
GLOBALIZED NEWTON-KRYLOV-SCHWARZ ALGORITHMS AND SOFTWAREFOR PARALLEL IMPLICIT CFDW. D. GROPP�, D. E. KEYESy , L. C. MCINNESz , AND M. D. TIDRIRIxSubject classi�cation. Computer ScienceKey words. Newton-Krylov-Schwarz algorithms, parallel CFD, implicit methodsAbstract. Implicit solution methods are important in applications modeled by PDEs with dis-parate temporal and spatial scales. Because such applications require high resolution with reason-able turnaround, parallelization is essential. The pseudo-transient matrix-free Newton-Krylov-Schwarz(NKS) algorithmic framework is presented as a widely applicable answer. This article shows that,for the classical problem of three-dimensional transonic Euler ow about an M6 wing, 	NKS cansimultaneously deliver� globalized, asymptotically rapid convergence through adaptive pseudo-transient continuationand Newton's method;� reasonable parallelizability for an implicit method through deferred synchronization and favor-able communication-to-computation scaling in the Krylov linear solver; and� high per-processor performance through attention to distributed memory and cache locality,especially through the Schwarz preconditioner.Two discouraging features of 	NKS methods are their sensitivity to the coding of the underlying PDEdiscretization and the large number of parameters that must be selected to govern convergence. Wetherefore distill several recommendations from our experience and from our reading of the literatureon various algorithmic components of 	NKS, and we describe a freely available, MPI-based portableparallel software implementation of the solver employed here.1. Introduction. Disparate temporal and spatial scales arise in CFD applications such as tran-sonic or high Reynolds number ows in which the ow velocity goes to zero at a stagnation point orno-slip surface, ows containing shocks or combustion fronts, and multidisciplinary phenomena such asaeroelasticity. Local equilibration of wavespeeds (as in the \preconditioning" of [80]) and temporal sub-cycling (as in the \three-�eld" method of [27]) are two strategies that permit explicit integration of theow�elds of some such problems; nevertheless, implicit solution methods are playing increasingly impor-tant roles in CFD. Whereas explicit methods based on localized stencil updates with nearest-neighborcommunication lend themselves straightforwardly to scalable parallelization, implicit methods based onthe global recurrences of forward and backward triangular solves (exact or approximate) and/or theglobal inner products of optimal descent or Krylov iterative methods appear to be intrinsically less scal-� Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844 USA,www.mcs.anl.gov/~groppy Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529-0162USA & ICASE, NASALangley Res. Ctr., Hampton, VA 23681-2199 USA, www.cs.odu.edu/~keyesz Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844 USA,www.mcs.anl.gov/~mcinnesx Mathematics Department, Iowa State University, Ames, IA 50011-2064 USA1

able. At the same time, the demand for high resolution with reasonable turnaround requires scalableparallelism and in particular | for cost e�ectiveness | latency-tolerant parallelism for applicability tonetworked clusters. For the common situation in which the discretization is applied in a uniform wayover a grid that is adapted only infrequently (and may therefore be cost-e�ectively load balanced to highprecision), the pseudo-transient matrix-free Newton-Krylov-Schwarz (NKS) algorithmic framework ispresented as one answer to the conicting demands of implicitness and parallelism.In the �nal section, we discuss the role of 	NKS methods in more dynamic simulation environments.For problems in which convergence to a low-residual steady state is required, as is often the case whenCFD analyses are �nite-di�erenced for sensitivities in computational design and optimization, a Newtonmethod is asymptotically cost e�ective. Alternatively, the ability to solve implicit linear systems withthe Jacobian, a by-product of Newton's method, can be exploited in deriving sensitivities. Motivated bythe requirements of NASA, DOE, industry, and others to employ CFD in the design process, we regardthe ability to apply the inverse action of the Jacobian as ultimately necessary to the optimizationprocess, and therefore to be exploited during the analysis process as well. While Newton methodssometimes converge from simply speci�ed initial iterates even in challenging CFD problems (e.g., [14]),they must usually be \robusti�ed" through a continuation scheme, such as pseudo-transience (e.g.,[41, 78]). Newton methods for PDEs require the solution of large, sparse nonsymmetric linear systems,to which we apply Krylov methods, such as GMRES [67]. In order to control the number of Kryloviterations, while obtaining