
System Description: IVY?William McCune1 and Olga Shumsky21 Mathematics and Computer Science DivisionArgonne National Laboratory, U.S.A.mccune@mcs.anl.govhttp://www.mcs.anl.gov/~mccune2 Department of Electrical and Computer EngineeringNorthwestern University, U.S.A.shumsky@ece.nwu.eduAbstract. IVY is a veri�ed theorem prover for �rst-order logic withequality. It is coded in ACL2, and it makes calls to the theorem proverOtter to search for proofs and to the program MACE to search for coun-termodels. Veri�cations of Otter and MACE are not practical becausethey are coded in C. Instead, Otter and MACE give detailed proofs andmodels that are checked by veri�ed ACL2 programs. In addition, theinitial conversion to clause form is done by veri�ed ACL2 code. Theveri�cation is done with respect to �nite interpretations.1 IntroductionOur theorem provers Otter [6, 7, 10] and EQP [4,8] and our model searcherMACE [3, 5] are being used for practical work in several areas. Therefore, wewish to have very high con�dence that the proofs and models they produce arecorrect. However, these are high-performance programs, coded in C, with manytricks, hacks, and optimizations, so formal veri�cation of the programs is notpractical.Instead, our approach is to have the C programs give their results explicitlyas detailed proof objects or models, and to have separate checker programs checkthe results. The checker algorithms are relatively simple and straightforward, soit is practical to apply program veri�cation techniques to them. In particular, weuse the ACL2 program veri�cation system to prove that if the checker programaccepts a proof, then the proof is correct.Otter can convert �rst order formulas into clauses (by normal form transla-tion and Skolemization), but it is not able to include these preprocessing stepsas part of the proof objects. Therefore, we have recoded the clause form trans-lator in ACL2 and proved its soundness directly. The result is a hybrid system,named IVY, that (1) is driven by ACL2 code, (2) calls ACL2 functions for the? This work was supported by the Mathematical, Information, and Computational Sci-ences Division subprogram of the O�ce of Advanced Scienti�c Computing Research,U.S. Department of Energy, under Contract W-31-109-Eng-38.



preprocessing, (3) calls an external program to search for a proof or a model,and (4) calls ACL2 checker functions to check the results. The top-level sound-ness theorems have the form: If IVY claims a proof, then the input formula is atheorem. A weakness of the veri�cation method is that the soundness proofs arewith respect to �nite interpretations. In Section 6 we discuss an approach for allinterpretations.ACL2 (A Computational Logic for Applicative Common Lisp) [2,1], isthe successor to the Boyer-Moore theorem prover. ACL2 is a speci�ca-tion/programming language, based on Common Lisp, together with an envi-ronment for proving theorems about the programs. Its strength is automatedsupport for proving inductive theorems about recursively de�ned programs.2 Speci�cation of the LogicWe use ACL2 to de�ne a �rst-order logic, and this becomes the speci�cationfor our veri�cation. The de�nitions of well-formed term and well-formed formulaare straightforward. We next de�ne the semantics of our logic by de�ning inter-pretation of a �rst-order language. This part is nonstandard, because we restrictourselves to �nite interpretations; see Section 6. Finally, we de�ne evaluationof a formula in an interpretation. The evaluation function is a pair of mutuallyrecursive functions, in which one recurses through the structure of formulas, andthe other (called for quanti�ed formulas) recurses through the elements of thedomain of the interpretation. In particular, the function (FEVAL F I) evaluatesformula F in interpretation I.3 The Proof ProcedureThe proof search procedure is standard for �rst-order resolution/paramodulationtheorem provers. Starting with the negation of a conjecture, we (1) convertto negation-normal form, (2) rename bound variables, (3) Skolemize, (4) moveuniversal quanti�ers to the top, (5) convert to conjunctive normal form, (6)search for a refutation (or a model), and (7) check the refutation (or model).Steps 1, 2, 4, and 5 produce an equivalent formula, and Skolemization pro-duces an equiconsistent formula.In IVY, the preprocessing steps (1{5) are coded in ACL2, the search step (6)is accomplished by calling Otter or MACE, and the checker step (7) is coded inACL2.4 Soundness TheoremsThe function to convert formulas to negation-normal form is (NNF F), and thesoundness theorem states that NNF produces an equivalent formula:(EQUAL (FEVAL (NNF F) I)(FEVAL F I)). 2



