
Chapter 1RECENTDEVELOPMENTS IN INTERIOR-POINT METHODSStephen J. WrightAbstract The modern era of interior-point methods dates to 1984, when Kar-markar proposed his algorithm for linear programming. In the yearssince then, algorithms and software for linear programming have becomequite sophisticated, while extensions to more general classes of problems,such as convex quadratic programming, semide�nite programming, andnonconvex and nonlinear problems, have reached varying levels of ma-turity. Interior-point methodology has been used as part of the solutionstrategy in many other optimization contexts as well, including analyticcenter methods and column-generation algorithms for large linear pro-grams. We review some core developments in the area and discuss theirimpact on these other problem areas.Keywords: optimization, interior-point methods1 INTRODUCTIONInterior-point methods have been a topic of intense scrutiny by theoptimization community during the past 15 years. Although methodsof this type had been proposed in the 1950s, and investigated quite ex-tensively during the 1960s [Fiacco and McCormick, 1968], it was theannouncement of an algorithm with intriguing complexity results andgood practical performance by Karmarkar [Karmarkar, 1984] that ush-ered in the modern era. This work placed interior-point methods at thetop of the agenda for a large and diverse body of researchers and led toa series of remarkable advances in various areas of convex optimization.Today, interior-point methods for linear programming have becomequite mature both in theory and in practice, and several high-qualitycodes are available. For the rival algorithm, the simplex method, thesudden appearance of credible competition spurred signi�cant improve-1



2ments in the software, resulting in a quantum advance in the state ofthe art in computational linear programming since 1988.The theory of interior-point methods in other areas of convex pro-gramming and monotone complementarity also appears to have reacheda fairly advanced stage. The computational picture is less clear than forgeneral linear programming, however. In some areas, such as semidef-inite programming, there is no apparent alternative algorithm whosepractical e�ciency is comparable to the interior-point approach, whilein others, such as quadratic programming, active-set methods (which de-scend from the simplex method for linear programming) provide strongcompetition.Investigation of the use of interior-point methods in various areas ofnonconvex optimization, including discrete optimization, is in a muchless advanced stage. The eventual prospects are still unclear, thoughearly results in some areas (for example, nonlinear programming) showdistinct promise. A thread common to many approaches is the use ofinterior-point methods to �nd inexact solutions of convex subproblemsthat arise during the course of the larger algorithm.We start in Section 2 by outlining the state of the art of interior-pointmethods in linear programming, discussing the pedigree of the mostimportant algorithms, computational issues, and customization of theapproach to structured problems. In Section 3, we discuss the straight-forward extensions to quadratic programming and linear complementar-ity, and compare the resulting algorithms with active-set methods. Theextension to semide�nite programming is discussed in Section 4, alongwith the theoretical work on self-concordant functionals and self-scaledcones that forms the underpinning of some of this work. Finally, wepresent some conclusions in Section 5.A great deal of literature is available to the reader interested in delvingfurther into this area. A number of recent books [Wright, 1997], [Ye,1997], [Roos et al., 1997] give overviews of the area, from �rst principlesto new results and practical considerations. Theoretical backgroundon self-concordant functionals and related developments is described in[Nesterov and Nemirovskii, 1994] and [Renegar, 1999]. Technical reportsfrom the past �ve years can be obtained from the Interior-Point MethodsOnline Web site at http://www.mcs.anl.gov/otc/InteriorPoint.For lack of space, we have omitted discussion of many interestingareas in which interior-point approaches are making an impact. Convexprogramming problems of the formminx f(x) s.t. gi(x) � 0; i = 1; 2; : : : ; m;



Developments in Interior-Point Methods 3where f and gi, i = 1; 2; : : : ; m, are convex functions, can be solved byextensions of the primal-dual approach of Section 3; see, for example,[Ralph and Wright, 1996]. Interestingly, it is possible to prove super-linear convergence of the resulting algorithms without assuming linearindependence of the active constraints at the solution. This observationprompted recent work on improving the convergence properties of otheralgorithms, notably sequential quadratic programming. A number ofresearchers have used interior-point methods in algorithms for combina-torial and integer programming problems. (In some cases, the interior-point method is used to �nd an inexact solution of related problemsin which the integrality constraints are relaxed.) Recent computationalresults are presented in [Mitchell, 1997], and a comprehensive surveyappears in [Mitchell et al., 1998]. In decomposition methods for largelinear and convex problems, such as Dantzig-Wolfe/column generationand Benders' decomposition, interior-point methods have been used to�nd inexact solutions of the large master problems, or to approximatelysolve analytic center subproblems to generate test points. Approachessuch as these are described in [Gondzio and Sarkissian, 1996], [Gondzioand Kouwenberg, 1999], and the survey paper [Go�n and Vial, 1999].Additionally, application of interior-point methodology to nonconvexnonlinear programming has occupied many researchers for some timenow. The methods that have been proposed to date contain many in-gredients, including primal-dual steps, barrier and merit functions, andscaled trust regions. Recent reports in this area include [Byrd et al.,1997], [Conn et al., 1999], [Gay et al., 1997], and [Forsgren and Gill,1998].2 LINEAR PROGRAMMINGWe consider �rst the linear programming problem, which we state instandard form: minx cTx s.t. Ax = b; x � 0; (1.1)where x 2 IRn and A 2 IRm�n. We assume that this problem has a strictinterior, that is, the setF� def= fx jAx = b; x > 0gis nonempty, and that the objective function is bounded below on the setof feasible points. Under these assumptions, (1.1) has a (not necessarilyunique) solution.