concurrency proportional to the number of processors, we precondition themwith domain-decomposed additive Schwarz methods [71].E�ective use of 	NKS in CFD codes requires attention to several details. We describe, in particular,the sensitivity of the methodology to the implicitness of the boundary conditions, the presence of limitersin the discretization, the scaling of the di�erencing parameter in the matrix-free application of theJacobian, the convergence of the inner Krylov iterations, and the aggressiveness of the pseudo-transientcontinuation. Some of these considerations are generic to any system modeled by PDEs.Various aspects of the 	NKS framework have been pioneered by others over the past two decades.While this paper (and its unstructured-grid companions [3, 39, 45]) contributes some new, architec-turally oriented advances, our principal goal is to integrate collective algorithmic progress and toreconcile trade-o�s between interrelated algorithmic components so as to promote robustness, rapidconvergence, and parallel scalability in the context of an important family of applications.The use of pseudo-transience as a means of approaching steady states (typically in the form of time-parabolization of an elliptic boundary value problem) has been independently reinvented in contexts fartoo numerous to mention. We have been particularly inuenced by two forms: the \successive evolution-relaxation" strategy of Mulder and Van Leer [57] and the temporal truncation error strategy describedin [46], both of which smoothly adapt the aggressiveness of the timestepping to the progress of theiterations toward steady state, ultimately leading to Newton-like asymptotic superlinear or quadraticconvergence rates [78]. Some su�cient conditions for globalized convergence for such strategies aregiven in [41].An exact Newton method is rarely optimal in terms of memory and CPU resources for large-scale problems, such as �nely resolved multidimensional PDE simulations. The pioneering work ofDembo, Eisenstat, & Steihaug [21] showed that properly tuned inexact Newton methods can saveenormous amounts of work (through approximating the Newton corrections, which can in turn permit2

approximation of the Jacobian matrix) over a sequence of Newton iterations, while still convergingquadratically. This theory was revisited to provide inexpensive, constructive formulae for the sequenceof inexact tolerances by Eisenstat & Walker [25]. Smooke [72] and Schreiber & Keller [69] devisedNewton-chord methods with models for cost-e�ective frequency of Jacobian reevaluation. The useof various approximate Newton methods in CFD emerged independently in various regimes. Vanka[82] implemented Newton solvers in primitive-variable Navier-Stokes problems. Venkatakrishnan [83],Orkwis [62], and Whit�eld & Taylor [89] established Newton-like methods in transonic problems. Theseworks employed various direct or stationary iterative methods for the linear Newton correction equation,and were based on explicit matrix representations of the Jacobian operator.The advent of Krylov iterative methods (see, e.g., [65] for a survey) inside of inexact Newtoniterations in a matrix-free context can be traced to the ODE-oriented papers of Gear & Saad [30], Chan &Jackson [18], and Brown & Hindmarsh [9] and the PDE-oriented work of Brown & Saad [10]. (The term\Newton-Krylov" seems �rst to have been applied to such problems in [10].) The GMRES [67] methodwas �rmly established in CFD following the work of Wigton, Yu, & Young [91] and Johann, Hughes, &Shakib [38, 70]. Venkatakrishnan & Mavriplis showed in [86] that NK methods (preconditioned with aglobal incomplete factorization) are competitive with multigrid methods for large-scale CFD problems;a similar comparison for the matrix-free form of such methods was given by Keyes in [43]. A studyof the performance of the preconditioned NK matrix-free methods is given by Tidriri in [76] and [78].Various practical aspects of NK methods in CFD were explored in [1, 7, 37, 53, 52, 60, 64, 76].The application of domain decomposition-based preconditioners to nonlinearly implicit CFD algo-rithms has been our focus for the past decade [44]. Cai's doctoral dissertation [11] extended overlappingSchwarz theory to the nonselfadjoint operators of convection-di�usion problems and �rst articulatedtheir optimality | even without the bene�t of a coarse grid component | in the parabolic case. Theterm \Newton-Krylov-Schwarz" was coined in [15]. NKS methods have been taken up by Cai and col-laborators [14, 16, 12, 13], Knoll and collaborators [47, 49, 48, 53, 50], Pernice and collaborators [63],and Tidriri [75, 77, 79], among many others.One of the main contemporary motivations for domain decomposition methods is divide-and-conquer concurrency. Scalability studies based on dimensionless ratios of