The soundness theorems for steps 2, 4, and 5 of the proof procedure are similar.The soundness theorem for Skolemization is more complicated, because we haveto extend the interpretation with the new Skolem symbols:(EQUAL (FEVAL (SKOLEMIZE F) (SKOLEMIZE-EXTEND F I))(FEVAL F I)).Steps 6 and 7 of the proof procedure are combined in an ACL2 function(REFUTE-N-CHECK F) which calls Otter (see Sec. 5) and the checker func-tion. If Otter �nds a refutation, and if the checker accepts the refutation,REFUTE-N-CHECK returns FALSE (the contradictory formula of our logic); oth-erwise REFUTE-N-CHECK returns the input formula F. Hence, it always producesan equivalent formula, and the soundness theorem is(EQUAL (FEVAL (REFUTE-N-CHECK F) I)(FEVAL F I)).All of the preprocessing functions, REFUTE-N-CHECK, and a few other func-tions are composed into a top-level function (PROVED F), which takes the positiveform of a conjecture, checks that it is well-formed and closed, negates it, andapplies the proof procedure. The top-level soundness theorem is(IMPLIES (PROVED F)(AND (WFF F)(NOT (FREE-VARS F))(FEVAL F I))).In other words, if IVY claims a proof of a conjecture F, then F is a closed well-formed formula that is true in all (�nite) interpretations. Of course, to acceptthis theorem, a user must accept our ACL2 de�nition of �rst-order logic and thesoundness of the ACL2 system. But the point is that the user doesn't have totrust Otter, which does the hard part of the work.The other side of the problem, searching for countermodels, is easier becausechecking a claimed model produced by the C program MACE is done by simplyevaluating the negation of the conjecture in the claimed model. The top-levelfunction (COUNTERMODEL F) is analogous to (PROVED F): it checks that the con-jecture F is closed and well formed, negates it, preprocesses it, calls MACE tosearch for a �nite model, and checks that the negation of F is true in any modelfound byMACE. The soundness theorem for (COUNTERMODEL F) is nearly trivial,because the evaluation property we need to prove is checked by COUNTERMODEL:(IMPLIES (COUNTERMODEL F)(AND (WFF F)(NOT (FREE-VARS F))(NOT (FEVAL F (COUNTERMODEL F))))).In other words, if IVY claims a countermodel to a conjecture F, then F is a closedwell-formed formula that is false in some interpretation.3



5 Interface to the C CodeThe function REFUTE-N-CHECK takes the universal closure of a conjunction ofclauses and returns an equivalent formula. First it transforms the input for-mula into an initial proof object. Next it calls the function EXTERNAL-PROVERwhich augments the initial proof object with additional steps that represent somederivation (a derivation of the empty clause if we are lucky). Then it checks thateach step of the proof object follows from preceding steps.In the ACL2 environment, EXTERNAL-PROVER is a defstub, that is, we tellACL2 that it exists but that we don't know any other properties of it. Weuse ACL2 to prove properties of REFUTE-N-CHECK (e.g., soundness), but theseproperties are necessarily independent of EXTERNAL-PROVER.At run time, a Common Lisp function EXTERNAL-PROVER is loaded along withthe ACL2 code, and the Common Lisp version of EXTERNAL-PROVER overridesthe ACL2 defstub.1 The Common Lisp version of EXTERNAL-PROVER containsoperating system calls to build an input �le for Otter, run Otter, and readand process Otter's output. If the Common Lisp version of EXTERNAL-PROVERreturns a proof object that is not well formed or is unsound, the check fails, andREFUTE-N-CHECK returns its input.A similar situation holds when searching for a countermodel with MACE. Adefstub EXTERNAL-MODELER is used in the ACL2 environment when de�ning func-tions and proving properties, and a CommonLisp version of EXTERNAL-MODELER,which calls MACE, is loaded at run time.It is possible to use the preprocessing and proof checking functions of IVYwith other �rst-order resolution/paramodulation provers and model searchers,provided they produce appropriate proof objects or models. (The format forproof object can be found in [9].) This can be accomplished by simply rewritingthe Common Lisp version of the EXTERNAL-PROVER or EXTERNAL-MODELER to callthe desired program.6 The Finite Domain AssumptionOur approach of proving soundness with respect to �nite interpretations is cer-tainly questionable. Consider, for example, the sentence(IMP (ALL X (ALL Y (IMP (= (F X) (F Y))(= X Y))))(ALL X (EXISTS Y (= (F Y) X)))),that is, one-to-one functions are onto. It is not valid, but it is true for �nitedomains. Could IVY claim to have a proof of such a nontheorem?We strongly believe that it could not|that the weakness is in the metaproofmethod rather than the �rst-order proof procedure. Nonetheless, we are pursuinga general approach that covers in�nite interpretations.1 According to the ACL2 designers, having an ACL2 function call a Common Lispfunction in this way is not o�cially endorsed, but it is acceptable in this situation.4



