated with the respective spatialdimensions. If uk = ukij is the matrix of nodal values on element k, then a typical matrix-vector productrequired of an iterative solver takes the form(Akuk)lm = NXi=0 NXj=0( bBy;mj bAx;liukij + bAy;mj bBx;liukij)= bAxuk bBTy + bBxuk bATy :The latter form illustrates how the tensor-product basis leads to matrix-vector products (Au) being recastas matrix-matrix products, a feature central to the e�ciency of spectral element methods. Similar formsresult for other operators and for complex geometries.4



The parallel implementation follows a standard message-passing-based single-program-multiple-data(SPMD) model [9] in which contiguous groups of elements are distributed to processors. Since iterativesolvers are used, the principal communication kernel is the gather-scatter operation required for the residualvector assembly procedure. Because data is always stored on an element-by-element basis, the gather-scatterprocedure required for residual evaluation is combined into a single communication phase wherein sharednodal values are exchanged and summed. This is a single local-to-local transformation, rather than separategather and scatter phases common to many �nite element implementations. The gather-scatter operation isimplemented by using a stand-alone MPI/NX-based message-passing utility that supports a vector mode forproblems having multiple degrees of freedom per vertex as well as a general set of commutative/associativeoperations [23]. The easy-to-use interface requires only two calls:handle = gs-init(global-node-numbers,n), and ierr = gs-op(u,op,handle),where global-node-numbers() associates the n local values contained in the vector u() with their globalcounterparts, and op denotes the reduction operation performed on shared elements of u(). Communicationoverhead is further reduced through use of a recursive spectral bisection based element partitioning schemeto minimize the number of vertices shared among processors [18].The spectral element code runs on a number of distributed-memory platforms, including the IntelParagon, Cray T3E-600, SGI Origin 2000 and IBM SP. Simulations of the hairpin vortex problem havebeen run on 2048 333 MHz nodes of ASCI-Red in both in single- and dual-processor mode, with sustainedperformance of 319 GF being achieved for the latter [22].2.2 Flow SimulationFor the hairpin vortex simulations, we considered several meshes and computational domains to test grid anddomain independence, with our two primary production meshes having K = 1021 and K = 1535 spectralelements. All of the meshes tested have a unit-radius hemisphere located with its center at (x; y; z) =(0; 0; :1). A short cylinder of height dz = :1 connects the hemisphere to the 
at plate, which is located atz = 0. The cylinder was added so that a thin layer of elements could be placed near the plate to ensureadequate resolution of the boundary layer. The resultant 10% increase in the height of the hemisphereclosely corresponds to height increases resulting from glue used to fasten the hemispheres in the experimentsof Klebano� et al. [13]. We consider a Reynolds number range of ReR := UR=� = 450{850, where U isthe free-stream velocity, R is the hemisphere radius, and � is the kinematic viscosity of the 
uid. Flow isin the positive x direction with incoming 
ow u = (uB(y); 0; 0), where uB(y) represents a Blasius pro�lewith �99 = 1:2R. The in
ow boundary is located at x = �8:4 for the K = 1021 mesh and at x = �10:0for the K = 1535 mesh. To reduce the computational burden, we impose re
ection symmetry about they-plane. Homogeneous Neumann boundary conditions are prescribed for the velocity at the outlet, locatedat x = 30. The upper boundary and the right boundary are also taken to be symmetry planes, correspondingto stress-free boundary conditions. These are located at z = �6:5 and y = �6:4 for K = 1021 and z = �8:0and y = �8:4 for K = 1535. We note that, in addition to having di�erent size domains and number ofelements, the two meshes have di�erent transitions between spherical and rectangular elements and betweenthe in
ow boundary and hemisphere, with the K = 1535 mesh having a smoother transition for both.To transition between Reynolds numbers, we employ a sine ramp, Re(t) = Rei + (Ref � Rei) sin(gt),where Rei is the initial Reynolds number, Ref is the �nal Reynolds number, and g is the growth rate,typically set such that duration of the ramp is 40{80 convective time units. Figure 3a shows the pressuretrace at x = (2:4; 0:0; 1:2) for an 80 time unit transition between Reynolds number 675 and 700. Once5
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(a) (b)Figure 3: (a) Transition from Re =675 to 700. (b) Strouhal number versus Reynolds number for theK = 1021 and K = 1535 meshes.the transition has been made, the 
ow is driven until it settles into a steady periodic state. Of particularinterest in these simulations is determination of the Strouhal number, S = fk=Uk, where f is the sheddingfrequency, k = 1:1 is the total height of the roughness element, and Uk is the tip velocity without thehemisphere present. Uk is calculated from a two-dimensional channel 
ow simulation on a domain identicalin dimension to the hemisphere symmetry plane (centerplane) but without the hemisphere. The frequency,f , is determined from history plots similar to Fig. 3a. Strouhal numbers for the K = 1021 and 1535 meshesare shown in Fig. 3b. For this study 3 � N � 15, with the maximumN considered for Reynolds number 450being 9 and for Reynolds number 700 being 15. We note that the maximum discrepancy between the twomeshes is less than 2% over the range of Reynolds numbers considered here and that spatial and temporalconvergence checks were performed at several Reynolds numbers to verify convergence. We further note thatour Strouhal numbers compare favorably to those in [1] and [13].3 Visualization SystemThe visualization of the spectral element data is addressed through a multistage process. The �rst step usesa menu-driven X-window-based postprocessor developed speci�cally for spectral elements. It exploits thefull accuracy of the high-order Lagrangian basis (1) when interpolating o�-grid point values or computingderived quantities such as velocity gradients or vorticity. In addition, the postprocessor can map spectralelement data onto unstructured hexahedral meshes of arbitrary density. This data is then processed for usein a second visualization package designed for immersive visualization of the general mesh data. The primarycomponents of this second mode are built using the vtk library, which is an open-source software systemfor visualization that provides a high-level abstraction for constructing scienti�c visualization applications[19], and the CAVE library, which enables projection and exploration of immersive stereo images [3]. Anoverview of the entire visualization process is outlined in Fig. 4.6