communication and com-putation parameters for message-passing aspects of domain-decomposed iterative methods appearedin [31, 32]. Recently, the cache-based motivation for domain decomposition has become apparent [87].Parallel implementations of NKS methods are also beginning to appear. We mention the shared-memoryimplementation of [54] and the distributed-memory implementations of [3], [14], and [16].The most important capabilities of 	NKS algorithms have been brought together in freely available,widely portable, and widely distributed parallel software in the form of the Portable, Extensible Toolkitfor Scienti�c Computation (PETSc) package [4], through which the illustrative results of this paperhave been obtained. We justify the broad scope of the presentation by the need to appreciate theframework as a whole. If any aspect of the 	NKS algorithmic framework is missing or \mis-tuned" (invarious senses to be illustrated in Section 6), signi�cant performance will be \left on the table". On theother hand, this is by no means a comprehensive paper. It considers only one application in depth, andomits important strategies such as multi-level iteration and solution-adaptive partitioning. It shouldbe regarded as one installment of a \metapaper" that PETSc has been created to help us continue towrite. 3

We begin by detailing the pseudo-transient continuation strategy and the NKS algorithmic frame-work in Section 2. We review the compressible Euler equations in Section 3, followed by additionalalgorithmic details (speci�cally, CFL advancements and matrix-free issues) in Section 4. Section 5discusses the parallel implementation of NKS in a legacy CFD code (the JULIANNE code of Whit�eldand Taylor [89]) using PETSc to replace the solver while preserving the discretization, and Section 6presents numerical experiments. We summarize and extrapolate in Section 7.2. Algorithmic Framework. 	NKS methods are designed to solve steady-state systems of non-linear boundary value problems discretized as f(u) = 0;(2.1)where u is a vector of unknowns representing the state of the system (typically nodal values of multiple�elds de�ned at the same set of grid locations, though other interpretations in terms of expansioncoe�cients for the �elds, or staggered grid layouts of nodal values are included), with solution u�,and where f(u) is a vector-valued function of residuals of the governing equations. We are primarilyinterested in three-dimensional settings in which the number of gridpoints is in the millions and thenumber of components of u is correspondingly larger by a factor of about �ve (more with turbulence orreaction models, fewer for various special incompressible or irrotational models). For problems of thissize, typical of full airplane external aerodynamics or of complex ASCI-scale systems, the ordering ofunknowns can be crucial to performance on a hierarchical memory computer system, and we remarkon this issue later. In this paper, we consider a problem on a mapped, structured grid. For relatedimplementations on unstructured grids, see [39].2.1. Pseudo-transient Continuation. Pseudo-transient continuation solves the steady-stateproblem (2.1), for which a solution is presumed to exist, through a series of problemsg`(u) � u� u`�1� ` + f(u) = 0; ` = 1; 2; : : : ;(2.2)which are derived from a method-of-lines model@u@t = �f(u);each of which is solved (approximately) for u`. The physical transient is followed when the timestep � `is su�ciently small, leading the iterations through a physically feasible sequence of states. Furthermore,the Jacobians associated with g`(u) = 0 are well conditioned when � ` is small. � ` is advanced from�0 � 1 to � ` !1 as `!1, so that u` approaches the root of f(u) = 0. We emphasize that pseudo-transient continuation does not require reduction in jjf(u`)jj at each step, as do typical linesearch ortrust region globalization strategies [22]; it can climb hills.Strict Newton iteration at timestep ` applied to (2.2) yieldsu`;k = u`�1 � (I + � `f 0(u`;k))�1(u`;k + � `f(u`;k) � u`�1);(2.3)for Newton index k = 0; 1; : : :. If we take u`;0 = u`�1 (the simplest initial iterate), then the �rstcorrection step is u`;1 = u`�1 � (1� ` I + f 0(u`�1))�1f(u`�1):(2.4) 4

