
THE GINZBURG{LANDAU EQUATIONS OFSUPERCONDUCTIVITY IN THE LIMIT OF WEAKCOUPLING NEAR THE UPPER CRITICAL FIELDHans G. Kaper1 and Henrik Nordborg2Abstract. This article is concerned with the Ginzburg{Landau (GL) equations ofsuperconductivity. The equations provide a mathematical model for the study ofmagnetic ux vortices in superconductors. The focus is on the asymptotic case whenthe charge of the superconducting charge carriers (Cooper pairs) is vanishingly smalland the applied magnetic �eld approaches the upper critical �eld. It is shown thatthe GL model reduces in the limit to the frozen-�eld model, where the superconduct-ing phenomena are a�ected by the electromagnetic phenomena, but not vice versa.The convergence is second order in the small parameter. The analytical results arecon�rmed in some numerical examples.1 IntroductionSuperconducting materials hold great promise for technological applications. Espe-cially since the discovery of the so-called high-temperature superconductors in the1980s, much research has been devoted to understanding the behavior of these newmaterials. While conventional superconductors require liquid helium (3{4 degreesKelvin) to remain in the superconducting state, high-temperature superconductorscan be cooled with liquid nitrogen (76 degrees Kelvin)|a clear economic advantage.Unfortunately, high-temperature superconductors are ceramic materials, which aredi�cult to manufacture into �lms and wires, but progress is being made all the time.High-temperature superconductors belong to the class of type-II superconduc-tors. Unlike type-I superconductors, type-II superconductors can sustain magneticux in their interior, but the magnetic ux is restricted to quantized amounts|�laments that are encircled by a current. The current shields the magnetic ux fromthe bulk, which is perfectly superconducting. The con�guration resembles that ofa vortex in a uid, and the superconductor is said to be in the vortex state. The1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439(kaper@mcs.anl.gov)2James Franck Institute, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637(Henrik Nordborg@anl.gov) 1



vortices, and especially their dynamics, determine the current-carrying capabilities ofthe superconductor.Vortices can be studied at various levels of detail. The most detailed descriptionis given by the Ginzburg{Landau (GL) model which, although phenomenologicaland not based on any microscopic quantum-mechanical theory, can be used to studyboth the dynamics and the structure of vortex systems in realistic superconductorcon�gurations [1, 2]. Numerical simulations based on the GL model are, however,extremely time consuming, and it is desirable to use simplermodels whenever possible.In this article, we consider the GL model in the limit when the charge of thesuperconducting charge carriers (Cooper pairs) goes to zero and the applied magnetic�eld approaches the upper critical �eld. The upper critical �eld marks the transitionfrom the superconducting to the normal state: When the applied �eld is below theupper critical �eld, a type-II superconductor admits vortex solutions; above the uppercritical �eld, it loses all superconducting properties and becomes a normal metal.The assumption that the charge of the Cooper pairs is small leads to a weak couplingbetween the order parameter and the electromagnetic �eld.We prove that the GL model reduces in the limit to the \frozen-�eld model,"where the superconducting phenomena are determined by the magnetic �eld, butnot vice versa. The equation for the order parameter is the same as in the GLmodel (except that the �eld is now prescribed) and admits vortex solutions as before.We also prove that the convergence rate is second order in the small parameter (thecharge of a Cooper pair or, in dimensionless units, the inverse of the Ginzburg{Landauparameter) in a suitable Sobolev space norm. This convergence rate is con�rmed insome numerical examples.The frozen-�eld model has been used successfully for numerical simulations ofvortex systems [3]. Our analysis shows how the model is obtained as an asymp-totic limit of the GL model, circumscribes the domain of its validity, and suggests asystematic procedure for the derivation of higher-order approximations.For more background on the physics of superconductivity we refer the readerto the monograph by Tinkham [4]. The original source for the Ginzburg{Landauequations of superconductivity is [5]. A good introduction to the mathematics of theGinzburg{Landau equations was given by Du, Gunzburger, and Peterson [6]. Thedynamics of the Ginzburg{Landau equations have been studied by several authors;we mention the articles by Du [7], Tang and Wang [8], and Fleckinger-Pell�e et al. [9],where further references can be found. The article by Du and Gray [10] is closelyrelated to the present investigation. 2



Section 2 contains an introduction to the Ginzburg{Landau equations, Section 3the analysis (with a summary in Section 3.5), and Section 4 the numerics.2 Ginzburg-Landau EquationsIn the Ginzburg{Landau theory of superconductivity, the state of a superconductingmedium is described by a complex scalar-valued order parameter  and a real vector-valued vector potential A. The thermodynamic properties of the superconductor aredetermined by the Gibbs free energy G, which is de�ned by the relatione�(1=kT )G(T;H) = Z e�(1=kT )R (F[ ; �;A]�(1=4�)(r�A)�H)(x) dx D D �DA: (2.1)Here, k is Boltzmann's constant, T the temperature, and H the applied magnetic�eld; F is the free-energy density, and the integral is a functional integral over alladmissible states ( ;A). The free energy is the sum of the kinetic energy, the con-densation energy, and the �eld energy; its density is given by the expressionF [ ; �;A] = 12ms ����� �hir� qsc A! �����2 +  �j j2 + �2 j j4!+ 18� jr�Aj2: (2.2)The constants ms and qs are the mass and charge, respectively, of a Cooper pair (thesuperconducting charge carriers, also referred to as superelectrons); c is the speed oflight; and �h is Planck's constant divided by 2�. A Cooper pair is made up of twoelectrons, each with charge �e (e is the elementary charge); hence, qs is negative,qs = �jqsj. The parameters � and � are material parameters; � changes sign at thecritical temperature Tc, �(T ) < 0 for T < Tc (superconducting state) and �(T ) > 0for T > Tc (normal state); � is only weakly temperature dependent and positive forall T . These parameters are de�ned phenomenologically, but they can be expressedin terms of measurable quantities, such as the superconducting coherence length �and the London penetration depth �,� =  �h22msj�j!1=2 ; � =  msc2�4�q2s j�j!1=2 : (2.3)The coherence length and the London penetration depth de�ne the respective char-acteristic length scales for the order parameter and the magnetic induction. Bothdepend on the temperature T and diverge as T approaches the critical temperatureTc, because of the factor j�j�1=2. However, their ratio is, to a good approximation,independent of temperature. This ratio is the Ginzburg-Landau parameter,� = �=�: (2.4)3