4 By using a logarithmic barrier function to account for the boundsx � 0, we obtain the parametrized optimization problemminx f(x;�) def= 1�cTx� nXi=1 log xi; s.t. Ax = b; (1.2)where log denotes the natural logarithm, and � > 0 denotes the barrierparameter. Because the logarithmic function requires its arguments tobe positive, the solution x(�) of (1.2) must belong to F�. It is well known(see, for example, [Wright, 1992, Theorem 5]) that for any sequence f�kgwith �k # 0, all limit points of fx(�k)g are solutions of (1.1).The traditional SUMT approach [Fiacco and McCormick, 1968] ac-counts for equality constraints by including a quadratic penalty term inthe objective. When the constraints are linear, as in (1.1), it is simplerand more appropriate to handle them explicitly. By doing so, we devisea primal barrier algorithm in which a projected Newton method is usedto �nd an approximate solution of (1.2) for a certain value of �, and then� is decreased. The projected Newton step �x from a point x satis�esthe following system:� ��X�2 ATA 0 � � �x�+ � = � � c+ �X�1eAx� b � ; (1.3)where X = diag(x1; x2; : : : ; xn) and e = (1; 1; : : : ; 1)T . Note thatr2xxf(x;�) = �X�2; rxf(x;�) = (1=�)c+X�1e;so that the equations (1.3) are the same as those that arise from asequential quadratic programming algorithm applied to (1.2), modulothe scaling by � in the �rst line of (1.3). A line search can be performedalong �x to �nd a new iterate x+��x, where � > 0 is the step length.The prototype primal barrier algorithm can be speci�ed as follows:primal barrier algorithmGiven x0 2 F� and �0 > 0;Set k 0;repeatObtain xk+1 by performing one or more Newton steps (1.3),starting at x = xk, and �xing � = �k ;Choose �k+1 2 (0; �k); k  k + 1;until some termination test is satis�ed.A short-step version of this algorithm takes a single Newton step ateach iteration, with step length � = 1, and sets�k+1 = �k=�1 + 18pn� : (1.4)



Developments in Interior-Point Methods 5It is known (see, for instance, [Renegar, 1999, Section 2.4]) that if thefeasible region of (1.1) is bounded, and x0 is su�ciently close to x(�0)in a certain sense, then we obtain a point xk whose objective value cTxkis within � of the optimal value afterO�pn log n�0� � iterations; (1.5)where the constant factor disguised by the O(�) depends on the propertiesof (1.1) but is independent of n and �.The rate of decrease of � in short-step methods is too slow to al-low good practical behavior, so long-step variants were proposed thatdecreased � more rapidly, while possibly taking more than one New-ton step for each �k and also using a line search. Although long-stepalgorithms have better practical behavior, the complexity estimates as-sociated with them typically are no better than the estimate (1.5) for theshort-step approach; see [Renegar, 1999, Section 2.4], [Gonzaga, 1991].In fact, a recurring theme of worst-case complexity estimates for linearprogramming algorithms is that no useful relationship exists betweenthe estimate and the practical behavior of the algorithm.Better practical algorithms are obtained from the primal-dual frame-work. These methods recognize the importance of the path of solutionsx(�) to (1.2) in the design of algorithms, but di�er from the approachabove in that they treat the dual variables explicitly in the problem,rather than as adjuncts to the calculation of the primal iterates.The dual problem for (1.1) ismax(�;s) bT� s.t. AT�+ s = c; s � 0; (1.6)where s 2 IRn and � 2 IRm, and the optimality conditions for x� tobe a solution of (1.1) and (��; s�) to be a solution of (1.6) are that(x; �; s) = (x�; ��; s�) satis�es Ax = b; (1.7a)AT�+ s = c; (1.7b)XSe = 0; (1.7c)(x; s) � 0; (1.7d)where X = diag(x1; x2; : : : ; xn) and S = diag(s1; s2; : : : ; sn). Primal-dual methods solve (1.1) and (1.6) simultaneously by generating a se-quence of iterates (xk; �k; sk) that in the limit satis�es the conditions(1.7). As mentioned above, the central path de�ned by the following