In some problems, it may be required to iterate the Newton corrector (2.3) more than once [37] or untilit converges (limk!1 u`;k � u`), thus leading in the limit to following the transient implicitly. In thispaper, however, we prefer to advance in pseudo-time after just one Newton step (2.4).A timestep scheme is required to complete the algorithm. One choice is successive evolution-relaxation (SER) [57], which lets the timestep grow in inverse proportion to residual norm progress:� ` = � `�1 � jjf(u`�2)jjjjf(u`�1)jj :(2.5)Alternatively, a temporal truncation error strategy bounds the maximum temporal truncation error ineach individual component, based on a local estimate for the leading term of the the error. (The ideais not to control the error, per se, but to control the stepsize through its relationship to the error.)Another approach sets target maximum magnitudes for change in each component of the state vectorand adjusts the timestep so as to bring the last measured change to the target. All such devices are\clipped" into a range about the current timestep in practice. Typically, the timestep is not allowed tomore than double in a favorably converging situation, or to be reduced by more than a factor of ten inan unfavorable one, unless feasibility is at stake, in which case the timestep may be drastically cut [41].The globalization theory of [41] employs a three-phase approach, whose phases in practice may ormay not be cleanly demarcated in residual norm convergence plots. Initially, jju0�u�jj � 1 and �0 � 1.During an \induction phase" the solution is marched in a method-of-lines sense with relatively smalltimestep until jju � u�jj=jju0 � u�jj � 1. Success of this phase is governed by stability and accuracyof the integration scheme (we simply use the backward Euler method) and by the choice of initialiterate. For problems in which a complex feature, such as a shock or a amefront, must arise from astructure-free initial condition, the induction phase is typically by far the longest. (We are remindedof an observation attributed to Samarskii: \The slower you start, the sooner you �nish.") In a grid-sequenced problem, in which the initial iterate on a given �ne grid is interpolated from a convergedsolution on a coarser grid, and in which solution features are correctly located (if not fully resolved), theinduction phase on the �nest grid can be relatively brief [73]. During a second \transition phase" thetimestep is built up in the neighborhood of the solution. The critical assumption is existence of a � suchthat k(I + �f 0(u))�1k � (1 + ��)�1 for all � � 0 if ku � u�k � �. Finally comes a \polishing phase,"during which the the timesteps approach in�nity (or some user-imposed upper bound) and iteratesapproach the root with asymptotic Newton-like convergence. This phase is treated by a conventionallocal analysis, as in [40].The main result of the theory is that there is either convergence from u0 to u� or an easily detectablecontraction of � ` toward 0, allowing recovery actions. The main hypotheses of the theory, includingsmooth di�erentiability of f(u), are di�cult to verify in practice. They are also rarely respectedin practice, since instantaneous analytical approximations of f 0(u) are too expensive in memory andexecution time.2.2. Inexact Newton Methods. We use the term \inexact Newton method" to denote anynonlinear iterative method for solving f(u) = 0 through a sequence u` = u`�1 + �`�u`, where �u`approximately satis�es the true Newton correction equationf 0(u`�1)�u` = �f(u`�1);(2.6) 5

in the sense that the linear residual norm jjf 0(u`�1)�u` + f(u`�1)jj is su�ciently small. Typically theright-hand side of the linear Newton correction equation, which is the nonlinear residual f(u`�1), isevaluated to full precision, so the inexactness arises from an incomplete convergence employing thetrue Jacobian, freshly evaluated at u`�1, or from the employment of an inexact Jacobian for f 0(u`�1).Typical choices would be� a matrix whose action on a vector is constructed from �nite di�erences of f , rather than analyticformulae;� a matrix that is lagged (or some of whose assembly elements are lagged) from the evaluationat some previous state um, m < l � 1;� a matrix derived from a discretization related to, but not the same as, that used for f , itself;or� a matrix that has been simpli�ed by omission of elements that are inconvenient to a particularstorage scheme or approximate parallelizable inversion process.In this paper, we consider the �rst possibility. The latter three possibilities for economizing on theJacobian are also employed in this paper, but not in the matrix used in the Newton correction equation| only in the construction of its preconditioner. In other contexts, the second possibility is referred toas a \modi�ed Newton method" [72]. The latter two we regard as so inexact that they are demoted to\defect correction methods" [43]. Additional details about the construction of a preconditioner basedon an explicit matrix in the context of matrix-free Newton-Krylov techniques are given in [78].The �rst choice above is divided into two categories of �nite-di�erence approximations:� one in which the approximate Jacobian is explicitly constructed, element-by-element, froma sequence of �nite di�erences (usually chosen with the aid of graph coloring on the discretestencil), each of which supplies one or more columns of f 0(u), for example, [f 0(u`)]ij = @fi@uj (u`) �1h [fi(u` + hej) � fi(u`)], where h is a di�erencing parameter and ej is the jth unit vector; and� one in which the Jacobian-vector action is approximated in one or two function evaluations(besides that of f(u`�1), itself) in a discrete analog of Fr�echet derivatives of smooth functions,for example, f 0(u`)v � 1h [f(u` + hv) � f(u`)].We compare both methods in this paper. We note that the �rst method permits the di�erencingparameter to be chosen with respect to individual state vector components, in order to maximize thesignal-to-noise ratio in the numerical di�erentiation, whereas the second method requires a di�erencingparameter that is the same for all state vector perturbations. In this sense, the �rst method can bemade more robust than the second in �nite precision, but it does require the explicit construction ofthe Jacobian. It is proved in [22] that the �rst method permits the discrete Newton method to inheritthe quadratic asymptotic convergence of the true Newton method.Inexact Newton methods require a strategy for terminating the inner linear iterations, in e�ectchoosing �`, in jjf(u`�1) + f 0(u`�1)(u � u`�1)jj � �`jjf(u`�1)jj :(2.7)One of the Eisenstat-Walker [25] criteria is�` = �� jjf(u`�1)jj � jjf(u`�1) + f 0(u`�1)(u� u`�1)jj ��jjf(ul�1)jj :(2.8) 6

Ajmani et al. [1] adopt: �` = (log � `)�1. Venkatakrishnan & Mavriplis [86] adaptively choose �` sothat work and storage per Newton step are bounded at some �xed expenditure. Other strategies arepossible as well (see, e.g., [76, 78]).When the strategy of Venkatakrishnan & Mavriplis is combined with the �xed single Newtoncorrection per pseudo-timestep, a constant linear work per timestep results.The Eisenstat-Walker strategy is theoretically elegant and appears to assure the minimum linearwork consistent with a guaranteed asymptotically superlinear convergence. However, the resultingstringent linear convergence requirements may be di�cult to meet in large, ill-conditioned problems.Moreover, superlinear nonlinear convergence may be too expensive a goal in practice, where the objectiveis to minimize execution time rather than number of inexact Newton steps.The strategy of bounding work and storage per Newton step seems common in compressible externalaerodynamics codes, particularly with problems whose memory requirements approach the maximumavailable. Often in such large ill-conditioned problems relatively little progress is made in a given innerlinear iteration, with the consequence that the Newton correction is e�ectively underdamped and thesteady-state residual norm improves only slightly. This provides direct feedback limiting the increaseof the timestep (and possibly decreasing it), which maintains or improves the linear conditioning of thenext step, rather than letting the conditioning deteriorate with increasing pseudo-timestep. (See [26]for a polyalgorithmic method that exploits the e�ect of the pseudo-timestep on the linear conditioning.)We have experimented a good deal with these strategies, and we �nd that a hybrid approach isthe most cost-e�ective in large transonic ow problems. Such an approach involves an initially looseconvergence criterion (to avoid \oversolving," in the sense of [25]) evolving to a tighter criterion, butsubject to a linear-work-per-step bound (in the sense of [86]).For problems su�ciently small and well conditioned (linearly) to apply (2.8), overall cost is not asimportant.2.3. Newton-Krylov Methods. A Newton-Krylov method uses a Krylov method, such as GM-RES [67], to solve (2.6) for �u`. From a computational point of view, one of the most importantcharacteristics of a Krylov method for the linear system Ax = b is that information about the matrix Aneeds to be accessed only in the form of matrix-vector products in a relatively small number of carefullychosen directions. When the matrix A represents the Jacobian of a discretized system of PDEs, each ofthese matrix-vector products is similar in computational and communication cost to a stencil updatephase (or \global ux balance") of an explicit method applied to the same set of discrete conservationequations or to a single �nest-grid \work unit" in a multigrid method. NK methods are suited fornonlinear problems in which it is unreasonable to compute or store a true full Jacobian, where theaction of A can be approximated by discrete directional derivatives.Some Krylov methods for nonsymmetric problems require matrix-vector products with AT as wellas A [29]. It does not seem possible to approximate the action of AT from �nite di�erences of theoriginal function evaluation. Other nonsymmetric Krylov solvers, such as CGS [74], BiCGSTAB [81],and TFQMR [29], could be substituted for GMRES and converge about as well in terms of the totalnumber of matrix-vector products. In our experience with model problems (see, e.g., [42]), most suchmethods employ two matrix-vector products per step and converge in about half as many steps. Itshould be borne in mind, however, that their behaviors can di�er wildly, and in nonuniformly rankableways, for specially chosen problems [58]. Our experience with such solvers in the matrix-free 	NKS7