In high-Tc superconductors, � is of the order of 50{100.As long as thermal uctuations can be ignored, the equilibrium state at a point(T;H) in the phase plane is found by minimizing the expressionF [ ; �;A]� (1=4�)(r�A) �H (2.5)with respect to  (or its complex conjugate,  �) andA. Thus we obtain the Ginzburg{Landau (GL) equations,12ms  �hir� qsc A!2  + � + �j j2 = 0; (2.6)� c4�r�r�A + J s + c4�r�H = 0; (2.7)where the supercurrent density, J s, is given byJ s = qs�h2ims ( �r �  r �)� q2smsc j j2A = qsms< " � �hir� qsc A! # : (2.8)Notice that Eq. (2.7) is Amp�ere's law, J = (c=4�)r�B, where B is the magneticinduction, B = r�A, and the current J is the sum of the supercurrent J s and thetransport current J t = r�H. The natural boundary conditions aren � J s = 0; n� (r�A) = n�H: (2.9)They express the fact that superelectrons cannot leave the superconductor, while thetangential components of the magnetic �eld must be continuous across the boundary(if no surface currents are present there).The GL equations are invariant under a gauge transformationG� : ( ;A) 7! � ei(qs=�hc)�;A +r�� : (2.10)The gauge � can be any su�ciently smooth function of position. This gauge in-variance does not a�ect the physically measurable quantities (the magnetic induc-tion B = r � A or the magnetization M = B �H and the current density J),but implies that the solution of the GL equations is not unique. Uniqueness requiresan additional constraint, which is imposed through a gauge choice. The choice is, inprinciple, arbitrary; a common choice is the London gauge, where A is divergencefree everywhere in the superconductor and tangential at the boundary.4



2.1 Time-Dependent GL EquationsThe time-dependent Ginzburg{Landau (TDGL) equations describe how a supercon-ductor relaxes to the ground state. Because gauge invariance needs to be maintained,the TDGL equations are nontrivial generalizations of the GL equations. That is, theTDGL equations cannot be obtained from the GL equations simply by replacing 0in the right-hand side of Eqs. (2.6) and (2.7) by the time derivatives of  and A,respectively.When the state of a superconductor varies with time, we must deal with the fullelectromagnetic �eld, not just the magnetic �eld. This necessitates the introductionof a third state variable, in addition to the order parameter and the vector potential,namely, the electric potential �. The electromagnetic variables|the magnetic induc-tion B, the current density J , and the electric �eld E|are given in terms of A and� by the expressionsB = r�A; J = c4�r�r�A; E = �1c @A@t �r�: (2.11)The electric �eld represents a measurable quantity that, like the magnetic inductionand the current, must be gauge invariant in time. The proper generalization of thegauge transformation (2.10) to the time-dependent domain is thereforeG� : ( ;A; �) 7!   ei(qs=�hc)�;A +r�; �� 1c @�@t ! ; (2.12)and the TDGL equations are�h @@t + iqs�h �! + 12ms  �hir� qsc A!2  + � + �j j2 = 0; (2.13)�  �1c @A@t �r�!� c4�r�r�A+ J s + c4�r�H = 0; (2.14)where J s is again given by Eq. (2.8). We assume that the applied �eld H is sta-tionary. The TDGL equations require the speci�cation of two additional materialparameters, the normal state conductivity � and the mobility coe�cient . Thelatter is dimensionless and related to the di�usion coe�cient D,  = �h=2msD.If we interpret Eq. (2.14) again as Amp�ere's law, we see that the current is nowmade up of three parts: the supercurrent J s, the transport current J t, and a normalcurrent Jn given by Jn = �E (Ohm's law). Hence, we are using a quasistatic version5



of Maxwell's equations, where the time derivative of the electric �eld is ignored. TheTDGL equations were �rst given by Schmid [11] in 1966 and subsequently derivedfrom the microscopic theory of superconductivity by Gor'kov and Eliashberg [12].Our notation is the same as in Gor'kov and Kopnin [13].The choice of a proper gauge for the TDGL equations has been a subject ofconsiderable debate. The choice is a matter of convenience and may depend on theproblem under investigation. In this article we adopt a gauge in which, at any time,the electric potential and the divergence of the vector potential satisfy the identity��+ (c=4�)r �A = 0 (2.15)everywhere in the domain, while A is tangential at the boundary. This choice isrealized by identifying the gauge � with a solution of the linear parabolic equation�c @�@t � c4��� = ��+ c4�r �A; (2.16)subject to the condition n�r� = �n�A on the boundary. In [9], it was shown that theTDGL equations, subject to the constraint (2.15), de�ne a dynamical system undersuitable regularity conditions on H. (In the more general case, where H varies notonly in space but also in time, the TDGL equations de�ne a dynamical process.) Thisdynamical system has a global attractor, which consists of the stationary points ofthe dynamical system and the heteroclinic orbits connecting such stationary points.Furthermore, it was shown that every solution on the attractor satis�es the conditionr �A = 0 (and, therefore, also � = 0). Thus, in the limit as t! 1, every solutionof the TDGL equations satis�es the GL equations in the London gauge.2.2 Nondimensional TDGL EquationsIn this section, we render the TDGL equations dimensionless by choosing units forthe independent and dependent variables. Since we are interested in the collectivebehavior of vortices in the bulk of a superconductor in the limit of weak coupling(qs ! 0), we take care to choose the units in such a way that they remain of orderone as qs ! 0. (We recall that qs is negative, qs = �2e.)As qs ! 0, the coherence length � remains of order one, while the penetrationdepth � increases like jqsj�1; see Eq. (2.3). This suggests taking the coherence length� as the unit of length.To maintain the di�usion coe�cient D = �h=2ms = �2(�h=j�j)�1 at order one,we measure time in units of �h=j�j. 6