SEM &%'$
d &%'$vol ����srf1����srf2����srf3����srf4 CAVE ����cam &%'$rib BMRT tif- - - - - - - -6Figure 4: Visualization process: SEM produces numerical output (
d), which is translated by the X-postprocessor into vtk unstructured cell format (vol). These are processed into individual polygonal datasets(srf), representing isosurfaces of the vortex �eld at distinct threshold values, � , or at di�erent times. Thisdata is then viewed interactively at low resolution in the CAVE, where camera paths are captured. Theoutput (cam) is combined with (srf) to produce rib �les (rib). These are processed by the Blue MoonRendering Tools (BMRT) to yield the �nal high-resolution output (tif).3.1 Vortex Identi�cationVortex identi�cation starts in the postprocessing phase and is based on the �2 method of Jeong and Hussain[10]. Identi�cation of a vortex in viscous 
ows is challenging because the classic rules governing vortexdynamics generally apply only in the inviscid limit. In boundary layer 
ows, viscosity is non-negligible, andstandard approaches such as integrating vortex lines or using pressure minima or vorticity maxima can leadto improper vortex identi�cation. Jeong and Hussain have established a robust criterion for the identi�cationof vortex (or coherent) structures in viscous 
ows based on the eigenvalues of the symmetric 3� 3 tensorMij := 3Xk=1 �
ik
kj + SikSkj� ; (3)where 
ij := 12  @ui@xj + @uj@xi! Sij := 12  @ui@xj � @uj@xi! (4)represent the symmetric and antisymmetric components of the velocity gradient tensor, ru. To minimizenoise, the gradients are computed using the original polynomial description of the data, that is, by di�er-entiating (1). Given the three (real) eigenvalues of M at each grid point, a vortex core is identi�ed as anycontiguous region having two negative eigenvalues. If the eigenvalues are sorted such that �1 � �2 � �3,then any region for which �2 < 0 corresponds to a vortex core. One advantage of this approach is thatvortices can be identi�ed as isosurfaces of a well-de�ned scalar �eld. Moreover, the criterion �2(x) < 0 isscale invariant, so there is in principle no ambiguity in selecting which isosurface value to render. In practice,one usually biases the isosurface to a value that is below zero by a small fraction of the full dynamic rangein order to avoid noise in regions where the velocity is close to zero.3.2 Isosurface Extraction and Immersive VisualizationTo develop an unsteady immersive rendering of the vortex evolution, we begin with a set of full-volumedumps of the primitive variables (u; v; w; p) at a selected number of time steps (typ. 150) covering one periodof the vortex shedding cycle. For each time step, we compute �2 at each grid point with the X-windowbased postprocessor. The high-order accuracy of the spectral element basis (1) is essential for this step. Theresultant scalar �eld is then interpolated onto an unstructured hexahedral mesh along with the pressure.This volume of data is then passed to a surface stripper (built on top of vtk) to extract isosurfaces at a given7