context is less favorable than with GMRES. They have the advantage of requiring less memory, and thepotential of requiring fewer global reductions (for inner products), but the disadvantage of nonmonotonicand, in some cases, wildly oscillating residual norm histories, leading to decreased numerical stability.Another advantage of GMRES is its use of matrix-vector products with unit-norm vectors v, whichtend to be well suited for �nite-di�erence approximations involving scale-sensitive perturbations, forexample, f(u`�1 + hv) [53]. Other choices are given by Tidriri in [78].2.4. Newton-Krylov-SchwarzMethods. A Newton-Krylov-Schwarz method combines a Newton-Krylov (NK) method, such as nonlinear GMRES [91], with a Krylov-Schwarz (KS) method, such asrestricted additive Schwarz [17]. If the Jacobian A is ill-conditioned, the Krylov method will requirean unacceptably large number of iterations. The system can be transformed into the equivalent formB�1Ax = B�1b through the action of a preconditioner, B, whose inverse action approximates that ofA, but at smaller cost. It is in the choice of preconditioning that the battle for low computational costand scalable parallelism is usually won or lost. In KS methods, the preconditioning is introduced ona subdomain-by-subdomain basis through a conveniently computable approximation to a local Jaco-bian. Such Schwarz-type preconditioning provides good data locality for parallel implementations overa range of parallel granularities, allowing signi�cant architectural adaptability.Domain-based parallelism is recognized as the form of data parallelism that most e�ectively ex-ploits contemporary microprocessors with multi-level memory hierarchy [19, 87]. Schwarz-type domaindecomposition methods have been extensively developed for �nite di�erence/element/volume PDE dis-cretizations over the past decade, as reported in the annual proceedings of the international conferenceson domain decomposition methods, of which the two most recent volumes (containing about 150 con-tributions) are [8] and [51].We use the restricted additive Schwarz Method (RASM), which eliminates interprocess communica-tion during the interpolation phase of the additive Schwarz technique [17]. In particular, if we decomposea problem into a set of possibly overlapping subdomains
i, the conventional additive Schwarz methodcan be expressed as M�1ASM =Xi RiTA�1i Ri;(2.9)where the three-phase solution process consists of �rst collecting data from neighboring subdomains viaglobal-to-local restriction operators Ri, then performing a local linear solve on each subdomain A�1i ,and �nally sending partial solutions to neighboring subdomains via the local-to-global prolongationoperators RiT . The RASM preconditioner is expressed in operator notation asM�1RASM =Xi R0iTA�1i Ri:(2.10)It performs a complete restriction operation but does not use any communication during the interpola-tion phase, R0iT . This provides the obvious bene�t of a 50% reduction in nearest-neighbor communica-tion overhead. In addition, experimentally, it preconditions better than the original additive Schwarzmethod over a broad class of problems [17], for reasons that are beginning to be understood in termsof the H1 \energy" of the global interpolant.As originally introduced [24], additive Schwarz preconditioning includes a coarse grid term in thesum (2.9). Indeed, the coarse grid is essential for optimal conditioning in the scalar elliptic case.8

Success with coarse grids in Schwarz methods in the Euler and Navier-Stokes contexts has been modest,reecting the comparable situation for multigrid methods for di�cult ow problems. In this paper, wedo not further consider coarse grids. We mention the Newton-based work of Venkatakrishnan [84] onEuler problems and the defect correction-based work of Jenssen & Weinerfelt on Euler [35] and Navier-Stokes [36]. In the former context, the convergence rate enhancement of the coarse grid is nearly wipedout by the cost per iteration of its parallel implementation. In the latter cases, coarse grid correctionsencouragingly pay for themselves.2.5. Contrast with Defect Correction. A typical Euler (or Navier-Stokes) code employs adefect correction solver. To solve the sequence of nonlinear problems created upon implicitly temporallydi�erencing (2.2), a left-hand-side matrix (related to a Jacobian) is created in whose constructioncomputational short-cuts are employed and which may be stabilized by a degree of �rst-order upwindingthat would not be acceptable in the