The real and imaginary parts of the order parameter are conveniently measuredin units of  0 = (j�j=�)1=2, which is the value of  that minimizes the free energy inthe absence of a �eld.Next, consider the magnetic �eld. A fundamental quantity in the theory oftype-II superconductors is the ux quantum �0,�0 = hcjqsj = 2� �hcjqsj : (2.17)The ux quantum is the unit of magnetic ux carried by a vortex. Together with thecoherence length and penetration depth, it de�nes three characteristic �eld strengths:the lower critical �eld Hc1, the thermodynamical critical �eld Hc, and the uppercritical �eld Hc2, Hc1 = �04��2 ln�; Hc = �02���p2 ; Hc2 = �02��2 : (2.18)Below Hc1, a superconductor is in the ideal superconducting (Meissner) state, whereit does not support magnetic ux in the bulk; above Hc2, it is in the normal state,where the magnetic ux is distributed uniformly in the bulk; between Hc1 and Hc2, itis in the vortex state, where magnetic ux is present, but in quantized units (uxoids)that are shielded from the superconducting bulk by an encircling supercurrent. Thethermodynamical critical �eld Hc is intermediate between Hc1 and Hc2 and is de�nedby the identity H2c =8� = 12 20j�j; the quantity in the left member is the energy perunit volume associated with Hc, the quantity in the right member is the minimumcondensation energy, which is attained when  =  0, and Hc is de�ned so these twoquantities are in balance.As qs ! 0, Hc1 goes to 0 like jqsj, Hc remains of order one, and Hc2 grows likejqsj�1. This suggests that we de�ne �eld strengths in terms of Hc. In fact, it isconvenient to absorb a factor p2, so we adopt Hcp2 or, equivalently, �hc=��jqsj asthe unit for the magnetic �eld strength.With the coherence length as the unit of length and Hcp2 as the unit of �eldstrength, it follows that the vector potential is measured in units of �Hcp2. Fur-thermore, energy densities are measured in units of H2c =4�, which is the same asj�j 20.Finally, we de�ne the scalar potential � in units of (1= 20�jqsj)(H2c =4�). Noticethat this unit remains of order one as qs ! 0, because �jqsj is of order one. On theother hand, the product qs�, which represents an energy density, tends to zero asqs ! 0. (It remains �nite on the scale of the penetration depth.)7



Table 1 summarizes the relations between the original variables and their nondi-mensional (primed) counterparts. We adopt the latter as the new variables and workuntil further notice on the nondimensional problem. We omit all primes.Table 1: Nondimensionalization.Independent variables x = �x0t = (�h=j�j)t0 =  0 0Dependent variables A = (�Hcp2)A0� = (1= 20�jqsj)(H2c=4�)�0B = (Hcp2)B0Electromagnetic variables J = (cHcp2=4��)J 0E = (1= 20�jqsj)(H2c =4��)E0Applied Field H = (Hcp2)H 0Normal conductivity � = (msc2=2��h)�0The nondimensional TDGL equations are @@t � i��! � �r+ i�A�2  � (1� j j2) = 0; (2.19)�  �@A@t �r�!+ 1�J s �r�r�A+r�H = 0; (2.20)where J s = � 12i( �r �  r �)� 1� j j2A = �= � ��r+ i�A� � : (2.21)The (nondimensional) gauge condition is��+r �A = 0; (2.22)and the electromagnetic variables are given by the expressionsB = r�A; J = r�r�A; E = �@tA�r�: (2.23)The values of the lower and upper critical �elds areHc1 = (2� ln �)�1; Hc2 = �: (2.24)Equations (2.19) and (2.20), together with the gauge condition (2.22), must be satis-�ed everywhere in a domain 
 (the superconducting domain measured in units of �).At the boundary @
 of 
, we have the conditionsn � J s = 0; n� (r�A) = n�H; n �A = 0: (2.25)Here, n is the local unit normal vector. 8



2.3 Link VariablesThe combination r + (i=�)A plays a fundamental role in the theory; we refer to itas the A-gradient and denote it by a special symbol,rA = r+ i�A: (2.26)Similarly, we de�ne the A-Laplacian,�A = rA � rA = �r+ i�A�2 : (2.27)The relation between the A-Laplacian and the ordinary Laplacian is most easilyillustrated by means of the link variables,Ux(x; y; z) = exp� i� Z xAx(�; y; z)� d�;Uy(x; y; z) = exp� i� Z y Ay(x; �; z)� d�; (2.28)Uz(x; y; z) = exp� i� Z z Az(x; y; �)� d�:(We omit the argument t.) The integrals are evaluated with respect to an arbitraryreference point. Each U� (� = x; y; z) is complex valued and unimodular, U�� = U�1� .The vectors A and U may be used interchangeably. With a slight abuse of notation,we have U = e(i=�)R A; rA = U�rU; �A = U��U: (2.29)Sometimes, we refer to the A-Laplacian as a \twisted Laplacian."2.4 Auxiliary EquationsThe quantity j j2 corresponds to the density of the superconducting charge carriers.Its evolution is governed by the equation@j j2@t � 2Re [ ��A ] = 2(1 � j j2)j j2 (2.30)or, equivalently, @j j2@t ��j j2 = 2(1 � j j2)j j2 � 2 jrA j2 : (2.31)9