threshold, � , and produce a set of triangles corresponding to �2 = � . Typically, �2 � � � �1, out of a rangeof [�30; 40].Visualization within the CAVE environment requires real-time response, and, because of the timerequired to generate isosurfaces, interactive generation of the surfaces is impossible. Figure 5 plots theaverage time required for the generation of an individual isosurface at a given threshold versus Reynoldsnumber. The rise in time re
ects the increasing complexity of the 
ow �eld with increasing Re. In additionto isosurface extraction, smoothing and triangulation algorithms are applied as part of the visualizationpipeline to improve performance in the CAVE. The resulting surface �les are saved to disk in the vtk polydataformat. This format contains all the information necessary to construct the geometric representation of the�2 isosurfaces with corresponding pressures at each vertex.For immersive visualization, the surface �les are loaded into another vtk-based application that is builton top of the CAVE library and is designed to run on all members of the CAVE family of display technology,including the ImmersaDesk. (The vtk classes for renderer and renderwindow have been extended to operatewithin the CAVE [7].) The CAVE is a 100�100�100 cube of rear-projected screens, illustrated in Fig. 5 (right),which allows the user to rapidly explore data from a number of di�erent viewing angles. The ImmersaDeskis single 50 rear-projected screen. Both are capable of displaying immersive stereo images. The immersiveapplication makes full use of the CAVE library's rich set of tools that enable users to explore and interrogateindividual surface �les, as well as a composited series of surface �les for time- or parameter-dependent data.For the Re = 700 surface �les a rate of 15 frames per second is achieved, which is more than su�cient toproduce a realistic sense of motion to the user. Control over viewing location, frame rate, and playback areprovided by the combination of a navigational wand and virtual menu. In addition, users can de�ne a colortable to map other scalars onto the �2 isosurfaces. At present, only the pressure is mapped.Within the immersive environment it is also possible to generate high-quality renderings of the surfacedata. The user can navigate to points of interest within the data set and take virtual snapshots or virtualmovies of the experience, capturing the needed information for high-resolution rendering. This is done either
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Figure 5: Two stages in the vizualization process. Isosurfaces for a series of images are precalculated o�-line.(Average calculation times versus Reynolds number are shown on the left.) Precomputed isosurfaces are thenrendered at 15 frames per second in the CAVE (right) allowing interactive navigation of unsteady surfacedata and selection of speci�c views for high-resolution rendering.8