6perturbed variant of (1.7) plays an imporant role in algorithm design:Ax = b; (1.8a)AT�+ s = c; (1.8b)XSe = �e; (1.8c)(x; s) > 0; (1.8d)where � > 0 parametrizes the path. Note that these conditions are sim-ply the optimality conditions for the problem (1.2): If (x(�); �(�); s(�))satis�es (1.8), then x(�) is a solution of (1.2). We have from (1.8c) thata key feature of the central path is thatxisi = �; for all i = 1; 2; : : : ; n; (1.9)that is, the pairwide products xisi are identical for all i.In primal-dual algorithms, steps are generated by applying a per-turbed Newton method to the three equalities in (1.8), which form anonlinear system in which the number of equations equals the numberof unknowns. We constrain all iterates (xk; �k; sk) to have (xk; sk) > 0,so that the matrices X and S remain positive diagonal throughout, en-suring that the perturbed Newton steps are well de�ned. Supposing thatwe are at a point (x; �; s) with (x; s) > 0 and the feasibility conditionsAx = b and AT�+s = c are satis�ed, the primal-dual step (�x;��;�s)is obtained from following system:24 0 A 0AT 0 I0 S X 3524 ���x�s 35 = �24 00XSe� ��e+ r 35 ; (1.10)where � = xTs=n, � 2 [0; 1], and r is a perturbation term, possiblychosen to incorporate higher-order information about the system (1.8),or additional terms to improve proximity to the central path. Using thegeneral step (1.10), we can state the basic framework for primal-dualmethods as follows:primal-dual algorithmGiven (x0; �0; s0) with (x0; s0) > 0;Set k 0 and �0 = (x0)Ts0=n;repeatChoose �k and rk;Solve (1.10) with � = �k, � = �k and r = rkto obtain (�xk;��k;�sk);Choose step length �k 2 (0; 1] and set



Developments in Interior-Point Methods 7(xk+1; �k+1; sk+1) (xk; �k; sk) + �k(�xk;��k;�sk);Set �k+1  (xk+1)Tsk+1=n; k k + 1;until some termination test is satis�ed.The various algorithms that use this framework di�er in the way thatthey choose the starting point, the centering parameter �k, the pertur-bation vector rk, and the step �k . The simplest algorithm|a short-step path-following method similar to the primal algorithm describedabove|sets rk = 0; �k � 1� 0:4pn; �k � 1;and, for suitable choice of starting point, achieves convergence to a fea-sible point (x; �; s) with xTs=n � � for a given � inO�pn log �0� � iterations: (1.11)Note the similarity of both the algorithm and its complexity estimateto the corresponding primal algorithm. As in that case, algorithms withbetter practical performance but not necessarily better complexity es-timates can be obtained through more aggressive, adaptive choices ofthe centering parameter (that is, �k closer to zero). They use a linesearch to maintain proximity to the central path. The proximity re-quirement dictates, implicitly or explicitly, that while the condition (1.9)may be violated, the pairwise products must not be too di�erent fromeach other. Many such algorithms, including path-following, potential-reduction, and predictor-corrector algorithms, are discussed in [Wright,1997].Most interior-point software for linear programming is based on Mehro-tra's predictor-corrector algorithm [Mehrotra, 1992], often with the higher-order enhancements described in [Gondzio, 1996]. This approach usesan adaptive choice of �k, selected by �rst solving for the pure Newtonstep (i.e., setting r = 0 and � = 0 in (1.10)). If this step makes goodprogress in reducing �, we choose �k small so that the step actually takenis quite close to this pure Newton step. Otherwise, we enforce more cen-tering and calculate a conservative direction by setting �k closer to 1.The perturbation vector rk is chosen to improve the similarity betweenthe system (1.10) and the original system (1.8) that it approximates.Gondzio's technique further enhances rk by performing further solves ofthe system (1.10) with a variety of right-hand sides, where each solvereuses the factorization of the matrix and is therefore not too expensiveto perform.