The last equation shows that, if j j � 1 initially, then j j � 1 at all times.Equations for the divergence and the curl of A follow from Eq. (2.20),�  �@(r �A)@t ���!+ 1�r � J s = 0; (2.32)��@(r�A)@t +�(r�A) + 1�r� J s = 0: (2.33)Here we have used the facts that the divergence of a curl is zero, the curl of a gradientis zero, and �r�r�a = �a�r(r�a) for any vector a and assumed, without lossof generality, that the applied �eld H is divergence free and harmonic, r �H = 0and �H = 0. In the gauge (2.22), Eq. (2.32) becomes an evolution equation for �,�2@�@t � ���+ 1�r � J s = 0: (2.34)Equation (2.33) is an evolution equation for the magnetic induction,��@B@t +�B + 1�r� J s = 0: (2.35)Expressions for r � J s and r� J s are readily obtained from Eq. (2.21),r � J s = �= [ ��A ] = �= " �  @@t � i��! # : (2.36)r� J s = �= [(rA )� � (rA )]� 1� j j2r�A: (2.37)2.5 Energy InequalitiesAssociated with Eqs. (2.19) and (2.20) is an energy inequality. Let E be de�ned bythe integralE(t) = Z
 �jrA j2 + 12(1� j j2)2 + jr�A �Hj2� dx; t � 0: (2.38)Then E 0(t) = �2 Z
 24����� @@t � i��! �����2 + � �����@A@t +r������235 dx; t > 0: (2.39)10



Hence, E 0(t) � 0, and therefore E(t) � E(0) for all t � 0. If, in addition, A and �are related by the gauge condition (2.22), we have a similar result for the extendedfunctionalF (t) = Z
 �jrA j2 + 12(1� j j2)2 + jr �A�Hj2 + 2(r �A)2� dx; t � 0;(2.40)namely,F 0(t) = �2 Z
 24����� @@t + i�� (r �A)! �����2 + � �����@A@t �����2 + 1� jr(r �A)j235 dx; t > 0;(2.41)so F (t) � F (0) for all t � 0.3 Asymptotic AnalysisWe now consider the TDGL equations in the limit as qs ! 0 (weak coupling), whenthe applied �eld is near the upper critical �eld.3.1 Scaling the ProblemWe begin by establishing a scaling for the various variables. The scaling is done bymeans of the dimensionless GL parameter �, which grows like jqsj�1.Since the applied �eld is near Hc2 = �, we begin by scaling H by a factor �,H = �H 0. By scaling the vector potential by the same factor �, we achieve that theelectromagnetic variables are all of the same order.The scalar potential is proportional to the charge density of the Cooper pairs,which is O(jqsj) as qs ! 0. Hence, �� remains of order one. This suggests scaling �by a factor ��1.Table 2 summarizes the relation between the current (nondimensional) variablesand their scaled (primed) counterparts. We adopt the latter as the new variables andwork until further notice on the scaled problem. We omit all primes.After scaling, the relevant parameter is �2, rather than �, so we introduce "," = ��2: (3.1)11



Table 2: Scaling.Applied �eld H = �H0 =  0Dependent variables A = �A0� = ��1�0B = �B0Electromagnetic variables J = �J 0E = �E0The scaled TDGL equations are(@t � i"�) ��A � (1 � j j2) = 0; (3.2)� (�@tA � "r�) + "J s �r�r�A+r�H = 0; (3.3)where J s = � 12i( �r �  r �)� j j2A = �= [ �rA ] : (3.4)The gauge condition is "��+r �A = 0; (3.5)and the electromagnetic variables are given by the expressionsB = r�A; J = r�r�A; E = �@tA� "r�: (3.6)The boundary conditions associated with Eqs. (3.2) and (3.3) aren � rA = 0; n� (r�A) = n�H; n �A = 0: (3.7)Furthermore, U = ei R A; rA = r+ iA = U�rU; �A = U��U: (3.8)3.2 Reducing the ProblemNext, we separate the contribution to the vector potential A from the (stationary)applied �eld H.For any H 2 [L2(
)]n, let AH be the minimizer of the convex quadratic formQH � QH[A], QH[A] = Z
 h(r �A)2 + jr �A�Hj2i dx; (3.9)12



on dom(QH) = fA 2 [W 1;2(
)]n : n �A = 0 on @
g. The minimizer exists, is unique,and sati�es the boundary-value problem�r�r�AH +r�H = 0; r �AH = 0 in 
; (3.10)n� (r�AH) = n�H; n �AH = 0 on @
; (3.11)in the dual of dom(QH) with respect to the inner product in [L2(
)]n. The vectorAH yields the magnetic �eld BH that would have been present in the absence of asuperconductor, BH = r�AH: (3.12)We separate its contribution to the �eld and current by making the substitutionA = AH +A0: (3.13)Table 3 summarizes the relation between the current (scaled, nondimensional)variables and their reduced (primed) counterparts. We adopt the latter as the newvariables and work until further notice on the reduced problem. We omit all primes.Table 3: Reduction. =  0Dependent variables A = AH +A0� = �0B = BH +B0Electromagnetic variables J = r�BH + J 0E = E0The reduced TDGL equations are(@t � i"�) ��AH+A � (1� j j2) = 0; (3.14)� (�@tA� "r�) + "J s �r�r�A = 0; (3.15)where J s = � 12i( �r �  r �)� j j2(AH +A): (3.16)The gauge condition is "��+r �A = 0; (3.17)and the electromagnetic variables are given by the expressionsB = r�A; J = r�r�A; E = �@tA�r�: (3.18)The boundary conditions associated with Eqs. (3.14) and (3.15) aren � rA = 0; n� (r�A) = 0; n �A = 0: (3.19)13