by immediately generating a RenderMan RIB �le using a class provided within vtk for a snapshot, or bycapturing the camera position and orientation information in virtual movie mode to allow o�-line rendering.(Virtual movie mode requires an additional o�ine step for generating the RIB �les, because the size of the�les would interfere with the required real-time response of the virtual environment.) Once the RIB �les arecreated, they are processed by using Blue Moon Rendering Tools (BMRT), a freely available collection ofrendering tools that adhere to the RenderMan interface standard [8]. BMRT enables users to capture pointsof interest from within the data set in a high-quality format suitable for publication or videotape.4 ResultsTo put the dynamic results into perspective, we begin with a series of two-dimensional plots in the symmetryplane, y = 0. Figure 6 shows the results of a simulation at Re = 700 using 1021 elements of order N = 11.Time-averaged velocity pro�les are shown in (a), and corresponding rms values, urms :=< u02 > 12 , areshown in (b). Here u0 := u� < u > is the 
uctuating component of u, and < : > denotes a single-periodtime average. The pro�les have maximum values of 1.075 and 0.282 for u and urms, respectively. We seein (a) the Blasius pro�le at the inlet, the separated and recirculating wake region at x = 2, followed by agradual recovery until the outlet, where the mean velocity pro�le is fuller than the in
ow pro�le. From therms pro�les (b), it is clear that the 
ow upstream of the hemisphere is essentially steady. The immediatewake region at x = 2 exhibits remarkably little unsteadiness. The passage of the hairpin vortices is evidencedby the strong rms 
uctuations in the wake region, which also reveal the lifting of the vortices away from theplate. Further downstream, there is a signi�cant growth in activity near the wall, as can be seen by the peakin the rms pro�le at the outlet.To indicate the structure of individual hairpin vortices at a �xed instance, we present contours of severalquantities in Fig. 6 (c{e). Pressure contours are shown in (c). The vortex cores are readily identi�ed bythe low-pressure zones, shown in bold. Contours of spanwise vorticity (d) also show the hairpin vorticesand, in particular, the movement of the heads and tips away from the plate. Finally, (e) shows contours of�2 2 [�30; 0], revealing the intersection of the vortex tips with the symmetry plane and the presence of asteady horseshoe vortex at the base of the hemisphere near x = �1:Results for Re = 450 are shown in Fig. 7. This is just above the critical Reynolds number at which the
ow transitions from a steady to a steady-periodic state. In contrast to the Re = 700 case, the wake de�citin the symmetry plane pro�le (a) is very pronounced, even 30 radii downstream of the hemisphere. The rmspro�les (b) grow with increasing x, although the peak rms value of .063 is a fraction of that for the Re = 700case. The shear layer observed in (a) indicates that the growth in rms values in (b) can be interpreted as theonset of a Kelvin-Helmholtz instability: slight oscillations in the wall-normal velocity component translateinto signi�cant u0 
uctuations in the shear-layer region where @u@z is large. The oscillations and wave likenature of the 
ow are quite evident in the contour plot of spanwise vorticity, shown at a �xed instant in theshedding cycle in (c).While the views in Figs. 6 and 7 provide a fair amount of information about the hairpin vortex evolution,they fail to reveal any three-dimensional details. To see these, we rely on output from the visualization processdescribed in Section 3. Figures 8 and 9 show �2 = �1 isosurfaces for Re = 700. We observe several vortexfeatures, some of which we had not identi�ed prior to viewing the unsteady animation in an immersiveenvironment. Figure 8 shows the classic horseshoe vortex (a) upstream of the hemisphere, which is alsocommonly found upstream of end-mounted cylinders (as evidenced by snowdrift patterns at the bases oftrees and telephone poles). Moving downstream, we see the interlacing of the hairpin vortex tails (b), asobserved by Acalar and Smith [1]; the hairpin head (c); and a vortex \bridge" (d), which is a common form9



(a)(b)(c)(d)(e)Figure 6: Symmetry plane data for Re = 700,K = 1021, N = 11 (a{b), and N = 13 (c{e): (a) mean velocitypro�les, < u >; (b) rms velocity < u02 > 12 ; (c) pressure contours ; (d) spanwise vorticity, !y; (e) contours of�2 < 0.
10



(a)(b)(c)Figure 7: Symmetry plane data for Re = 450, K = 1535, N = 9: (a) mean velocity pro�les, < u >; (b) rmsvelocity < u02 > 12 ; (c) spanwise vorticity, !y.
@@I (a) �����(b) AAAAAK (c) 





�(d)Figure 8: Key vortex structures at Re = 700: standing horseshoe vortex (a), interlaced tails (b), hairpinhead (c), and bridge (d). Contours mapped onto �2 = �1 surface represent pressure (light=high, dark=low).Shadows on the plate provide additional perspective information.of vortex reconnection in viscous 
ows [11, 12, 17, 24]. Acalar and Smith [1] note that the bridge-headstructure eventually separates from the hairpin and lifts o� as a separate vortex ring. At this Reynoldsnumber the ring is so quickly dissipated by viscosity that the lifto� is not pronounced.Because the bridge is quite thin and rather short lived, signi�cant resolution in space and time is requiredto see it. We carefully chose the frame in order to present the bridge here. However, initial detection of thebridge and other similar unanticipated structures requires observation of a sequence of images from manyviewing angles. Another structure detected as a result of such interactive viewing is shown in Fig. 9. The\spikes" seen jutting from the interior of the hairpin loop are readily visible in most of the higher Reynolds11