8 To turn this basic algorithmic approach into a useful piece of soft-ware, we must address many issues. These include problem formulation,presolving to reduce the problem size, choice of the step length, lin-ear algebra techniques for solving (1.10), and user interfaces and inputformats.Possibly the most interesting issues are associated with the linearalgebra. Most codes deal with a partially eliminated form of (1.10),either eliminating �s to obtain� 0 AAT �X�1S � � ���x � = � � 0�X�1(XSe� ��e+ r) � ; (1.12)or eliminating both �s and �x to obtain a system of the formA(S�1X)AT�� = t; (1.13)to which a sparse Cholesky algorithm is applied. A modi�ed version ofthe latter form is used when dense columns are present in A. Thesecolumns may be treated as a low-rank update and handled via theSherman-Morrison-Woodbury formula or, equivalently, via a Schur com-plement strategy applied to a system intermediate between (1.12) and(1.13). In many problems, the matrix in (1.13) becomes increasinglyill-conditioned as the iterates progress, eventually causing the Choleskyprocess to break down as negative pivot elements are encountered. Anumber of simple (and in some cases counterintuitive) patches have beenproposed for overcoming this di�culty while still producing useful ap-proximate solutions of (1.13) e�ciently; see, for example, [Andersen,1996] and [Wright, 1999].Despite many attempts, iterative solvers have not shown much promiseas means to solve (1.13), at least for general linear programs. A possiblereason is that, besides its poor conditioning, the matrix lacks the regularspectral properties of matrices obtained from discretizations of contin-uous operators. Some codes do, however, use preconditioned conjugategradient as an alternative to iterative re�nement for improving the ac-curacy, when the direct approach for solving (1.13) fails to produce asolution of su�cient accuracy. The preconditioner used in this case issimply the computed factorization of the matrix A(S�1X)AT .A number of interior-point linear programming codes are now avail-able, both commercially and free of charge. Information can be obtainedfrom the World-Wide Web via the URL mentioned earlier. It is di�cultto make blanket statements about the relative e�ciency of interior-pointand simplex methods for linear programming, as improvements to theimplementations of both techniques continue to be made. Interior-point



Developments in Interior-Point Methods 9methods tend to be faster on large problems and can better exploit mul-tiprocessor platforms, because the expensive operations such as Choleskyfactorization of (1.13) can be parallelized to some extent. They are notable to exploit \warm start" information|a good prior estimate of thesolution, for instance|to the same extent as simplex methods. For thisreason, they are not well suited for use in contexts such as branch-and-bound or branch-and-cut algorithms for integer programming, whichsolve many closely related linear programs.Several researchers have devised special interior-point algorithms forspecial cases of (1.1) that exploit the special properties of these casesin solving the linear systems at each iteration. For network ow prob-lems, Mehrotra and Wang consider preconditioned conjugate-gradientmethods for solving (1.13), in which the preconditioner is built from aspanning tree for the underlying network [Mehrotra and Wang, 1995].For multicommodity ow problems, Castro describes an algorithm forsolving a version of (1.13) in which the block-diagonal part of the ma-trix is used to eliminate many of the variables, and a preconditionedconjugate-gradient method is applied to the remaining Schur comple-ment [Castro, 1998]. Techniques for stochastic programming (two-stagelinear problems with recourse) are described in [Birge and Qi, 1988] and[Birge and Loueaux, 1997, Section 5.6]3 SIMPLE EXTENSIONS OF THEPRIMAL-DUAL APPROACHThe primal-dual algorithms of the preceding section are readily ex-tended to convex quadratic programming (QP) and monotone linearcomplementarity (LCP), both classes being generalizations of linear pro-gramming. Indeed, many of the convergence and complexity propertiesof primal-dual algorithms were �rst elucidated in the literature withregard to monotone LCP.We state the convex QP asminx cTx+ 12xTQx s.t. Ax = b; x � 0; (1.14)where Q is a positive semide�nite matrix. The monotone LCP is de�nedby square matrices M and N and a vector q, where M and N satisfy amonotonicity property: all vectors y and z that satisfy My + Nz = 0have yT z � 0. This problem requires us to identify vectors y and z suchthat My +Nz = q; (y; z) � 0; yTz = 0: (1.15)



10With some transformations, we can express the optimality conditions(1.7) for linear programming, and also the optimality conditions for(1.14), as a monotone LCP. Other problems �t under the LCP umbrellaas well, including bimatrix games and equilibrium problems. The centralpath for this problem is de�ned by the following system, parametrizedas in (1.8) by the positive scalar �:My +Nz = q; (1.16a)Y Ze = �e; (1.16b)(y; z) > 0; (1.16c)and a search direction from a point (y; z) satisfying (1.16a) and (1.16c)is obtained by solving a system of the form� M NZ Y � � �y�z � = � � 0Y Ze� ��e+ r � ; (1.17)where � = yTz=n, � 2 [0; 1], and, as before, r is a perturbation term.The corresponding search direction system for the quadratic program(1.14) is identical to (1.10) except that the (2; 2) block in the coe�cientmatrix is replaced by Q. The primal-dual algorithmic framework and themany variations within this framework are identical to the case of linearprogramming with the minor di�erence that the step length should bethe same for all variables. (In linear programming, di�erent step lengthscan be, and often are, taken for the primal variable x and the dualvariables (�; s).)Complexity results are also similar to those obtained for the corre-sponding linear programming algorithm. For an appropriately chosenstarting point (y0; z0) with �0 = (y0)Tz0=n, we obtain convergence to apoint with mu � � in O�n� log �0� � iterations;where � = 1=2, 1, or 2, depending on the algorithm. Fast local con-vergence results typically require an additional strict complementarityassumption that is not necessary in the case of linear programming (see[Monteiro and Wright, 1994]), although some authors have proposed su-perlinear algorithms that do not require this assumption. Algorithmsof the latter type require accurate identi�cation of the set of degener-ate indices before the fast convergence becomes e�ective. This propertymakes them of limited interest, since by the time the degenerate set hasbeen identi�ed, the problem is essentially solved.