3.3 Existence, Uniqueness, and RegularityThe existence and uniqueness of a solution of Eqs. (3.14){(3.17), subject to the bound-ary conditions (3.19), can be shown with the same techniques as in [9]. First, weeliminate the scalar potential from the problem by incorporating the gauge condi-tion (3.17) in the di�erential equations (3.14) and (3.15),@t + i��1(r �A) ��AH+A � (1� j j2) = 0; (3.20)��@tA +�A+ "J s = 0: (3.21)Next, we reformulate this problem as an abstract functional equation for the vectoru = ( ;A); (3.22)considered as a mapping from the time domain [0;1) to the Hilbert spaceL2 = [L2(
)]2 � [L2(
)]n: (3.23)The vector u satis�es an ordinary di�erential equation,dudt +Au = f(u); t > 0; (3.24)where A is the linear operator associated with the quadratic form Q � Q[u],Q[u] = Z
 hjr j2 + ��1 �(r �A)2 + jr �Aj2�i dx (3.25)on dom(Q) = fu = ( ;A) 2 L2 : n �A = 0 on @
g and f is a nonlinear function of and A. Given any f = ('; ��1F ) 2 L2, the equation Au = f is equivalent withthe system of uncoupled boundary-value problems�� = ' in 
; n � r = 0 on @
; (3.26)��A = F in 
; n�A = 0; n �A = 0 on @
; (3.27)in the dual of dom(Q) with respect to the inner product in L2. The operator Ais selfadjoint and positive de�nite in L2; hence, its fractional powers A�=2 are wellde�ned, they are unbounded if � � 0, and dom(A�=2) is a closed linear subspace ofW�;2 = [W �;2(
)]2 � [W �;2(
)]n; see [14, Section 1.4].The basic regularity assumption in [9], which we also adopt in the present inves-tigation, is H 2 [W �;2(
)]n for some � 2 (12 ; 1). The appropriate framework for the14



analysis of the existence, uniqueness, and regularity of the solution of Eq. (3.24) isthen the Hilbert spaceW1+�;2 = [W 1+�;2(
)]2 � [W 1+�;2(
)]n: (3.28)If 
 is bounded in Rn (n = 2; 3), thenW1+�;2 is continuously imbedded inW1;2\L1.The vector AH introduced in Eqs. (3.10), (3.11) de�nes a (constant) vector uH,uH = (0;AH): (3.29)Theorem 3.1 If H 2 [W �;2(
)]n, � 2 (12 ; 1), then uH 2 W1+�;2.Proof. The mapping H 7! AH is linear, time independent, and continuous from[W �;2(
)]n to [W 1+�;2(
)]n; see [15].Theorem 3.2 For any u0 2 dom(A(1+�)=2) and T > 0, there exists a unique u 2C([0; T ];W1+�;2) satisfying Eq. (3.24) for all t 2 [0; T ] and the initial condition u(0) =u0. If u = ( ;A), then  satis�es the \maximum principle,"j (x; t)j � maxf1; k (0)k1g; (x; t) 2 
� [0; T ]: (3.30)Proof. See [9, Theorem 1].Besides the maximum principle (3.30), there are some important inequalitiesinvolving the derivatives of  and A, which are derived from the extended energyfunctional. This functional, which was de�ned in Eq. (2.40) for the TDGL equa-tions (2.19){(2.22), is given in terms of the current variables by the expressionF (t) = Z
 �jrAH+A j2 + 12(1� j j2)2 + jr �Aj2 + 2(r �A)2� dx; t � 0: (3.31)If A and  satisfy Eqs. (3.14){(3.19), thenF 0(t) = �2 Z
 24����� @@t + i� (r �A)! �����2 + 1" 24� �����@A@t �����2 + 1� jr(r �A)j23535 dx; t > 0:(3.32)15



The integrand is nonnegative, so F 0(t) � 0 and, consequently,Z T0 Z
 �jrAH+A j2 + 12(1� j j2)2 + jr�Aj2 + 2(r �A)2� (x; t) dxdt � F (0)T;(3.33)for any T > 0. Furthermore, as long as F (t) exists, we have the identity2 Z t0 Z
 24����� @@t + i� (r �A)! �����2 + 1" 24� �����@A@t �����2 + 1� jr(r �A)j23535 (x; s) dxds= F (0)� F (t): (3.34)Hence,Z T0 Z
 24�����@ @t �����2 + �����@A@t �����2 + jr(r �A)j235 (x; t) dxdt �  1 + "� + ��12 + M2T�2 !F (0);(3.35)for any T > 0 such that M �M(T ) = supfj (x; t)j : (x; t) 2 
� [0; T ]g is �nite.3.4 Convergence as " # 0The solution u = ( ;A) of Eq. (3.24) de�ned in Theorem 3.2 depends on ". Inthis section we investigate its limit as " # 0. We assume that the applied �eld H isindependent of ".We rescale once more to make the "-dependence more explicit, puttingA = "A0: (3.36)Table 4 summarizes the relation between the current (reduced, scaled, nondi-mensional) variables and their rescaled (primed) counterparts. We adopt the latteras the new variables and work until further notice on the rescaled problem. We omitall primes.The rescaled TDGL equations, including the gauge, are@t + i��1(r � ("A)) ��AH+"A � (1 � j j2) = 0; (3.37)��@tA+�A+ J s = 0; (3.38)16