spikesBBBBBBBBBBBM tailsAAAAAAAKFigure 9: View showing distinction between \spikes" and tails of preceding vortex.number computations. They appear at just about the time that the tails of the preceding vortex disappear asa result of stretching-induced dissipation. Initially, we believed the spikes were remnants of the dissipatingtails. However, careful observation of the animation revealed that the spikes and tails brie
y appear atthe same time, indicating that they are not part of the same vortex structure. Downstream views of thehead-spike structure seem to indicate that the spike formation is induced by the close proximity of the tailsto the head, as seen in Fig. 8b.A comparison between the hairpin vortices at Re = 550 and 700 is shown in Fig. 10. Few structuraldi�erences are seen over this range of Reynolds numbers. However, there is a noticeable di�erence in thedistance that separates the successive hairpins, with shorter distances for Re = 700 corresponding to a higherStrouhal number (cf. Fig. 3). In addition, the Re = 700 case shows stronger evidence of tail-tail interlacingand the presence of a second horseshoe vortex upstream of the hemisphere.We close this section with recently obtained results at Re = 850, shown in Fig. 11. The images reveala cascade of vortices just a few diameters downstream of the hemisphere. At lower Reynolds numbers thesevortices are not strong enough to yield the clearly de�ned structures that are present here. Clearly visible atthis elevated Reynolds number are secondary vortices on either side of the hairpin, seen at the midpoint inthe planform view. In addition, the lifto� of the hairpin head as a ring-vortex can be seen near the out
owin the pro�le view. The pro�le also shows the general inclination of the vortices, rising from the wall andmoving downstream, commonly observed in turbulent boundary layers.5 Discussion and ConclusionWe have examined the structure of hairpin vortices in the near wake region of a hemispherical roughnesselement at ReR = 700 using spectral element simulations coupled with interactive immersive visualization.This is part of a wider investigation, with Reynolds numbers ranging from 450 (just above transition) to1200, into the role hairpin vortices play in the transition between laminar and turbulent 
ow. We have shownexcellent agreement between simulation and experimental data with regard to shedding frequency and clearidenti�cation of the principal features of the primary hairpin vortex and its evolution. We found that thecombination of immersion and motion played a key role in the assimilation, integration, and understandingof this data set and believe that immersive visualization tools, such as those developed here, will be essen-12



(a)(b)
(c)
(d)Figure 10: Comparison pro�le views of hairpin vortices at Re = 550 (a) and Re = 700 (b), and planformviews at Re = 550 (c) and Re = 700 (d). 13



Figure 11: Re = 850 pro�le (top) and planform (bottom) views of �2 = �1:1 isosurfaces for the fullcomputational domain.tial tools for future investigation of 
ows where coherent structures play a key role in 
ow transition anddevelopment.Further investigation is required into the nature of the secondary vortices that develop immediatelydownstream of the recirculation zone. Acalar and Smith observed two types of secondary vortices. The �rstformed in the wake of the hairpin and was entirely contained between the legs. It is an open question as towhether the bridge we observed corresponds to this structure and whether this is an example of classic vortexreconnection via bridging [12]. The second is a pair of vortices that form several diameters downstream of thehemisphere on either side of the primary hairpin vortex. We do indeed see the formation of such structures,which become more pronounced in recent calculations at higher Reynolds numbers. Singer and Joslin haveshown that a cascade of such hairpins ultimately evolves into a turbulent spot [21]. Their calculations werein a plane channel, which allowed them to track the (isolated) vortex as it moved downstream, resultingin considerable computational savings. A similar approach could be used here, exploiting the temporalperiodicity of the solution to provide a well-de�ned in
ow boundary condition. It is clear that straightforwardcalculation of spatially developing 
ows from transition to turbulence in inhomogeneous geometries willrequire a signi�cant increase in resolution to capture the range of scales present in both the solution and thegeometry.Exploration of extremely large data sets is di�cult even with today's state-of-the-art visualization tools.For example, to store the primitive variables (u; v; w; p) for a 150-frame \movie" requires 5{20 GB. Sincewe are interested in determining how vortex topology varies with Reynolds number, we anticipate havingtens to hundreds of such \movies" in our database. There is a consequent need for advanced technology toarchive, manipulate, and explore data sets in excess of a terabyte.We are currently working on methods that facilitate such investigation. One promising path is to usesubsampled or lower-resolution data sets for preliminary investigation and to record areas or paths where14
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