ACL2 has an encapsulation feature that allows it to reason safely about in-completely speci�ed functions. We believe we can use encapsulation to abstractthe �niteness.2 In our current speci�cation, the important way in which �nite-ness enters the picture is by the de�nition of FEVAL-D, which recurses throughthe domain. This function, in e�ect, expands universally quanti�ed formulas intoconjunctions and existentially quanti�ed formulas into disjunctions. Instead ofFEVAL-D, we can consider a constrained function that chooses an element of thedomain, if possible, that makes a formula true. When evaluating an existen-tially quanti�ed formula, we substitute the chosen element for the existentiallyquanti�ed variable and continue evaluating. (Evaluation of universally quanti�edvariables requires some �ddling with negation.) However, proving the soundnessof Skolemization may present complications in this approach.7 Performance and AvailabilityAside from the overhead of starting up ACL2, the performance of IVY is essen-tially the same as the performance of Otter's autonomous mode or MACE withits default settings. IVY cannot yet accept parameters to be passed to Otter orMACE.The latest version of IVY is available fromhttp://www.mcs.anl.gov/~mccune/ivy.A more complete paper on IVY can be found in [9].References1. M. Kaufmann, P. Manolios, and J Moore, editors. Using the ACL2 TheoremProver: A Tutorial Introduction and Case Studies. Kluwer Academic, 2000. Toappear.2. M. Kaufmann and J Moore. An industrial strength theorem prover for a logicbased on Common Lisp. IEEE Transactions on Software Engineering, 23(4):203{213, 1997.3. W. McCune. A Davis-Putnam program and its application to �nite �rst-ordermodel search: Quasigroup existence problems. Tech. Report ANL/MCS-TM-194,Argonne National Laboratory, Argonne, IL, May 1994.4. W. McCune. EQP. http://www.mcs.anl.gov/~AR/eqp/, 1994.5. W. McCune. MACE: Models and Counterexamples.http://www.mcs.anl.gov/AR/mace/, 1994.6. W. McCune. Otter. http://www.mcs.anl.gov/AR/otter/, 1994.7. W. McCune. Otter 3.0 Reference Manual and Guide. Tech. Report ANL-94/6,Argonne National Laboratory, Argonne, IL, 1994.8. W. McCune. 33 basic test problems: A practical evaluation of some paramodulationstrategies. In Robert Vero�, editor, Automated Reasoning and its Applications:Essays in Honor of Larry Wos, chapter 5, pages 71{114. MIT Press, 1997.2 This approach was suggested by Matt Kaufmann.5



9. W. McCune and O. Shumsky. IVY: A preprocessor and proof checker for �rst-orderlogic. Preprint ANL/MCS-P775-0899, Argonne National Laboratory, Argonne, IL,1999. To appear in [1].10. W. McCune and L. Wos. Otter: The CADE-13 competition incarnations. J.Automated Reasoning, 18(2):211{220, 1997.

6