Table 4: Rescaling. =  0Dependent variables A = "A0� = "�0B = "B0Electromagnetic variables J = J 0E = "E0where J s = � 12i( �r �  r �) � j j2(AH + "A): (3.39)We reformulate the equations as a di�erential equation for the vectoru" = ( ;A) : [0;1)! L2: (3.40)The equation has the same form as Eq. (3.24), but the "-dependence of the nonlinearfunction in the right member is more explicit,dudt +Au = f0(u) + "f1(u); (3.41)where fi(u) = ('i( ;A); ��1F i( ;A)); i = 0; 1; (3.42)with '0( ;A) = 2iAH � (r )� jAHj2  + (1 � j j2) ; (3.43)'1( ;A) = i(1� ��1)(r �A) + 2iA � (r )� (AH �A) � jAj2 ; (3.44)F 0( ;A) = 0; (3.45)F 1( ;A) = � 12i( �r �  r �)� j j2(AH + "A): (3.46)We compare the solution u" of Eq. (3.41) with the solution u0 of the reducedequation dudt +Au = f0(u): (3.47)The existence, uniqueness, and regularity properties of u0 are the same as for u".Theorem 3.3 There exists a positive constant C such thatku"(t)� u0(t)kW1+�;2 � C (ku"(0)� u0(0)kW1+�;2 + ") ; t 2 [0; T ]: (3.48)17



Proof. Let BR be the ball of radius R centered at the origin in W1+�;2. Let u" 2 BRand u0 2 BR satisfy Eqs. (3.41) and (3.47), respectively, with initial data u"(0) andu0(0). The di�erence v = u" � u0 satis�es the di�erential equationdvdt +Av = f0(u")� f0(u0) + "f1(u") (3.49)or, equivalently, the integral equationv(t) = e�tAv(0) + Z t0 e�(t�s)A[f0(u")� f0(u0) + "f1(u")](s) ds: (3.50)From the integral equation we obtain the estimatekv(t)kW1+�;2 � ke�tAkW1+�;2kv(0)kW1+�;2 + Z t0 kA(1+�)=2e�(t�s)AkW1+�;2� [kf0(u")� f0(u0)kL2 + "kf1(u")kL2] (s) ds: (3.51)The operator norms satisfy the inequalitieske�tAkW1+�;2 � 1; kA(1+�)=2e�(t�s)AkW1+�;2 � C(t� s)�(1+�)=2; (3.52)see [14, Theorem 1.4.3]. Furthermore, adding and subtracting terms, we havef0(u")� f0(u0) = �2iAH � (r( " �  0))� jAHj2( " �  0)+ (1 � j "j2 � j 0j2)( " �  0)�  " 0( �" �  �0); 0� ; (3.53)where k2iAH � (r( " �  0))kL2 � 2kAHkL1k " �  0kW 1;2� Ck " �  0kW 1+�;2 � Cku" � u0kW1+�;2 ;kjAHj2( " �  0)kL2 � CkAHk2L1k " �  0kL1� Ck " �  0kW 1+�;2 � Cku" � u0kW1+�;2 ;and the other terms are estimated similarly. Here, C is some (generic) positive con-stant, which may depend on H and 
 but not on u" or u0. (In these inequalities wehave used the continuity of the imbedding of W 1+�;2 into W 1;2 \ L1.) The result isan inequality of the typekf0(u")� f0(u0)kL2 � Cku" � u0kW1+�;2 ; (3.54)showing that f0 is Lipschitz from W1+�;2 to L2.18



Using the same types of estimates, we show that f1 is bounded from W1+�;2 toL2, so there exists a positive constant C such thatkf1(u")kL2 � C: (3.55)Combining the estimates (3.52), (3.54), and (3.55) with the inequality (3.51), weconclude that there exist positive constants C1 and C2 such thatkv(t)kW1+�;2 � kv(0)kW1+�;2+"C1t(1��)=2+C2 Z t0 (t�s)�(1+�)=2kv(s)kW1+�;2 ds: (3.56)Applying Gronwall's inequality, we obtain the estimatekv(t)kW1+�;2 � C (kv(0)kW1+�;2 + ") ; t 2 [0; T ]; (3.57)for some positive constant C.It follows from Theorem 3.3 that, if the initial data are such that ku"(0) �u0(0)kW1+�;2 = o(1) as " # 0, then lim"!0u" = u0 (3.58)in C([0; T ];W1+�;2) for any T > 0. In particular, if ku"(0) � u0(0)kW1+�;2 = O("),then the convergence in Eq. (3.58) is O(").3.5 Summary of the Analytical ResultsWe relate the results of this section back to the dimensionless TDGL equations (2.19){(2.22). First, the hypotheses about the data:(H1) 
 is bounded in Rn (n = 2; 3), with a su�ciently smooth boundary @
; forexample, @
 of class C1;1.(H2) The parameters � and � are real and positive.(H3) H is independent of time; as a function of position, it satis�es the regularitycondition H 2 [W �;2(
)]n for some � 2 (12; 1).The TDGL equations (2.19){(2.22) de�ne an initial-value problem for the pair( ;A); at any time, the third variable � is found from the gauge, � = ���1(r �A).19