Developments in Interior-Point Methods 11The LCP algorithms can, in fact, be extended to a wider class ofproblems involving so-called su�cient matrices. Instead of requiring Mand N to satisfy the monotonicity property de�ned above, we requirethat there exist a nonnegative constant � such thatyTz � �4� Xi jyizi>0 yizi; for all y; z with My +Nz = 0.The complexity estimate for interior-point methods applied to such prob-lems depends on the parameter �; that is, the complexity is not polyno-mial on the whole class of su�cient matrices.Primal-dual methods have been applied to many practical applica-tions of (1.14) and (1.15). For example, an application to Markowitz'sformulation of the portfolio optimization problem is presented in [Take-hara, 1993]; applications to optimal control and model predictive controlare described in [Wright, 1993] and [Rao et al., 1998]; an application to`1 regression is described in [Portnoy and Koenker, 1997].The interior-point approach has a number of advantages over theactive-set approach from a computational point of view. It is di�cult foran active-set algorithm to exploit any structure inherent in both Q andA, without redesigning most of the complex operations that make up thisalgorithm (adding a constraint to the active set, deleting a constraint,evaluating Lagrange multiplier estimates, calculating the search direc-tion, and so on). In the interior-point approach, on the other hand, theonly complex operation is solution of the linear system (1.17)|and thisoperation is fairly straightforward by comparison with the operations inan active-set method. Since the structure and dimension of the linearsystem remain the same at all iterations, the routines for solving the lin-ear systems can be designed to fully exploit the properties of the systemsarising from each problem class. In fact, the algorithm can be imple-mented to high e�ciency using an object-oriented approach, in whichthe programmer of each new problem class needs to supply only codefor the factorization and solution of the systems (1.17), optimized forthe structure of the new class, along with a number of simple operationssuch as inner-product calculations. Code that implements upper-leveldecisions (choice of parameter �, vector r, steplength �) remains e�cientacross the gamut of applications of (1.15) and can simply be reused byall applications.We note, however, that active-set methods may still require much lessexecution time than interior-point methods in many contexts, especiallywhen \warm start" information is available and when the problem isgeneric enough that not much bene�t is gained by exploiting its struc-ture.



12The extension of primal-dual algorithms from linear programming toconvex quadratic programming is so straightforward that a number ofthe interior-point linear programming codes have recently been extendedto handle problems in the class (1.14) as well. In their linear algebra cal-culations, these codes treat both Q and A as general sparse matrices, andhence are e�cient across a wide range of applications. By contrast, asnoted in [Gould and Toint, 1999, Section 4], implementations of active-set methods for (1.14) that are capable of handling even moderatelysized problems have not been widely available.4 SEMIDEFINITE PROGRAMMINGHere we discuss extensions of interior-point techniques to broad classesof problems that include semide�nite programming (SDP) and second-order cone programming. The SDP problem can be stated asminX C �X; s.t. X � 0; Ai �X = bi; i = 1; 2; : : : ; m; (1.18)where X , C, and Ai, i = 1; 2; : : : ; m, are n � n symmetric matricesSIRn�n, X � 0 denotes the constraint that X be positive de�nite, and\�" denotes the inner product P �Q =Pi;j PijQij . By further restrictingX , C, and Ai all to be diagonal, we recover the linear programmingproblem (1.1). The class (1.18) has been studied intensively during thepast seven years, in part because of its importance in applications tocontrol systems and because many combinatorial problems have powerfulSDP relaxations. The second-order cone programming problem isminx1;t1;:::xN ;tN PNi=1 cTi xi + �iti; s.t. (1.19)PNi=1Aixi + diti = b; kxik2 � ti; i = 1; 2; : : : ; N;where each xi is a vector of length ni � 1, and each ti is a scalar. Convexquadratically constrained quadratic programs can be posed in the form(1.19), along with sum-of-norms problems and many other applications(see [Lobo et al., 1998]).The key to extending e�cient interior-point algorithms to these andother convex problems was provided in [Nesterov and Nemirovskii, 1994].The authors explored the properties of self-concordant functions andshowed that algorithms with polynomial complexity could be constructedby using barrier functions of this type for the inequality constraint andthen applying a projected Newton's method to the resulting linearlyconstrained problem.The fundamental property of self-concordant functions is that theirthird derivative can be bounded by some expression involving their sec-ond derivative at each point in their domain. This property implies that