Suppose the initial data for  and A are ( (0);A(0)). If these initial dataare su�ciently smooth, the initial-value problem has a unique solution ( (t);A(t))for all t > 0. In particular, if ( (0);A(0)) 2 dom(A(1+�)=2), where A is the lin-ear operator associated with the quadratic form Q de�ned in Eq. (3.25), then  2C([0; T ]; [W 1+�;2(
)]2) and A 2 C([0; T ]; [W 1+�;2(
)]n) for any T > 0. The solutionis such that A is the sum of a constant vector AH 2 [W 1+�;2(
)]n and a time-varyingvector. The former is the solution of the boundary-value problem�r�r�A+r�H = 0; r �A = 0 in 
; (3.59)n� (r�A) = n�H; n �A = 0 on @
: (3.60)It yields the magnetic �eldBH = r�AH that would have been present in the absenceof the superconductor and contributes a vector r�BH to the current density J .We consider the limiting case of weak coupling (qs ! 0), when the applied �eldH is close to the upper critical �eld Hc2. This case is described more precisely bythe following hypotheses.(H4) The parameter � satis�es the strong inequality �� 1.(H5) The applied �eld, vector potential, and scalar potential satisfy the asymptoticrelations H = O(�); A = O(�); � = O(��1) as �!1: (3.61)The order relation for H is consistent with the fact that Hc2 = � in the systemof units associated with Eqs. (2.19){(2.22). The order relation for A is consistentwith the fact that the induced magnetic �eld B = r�A must be of the same orderas H. The order relation for � is consistent with the conservation law for the Cooperpairs. Notice that the ratio �=(r �A) = O(��2), so the scalar potential enters theasymptotic scene well after the vector potential.We denote the solution of the TDGL equations by ( �;A�), to indicate its de-pendence on �. The order parameter  � is O(1). The vector potential A� is againthe sum of the constant vector AH and a time-varying component. Because H andAH are of the same order, we have AH = O(�).The solution ( �;A�) can be compared asymptotically with the vector ( 1;A1),where A1 = AH and  1 2 [W 1+�;2(
)]2 is the solution of the di�erential equation@ @t � �r+ i�A1�2  � (1� j j2) = 0; (3.62)20



subject to the boundary conditionn � �r+ i�A1� = 0: (3.63)Since  � andA� are of di�erent orders as �!1, the comparison is more convenientlymade after a normalization. The natural way to normalize is to measureB� = r�A�relative to the applied �eld H: both are of order �, so their ratio is of order one, thesame as for  .The vector ( 1;B1) with B1 = r�A1 is known as the \frozen-�eld approx-imation." The scalar potential associated with this approximation is zero. (Recallthat r �AH = 0.)Theorem 3.4 There exists a positive constant C such thatk �(t)�  1(t)kW 1+�;2 + kB�(t)�B1kW�;2kHkW�;2 (3.64)� C  k �(0)�  1(0)kW 1+�;2 + kB�(0)�B1kW�;2kHkW�;2 + 1�2! ; (3.65)for all t 2 [0; T ], T > 0.It follows that ( �;B�) converges to ( 1;B1) uniformly in t on [0; T ] in thetopology of [W 1+�;2(
)]2�[W �;2(
)]n as soon as the initial data satisfy the asymptoticestimates k �(0) �  1(0)kW 1+�;2 = o(1) and kB�(0) �B1kW�;2 = o(�) as � ! 1.Under slightly sharper conditions we obtain the order of convergence.Corollary 3.1 Ifk �(0)�  1(0)kW 1+�;2 = O � 1�2� and kB�(0)�B1kW�;2kHkW�;2 = O � 1�2�as �!1, thenk �(t)�  1(t)kW 1+�;2 + kB�(t)�B1kW�;2kHkW�;2 = O � 1�2� ; (3.66)uniformly on compact intervals. 21



The asymptotic approximation procedure can be continued to higher order, ascan be seen from a formal expansion. The equations for the order parameter andthe vector potential decouple, and at each order one �nds �rst the vector potential,then the order parameter. The vector potential satis�es a linear heat equation; forexample, the �rst correction beyond A1 is ��1A, where A satis�es the equation��@tA+�A = = [ �1rA1 1] : (3.67)Remark. Before concluding this section, we note that our analysis di�ers at severalpoints from the analysis of Ref. [10]. First, our scaling is slightly di�erent and, webelieve, more in tune with the physics; second, our regularity assumptions on theapplied �eld are weaker; third, our proofs are more direct; and fourth, our resultshold in a stronger topology.4 Numerical SolutionA parallel code for solving Eqs. (3.2){(3.4) has been developed as part of a projectfor large-scale simulations of vortex dynamics in superconductors. Details on thesesimulations and on the code will be published elsewhere; here, we give only a briefoverview of the numerical methods and the results of some numerical simulations toillustrate the analytical results of the preceding section.The algorithm uses �nite di�erences on a staggered grid, making all approxi-mations accurate to second order in the mesh widths, and an implicit method forthe time integration, making the algorithm (essentially) unconditionally stable. Thecode, written in C++, has been designed for a multiprocessing environment; it usesMPI for message passing.We restrict the discussion to rectangular two-dimensional con�gurations that areperiodic in one direction and open in the other. The con�gurations are assumed tobe in�nite in the third, orthogonal direction, which is also the direction of the appliedmagnetic �eld, H = (0; 0;Hz).4.1 Computational GridThe computational grid is uniform, with equal mesh sizes in the x and y direction,hx = hy = h. A vertex on the grid is denoted by xi;j = (xi; yj) and is the point22



of reference for the grid cell shown in Fig. 1. The indices run through the valuesm mmm e i;j�i;j Bz;i;jAx;i;jAy;i;j  i+1;j i;j+1
Figure 1: Computational grid cell and de�nition of the discrete variables.i = 1; : : : ; Nx and j = 1; : : : ; Ny. We assume periodicity in the x direction and takethe grid so the vertices with j = 1 and j = Ny are located on the open boundary ofthe superconductor. Thus, the size of the domain is S = Nx(Ny � 1)h2.4.2 Discrete VariablesThe discrete variables are introduced so that all derivatives are given by second-orderaccurate central-di�erence approximations. The scalar variables  and � are de�nedon the vertices of the grid,  i;j =  (xi;j); �i;j = �(xi;j): (4.1)(We use the same symbol for the original �eld and its discrete counterpart.) Vectorsare de�ned at the midpoints of the links connecting adjacent vertices,Ax;i;j = Ax(xi;j + 12hxex); Ay;i;j = Ay(xi;j + 12hyey): (4.2)Here, ex and ey denote the unit vectors in the x and y direction, respectively. Thede�nition of the discrete supercurrent J s is completely analogous. The link variables,de�ned in Eq. (3.8), are obtained from the vector potential,Ux;i;j = eiAx;i;jhx ; Uy;i;j = eiAy;i;jhy : (4.3)23