Developments in Interior-Point Methods 13the second derivative does not uctuate too rapidly in a relative sense, sothat the function does not deviate too much from the second-order ap-proximation on which Newton's method is based. Hence, we can expectNewton's method to perform reasonably well on such a function.Given a �nite-dimensional real vector space V , an open, nonemptyconvex set S � V , and a closed convex set T � V with nonemptyinterior, we have the following formal de�nition.De�nition 1 The function F : S ! IR is self-concordant if it is convexand if the following inequality holds for all x 2 S and all h 2 V:���D3F (x)[h; h; h]��� � 2 �D2F (x)[h; h]�3=2 ; (1.20)where DkF [h1; h2; : : : ; hk] denotes the kth di�erential of F along thedirections h1; h2; : : : ; hk.F is called strongly self-concordant if F (xi) ! 1 for all sequencesxi 2 S that converge to a point on the boundary of S.F is a #-self-concordant barrier for T if it is a strongly self-concordantfunction for intT , and the parameter# def= supx2intT F 0(x)T �F 00(x)��1 F 0(x) (1.21)is �nite.Note that the exponent 3=2 on the right-hand side of (1.20) makes thecondition independent of the scaling of h. It is shown in [Nesterov andNemirovskii, 1994, Corollary 2.3.3] that if T 6= V , then the parameter #is no smaller than 1.It is easy to show that log-barrier function of Section 2 is an n-self-concordant barrier for the positive orthant IRn+ if we takeV = IRn; S = IRn++; F (x) = � nXi=1 log xi:where IRn++ denotes the strictly positive orthant. Another interestingcase is the second-order cone (or \ice-cream cone"), for which we haveV = IRn+1; S = f(x; t) j kxk2 � tg; F (x; t) = � log �t2 � kxk2� ;(1.22)where t 2 IR and x 2 IRn. In this case, F is an 2-self-concordant barrierand is appropriate for the inequality constraints in (1.19). A third im-portant case is the cone of positive semide�nite matrices, for which we



14have V = n� n symmetric matricesS = n� n symmetric positive semide�nite matricesF (X) = � log detX;where F is an n-self-concordant barrier. This barrier function can beused to model the constraint X � 0 in (1.18).Self-concordant barrier functions allow us to generalize the primalbarrier method of Section 2 to problems of the formmin hc; xi s.t. Ax = b; x 2 T ; (1.23)where T is a closed convex set, hc; xi denotes a linear functional on theunderlying vector space V , and A is a linear operator. Similarly to (1.2),we de�ne the barrier subproblem to beminx f(x;�) def= 1�hc; xi+ F (x); s.t. Ax = b; (1.24)where F (x) is a self-concordant barrier and � > 0 is the barrier pa-rameter. Note that by the De�nition 1, f(x;�) is also a strongly self-concordant function. The primal barrier algorithm for (1.23) based on(1.24) is as follows:primal barrier algorithmGiven x0 2 intT and �0 > 0;Set k 0;repeatObtain xk+1 2 intT by performing one or more projected Newton stepsfor f(�;�k), starting at x = xk;Choose �k+1 2 (0; �k);until some termination test is satis�ed.Remarkably, the worst-case complexity of algorithms of this type de-pends on the parameter # associated with F , but not on any propertiesof the data that de�nes the problem instance. For example, we can de-�ne a short-step method in which a single full Newton step is taken foreach value of k, and � is decreased according to�k+1 = �k=�1 + 18p#� :Given a starting point with appropriate properties, we obtain an iteratexk whose objective hc; xki is within � of the optimum inO�p# log #�0� � iterations:



Developments in Interior-Point Methods 15Long-step variants are discussed in [Nesterov and Nemirovskii, 1994].The practical behavior of the methods does, of course, depend stronglyon the properties of the particular problem instance.The primal-dual algorithms of Section 2 can also be extended to moregeneral problems by means of the theory of self-scaled cones developedby Nesterov and Todd (see [Nesterov and Todd, 1997, Nesterov andTodd, 1998]). The basic problem considered is the conic programmingproblem min hc; xi s.t. Ax = b; x 2 K; (1.25)where K � IRn is a closed convex cone, that is, a closed convex set forwhich x 2 K ) tx 2 K for all nonnegative scalars t, and A denotes alinear operator from IRn to IRm. The dual cone for K is denoted by K�and de�ned as K� def= fs j hs; xi � 0 for all x 2 Kg;and we can write the dual instance of (1.25) asmaxhb; �i s.t. A��+ s = c; s 2 K�; (1.26)where A� denotes the adjoint of A. The duality relationships between(1.25) and (1.26) are more complex than in linear programming, but ifeither problem has a feasible point that lies in the interior of K or K�,respectively, the strong duality property holds. That is, if the optimalvalue of either (1.25) or (1.26) is �nite, then both problems have �niteoptimal values, and these values are the same.K is a self-scaled cone when its interior intK is the domain of a self-concordant barrier function F with certain strong properties that allowus to de�ne algorithms in which the primal and dual variables are treatedin a perfectly symmetric fashion and play interchangeable roles. The fullelucidation of these properties is quite complicated. It su�ces to notehere that the three cones mentioned above|the positive orthant IRn+, thesecond-order cone (1.22), and the cone of positive semide�nite symmetricmatrices|are the most interesting self-scaled cones, and their associatedbarrier functions are the logarithmic functions already mentioned.To build algorithms from the properties of self-scaled cones and theirbarrier functions, the Nesterov-Todd theory de�nes a scaling point fora given pair x 2 intK, s 2 intK� to be the unique point w such thatH(w)x = s, where H(�) is the Hessian of the barrier function. In thecase of linear programming, it is easy to verify that w is the vector inIRn whose elements arepsi=xi. The Nesterov-Todd search directions areobtained as projected steepest descent direction for the primal and dualbarrier subproblems (that is, (1.24) and its dual counterpart), where a



16weighted inner product involving the matrix H(w) is used to de�ne theprojections onto the spaces de�ned by the linear constraints Ax = b andA��+ s = c, respectively. The resulting directions satisfy the followinglinear system:24 0 A 0A� 0 I0 H(w) I 3524 ���x�s 35 = �24 00s + ��rF (x) 35 ; (1.27)where � = hx; si=#. (The correspondence with (1.10) is complete if wechoose the perturbation term to be r = 0.) By choosing the startingpoint appropriately, and designing schemes for choosing the parameters� and step lengths to take along these directions, we obtain polynomialalgorithms for this general setting.Primal-dual algorithms for (1.25), where K is a self-scaled cone, arealso studied by [Faybusovich, 1997], who takes the viewpoint of di�er-ential geometry and, in particular, uses a Jordan algebra framework.In the important case of semide�nite programming (1.18), the Nesterov-Todd framework is far from the only means for devising primal-dualmethods. Many algorithms proposed before and since this frameworkwas described do not fall under its umbrella, yet have strong theoreti-cal properties and, in some cases, much better practical behavior. Tooutline a few of these methods, we write the dual of (1.18) asmaxy;S bT� s.t. mXi=1 �iAi + S = C; S � 0; (1.28)where S 2 SIRn�n and � 2 IRm. Points on the central path for (1.18),(1.28) are de�ned by the following parametrized system:mXi=1 �iAi + S = C; (1.29a)Ai �X = bi; i = 1; 2; : : : ; m; (1.29b)XS = �I; (1.29c)X � 0; S � 0; (1.29d)where as usual � is the positive parameter. Unlike the correspondingequations for linear programming, the system (1.29a), (1.29b), (1.29c)is not quite \square," since the variables reside in the space SIRn�n �IRm � SIRn�n while the range space of the equations is SIRn�n � IRm �IRn�n. In particular, the product of two symmetric matrices (see (1.29c))is not necessarily symmetric. Before Newton's method can be appliedto (1.29a)|the fundamental operation in primal-dual algorithms|the



Developments in Interior-Point Methods 17domain and range have to match. The di�erent primal-dual algorithmsdi�er in the ways that they reconcile the domain and range of theseequations.The paper [Todd, 1999] is witness to the intensity of research inSDP interior-point methods: It describes twenty techniques for obtainingsearch directions for SDP. In many of these, the equation (1.29c) isreplaced by one whose range lies in SIRn�n. That is, it is \symmetrized"and replaced with an mapping�(X;S) = 0; (1.30)whose linearization is E�X + F�S = ��(X;S): (1.31)Primal-dual methods are then derived as perturbed Newton's methodsapplied to (1.29a), (1.29b), (1.30). The heuristics associated with lin-ear programming algorithms|Mehrotra and Gondzio corrections, steplength determination, and so on|translate in a fairly straightforwardway to this setting. The implementations are much more complex, how-ever, since the linear problem to be solved at each iteration has a muchmore complicated structure than that of (1.10). It is noted in [Haeberlyet al., 1999] that the bene�ts of higher-order corrections in the SDP con-text are even more pronounced than in linear programming, since thecost of factoring the coe�cient matrix relative to the cost of solving fora di�erent right-hand side is much greater for SDP.Examples of symmetrizations (1.30) include the Monteiro-Zhang fam-ily, in which�(X;S) = 12 �P (XS)P�1 + P�T (XS)TPT�� �I;for some nonsingular P . The Alizadeh-Haeberly-Overton direction [Al-izadeh et al., 1998], which appears to be the most promising one from apractical point of view, is obtained by setting P = I , while the Nesterov-Todd direction is obtained fromP 2 = S1=2(S1=2XS1=2)�1=2S1=2:A survey of the applications of SDP, ranging across eigenvalue opti-mization, structural optimization, control and systems theory, statistics,and combinatorial optimization, is given in [Vandenberghe and Boyd,1996]. The main use of SDP in combinatorial optimization is in �ndingSDP relaxations (that is, problems of the form (1.18) that contain all thefeasible points of the underlying combinatorial problem in their feasible