They are therefore also de�ned on the links. Finally, the magnetic inductionB, whichis a vector perpendicular to the plane and given by the curl of the vector potential,is de�ned at the center of a grid cell,Bz;i;j = Bz(xi;j + 12hxex + 12hyey): (4.4)The de�nition of the discrete variables is also illustrated in Fig. 1.Note that, because of the location of the grid relative to the boundaries, all scalarvariables, as well as the x components of all vectors (Ax, Ux, Js;x, and so forth), arede�ned on a Nx�Ny grid, whereas the y components of all vectors and the magneticinduction Bz are de�ned on a Nx � (Ny � 1) grid.4.3 Boundary ConditionsThe boundary conditions are the discrete analogs of Eq. (3.7). We assume periodicityin the x direction, so we need to consider only the boundaries at y = y1 and y = yNy.The boundary condition for the order parameter, n � rA = 0, becomesUy;i;1 i;2 �  i;1 = 0;  i;Ny � U�y;i;Ny�1 i;Ny�1 = 0; (4.5)for i = 1; : : : ; Nx. For the vector potential, we require that @yAx = Hz and Ay isconstant (Ay = 0) on the boundary.4.4 OperatorsThe gradient of a scalar is a vector and is therefore de�ned at the midpoint of a linkconnecting two adjacent vertices. Thus,(r�)x;i;j = (@x�)(xi;j + 12hxex) = h�1x (�i+1;j � �i;j); (4.6)with an analogous de�nition for the y component. The gauge-invariant gradientrA = r+ iA is de�ned in a similar way, with(rA )x;i;j = h�1x ( i+1;jUx;i;j �  i;j): (4.7)Thus, the discrete version of the twisted Laplacian �A is(�A )i;j = h�2x ( i+1;jUx;i;j � 2 i;j +  i�1;jU�x;i�1;j)+h�2y ( i;j+1Uy;i;j � 2 i;j +  i;j�1U�x;i;j�1): (4.8)24



The discrete version of the (normal) Laplacian is de�ned in the usual way,(� )i;j = h�2x ( i+1;j � 2 i;j +  i�1;j) + h�2y ( i;j+1 � 2 i;j +  i;j�1): (4.9)The magnetic induction, which is the curl of the vector potential, takes the formBz;i;j = h�1x (Ay;i+1;j �Ay;i;j)� h�1y (Ax;i;j+1 �Ax;i;j): (4.10)We also need the divergence of the vector potential, which is given by(r �A)i;j = h�1x (Ax;i;j �Ax;i�1;j) + h�1y (Ay;i;j �Ay;i;j�1): (4.11)4.5 AlgorithmFor numerical purposes, it is useful to think of the TDGL equations (3.2) and (3.3) astwo separate equations, which are only coupled through certain �elds and variables.The electromagnetic potentials � and A are treated as static variables in the orderparameter equation, which takes the form(@t � i"�) ��A � �1 � j j2� = 0: (4.12)The local nonlinear part of this equation,(@t � i"�) � �1� j j2� = 0; (4.13)is integrated in the simplest possible manner, i;j(t+�t) = e�"�i;j�t n i;j(t) + �t �1 � j i;jj2� i;jo : (4.14)The nonlocal part, @t ��A = 0; (4.15)is integrated using a backward Euler method, where the linear equation system issolved with the conjugate gradient method.The equation for the vector potential,@tA = �A+ "J s; (4.16)is linear and depends only indirectly on the order parameter through the supercurrent.If we treat the supercurrent as a static variable, we can integrate the equation easily,again using the backward Euler method. In the actual implementation, we use the factthat the equation is linear and the system is periodic to do a fast Fourier transform inthe x direction. This leaves us with a tridiagonal system to solve in the y direction.This procedure is considerably faster than using an iterative method, such as theconjugate gradient method. 25



4.6 Numerical ResultsThe main result of the asymptotic analysis, which is summarized in Corollary 3.1,is that the solution for a system with a �nite � converges to the solution of thefrozen-�eld approximation as �!1 with a convergence rate of the order of ��2. Weillustrate this result numerically, using a rectangular sample that is periodic in the xdirection and open in the y direction, with Nx = Ny = 128. We take hx = hy = 12�, sothe sample measures 64 coherence lengths in the periodic direction and 63.5 coherencelengths across. (The coherence length � is de�ned in Eq. (2.3).)First, we considered this system with � = 200 and an applied magnetic �eld thatproduced an almost perfect lattice, Hz = 0:088�. With a relatively large value of�, the surface barrier for vortex entry is low, and the system equilibrates relativelyfast [16, 17]. The equilibration required 5� 104 time steps with �t = 0:4. A contourplot of the density of Cooper pairs j j2 at equilibrium is shown in Fig. 2. We then
20 40 60 80 100 120

20

40

60

80

100

120

Figure 2: Contours of the density of Cooper pairs, j j2, for a system with � = 200.started from the con�guration of Fig. 2 to �nd the equilibrium con�guration for othervalues of �, which required another 3 � 104 time steps. Because the purpose of thecomputations was to illustrate the results of the asymptotic analysis for �!1, weused only fairly large values of �, varying � from �min = 40 to �max = 800. In this26



range, the ground states are comparable and similar to the one shown in Fig. 2. Sincethe magnetization of a sample is proportional to 1=�2, the vortex density decreaseswith �; below �min, the equilibriumstate has fewer vortices, and a comparison becomesmeaningless.
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