18sets) that yield high quality approximate solutions to the combinatorialproblem. We illustrate the technique with possibly the most famous in-stance to date: the technique of Goemans and Williamson, which yieldsan approximate solution whose value is within 13% of optimality for theMAX CUT problem [Goemans and Williamson, 1995].In MAX CUT, we are presented with an undirected graph with Nwhose edges wij have nonnegative weights. The problem is choose asubset S � f1; 2; : : : ; Ng so that the sum of weights of the edges thatcross from S to its complement is minimized. In other words, we aim tochoose S to minimize the objectivew(S) def= Xi2S;j =2S wij:This problem can be restated as an integer quadratic program by in-troducing variables yi, i = 1; 2; : : : ; N , such that yi = 1 for i 2 S andyi = �1 for i =2 S. We then havemaxy 12 Xi<j wij(1� yiyj) subject to yi 2 f�1; 1g for all i = 1; 2; : : : ; N .(1.32)This problem is NP-complete. Goemans and Williamson replace thevariables yi 2 IR by vectors vi 2 IRN and consider instead the problemmaxv1;v2;:::;vN 12 Xi<j wij(1�vTi vj); subject to kvik = 1 for all i = 1; 2; : : : ; N .(1.33)This problem is a relaxation of (1.32) because any feasible point y for(1.32) corresponds to a feasible pointvi = (yi; 0; 0; : : : ; 0)T ; i = 1; 2; : : : ; N;for (1.33). The problem (1.33) can be formulated as an SDP by changingvariables v1; v2; : : : ; vN to a matrix Y 2 IRN�N , such thatY = V TV; where V = [v1; v2; : : : ; vN ] :The constraints kvik = 1 can be expressed simply as Yii = 1, and sinceY = V TV , we must have Y semide�nite. The transformed version of(1.33) is thenmax 12 Xi<j wij(1� Yij) subject to Yii = 1, i = 1; 2; : : : ; N and Y � 0,which has the form (1.18) for appropriate de�nitions of C and Ai,i = 1; 2; : : : ; N . We can recover V from Y by performing a Cholesky



Developments in Interior-Point Methods 19factorization. The �nal step of recovering an approximate solution tothe original problem (1.32) is performed by choosing a random vectorr 2 IRN , and setting yi = ( 1; if rT vi > 0,�1 if rT vi � 0.A fairly simple geometric argument shows that the expected value of thesolution so obtained has objective value at least :87856 of the optimalsolution to (1.32).Similar relaxations have been obtained for many other combinatorialproblems, showing that is possible to �nd good approximate solutionsto many NP-complete problems by using polynomial algorithms. Suchrelaxations are also useful if we seek exact solutions of the combinatorialproblem by means of a branch-and-bound or branch-and-cut strategy.Relaxations can be solved at each node of the tree (in which some ofthe degrees of freedom are eliminated and some additional constraintsare introduced) to obtain both a bound on the optimal solution and insome cases a candidate feasible solution for the original problem. Sincethe relaxations to be solved at adjacent nodes of the tree are similar, itis desirable to use solution information at one node to \warm start" theSDP algorithm at a child node. Mitchell discusses an e�cient strategyalong these lines for the branch-and-cut strategy [Mitchell, 1999].5 CONCLUSIONSInterior-point methods remains an active and fruitful area of research,although the frenetic pace that has characterized the area has slowed inrecent years. Linear programming codes have become mainstream andcontinue to undergo development, although they face continuing sti�competition from the simplex method. Semide�nite programming hasproved to be an area of major impact. Applications to quadratic pro-gramming show considerable promise, because of the superior ability ofthe interior-point approach to exploit problem structure e�ciently. Theinuence on nonlinear programming theory and practice has yet to bedetermined, even though substantial research has already been devotedto this topic. Use of the interior-point approach in decomposition meth-ods appears promising, though no rigorous comparative studies withalternative approaches have been performed. Applications to integerprogramming problems have been tried by a number of researchers, butthe interior-point approach is hamstrung here by competition from thesimplex method with its superior warm-start capabilities.
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