discretization of the residual itself. We denote this generic distinctionin the update equation (2.11) by subscripting the residual \high" and the left-hand-side matrix \low":Jlow�u = �fhigh :(2.11)Often, Jlow is based on a low-accuracy residual for f :Jlow = D� + @flow@u ;(2.12)where D is a scaling matrix (which could be the identity or could be a diagonal matrix of cell volumes,for instance). The inconsistency of the left- and right-hand sides prevents the use of large timesteps, � .Using Jlow (or, more typically, some inexpensive approximation thereto, denoted ~Jlow) as a precondi-tioner, we replace (2.11) with (~Jlow)�1Jhigh�u = �(~Jlow)�1fhigh;(2.13)in which the action of Jhigh on a vector is obtained through directional di�erencing, namely,Jhigh(ul)v � 1h �fhigh(ul + hv) � fhigh(ul)� + D� v;(2.14)where h is a small parameter. Note that the operators on both sides of (2.13) are based on consistenthigh-order discretizations; hence, timesteps can be advanced to arbitrarily large values, recovering atrue Newton method in the limit.From the viewpoint of linear convergence rate, it would seem ideal to use a preconditioner based onJhigh in (2.13), but such a preconditioner can be much more expensive and memory-consumptive thanone based on Jlow . In (2.13), we have merely shifted the inconsistency from the nonlinear to the lineariteration. From the point of overall execution time, it is not obvious which is better: many inexpensivenonlinear iterations in which the inner linear problem (2.11) is preconditioned by Jlow , or fewer moreexpensive nonlinear iterations containing the inner problem (2.13). The answer is strongly a�ected bythe sequence of timesteps employed in (2.12). When the parameter � is small, Jlow and Jhigh are bothdominated by the same diagonal matrix, and the extra costs of working with Jhigh in the preconditionermay be unjusti�ed.The potential for (2.13) to outperform (2.11) is demonstrated in the CFD context in [16, 43, 75,77, 78]. In [33], the deterioration with advancing CFL number of a solver based on approximate9

factorization of the operator in (2.12) is contrasted with an advancing CFL approach based on (2.13).Dimensionally split approximate factorization schemes also require low CFL number. In spite of thisdisadvantage in their rate of convergence to steady states, dimensionally split schemes continue to enjoymemory advantages over more implicit schemes, the fully matrix-free work of Qin, Ludlow, & Shaw [64]being a recent example.The range of options for Jlow and Jhigh are explored in the context of CFD in [37]. The combinationof choice for obtaining low-residual steady-state solutions (designated \ALLMUS" therein) correspondsto the use of Jhigh on the left-hand side, as well as the right, as in (2.13).It should be borne in mind that the margin of superiority of (2.13) over less nonlinearly implicitschemes is very sensitive to the frequency of reevaluation (and refactorization) of Jlow and to theintimate coupling of the optimal reevaluation frequency with CFL advancement strategy and Krylovsubspace size. Evaluation and refactorization of Jlow are still expensive, comparable in arithmetic costto the evaluation of fhigh and typically more expensive in terms of communication. The frequency ofJlow evaluation is a relatively neglected topic in the literature, since it is so problem dependent. Anempirical sequential cost model is outlined in [47].Other tuning parameters with a strong inuence on the performance of (2.13) are those that de�nethe di�erence between Jlow and ~Jlow . These include parameters de�ning incomplete factorization �ll(whether position-based or threshold-based); relaxation or multilevel method parameters if the precon-ditioning is implemented by a number of sweeps of an iterative method; and, in the parallel context,the number of subdomains, subdomain overlap, the use of a coarse grid in the Schwarz method, andso forth. These algorithmic tuning choices are, in principle, amenable to systematic optimization withdirect search methods [23] and should be explored before undertaking a series of \production" runs.3. Compressible Euler Equations. To illustrate the 	NKS algorithm in the parallel context, wesolve the three-dimensional compressible Euler equations on mapped, structured grids using a second-order �nite volume discretization. The basis for our implementation is the sequential Fortran77 code(JULIANNE) by Whit�eld & Taylor [89]. Thus, we demonstrate the use of parallel 	NKS algorithmsimplemented via PETSc in the \legacy" context. This section presents a brief overview of the governingequations and boundary conditions; additional details can be found in [88, 89]. Sections 3.1 and 3.2 arestandard; the material in Sections 3.3 and 3.4 describes modi�cations of general importance to implicitsolvers.The original JULIANNE code has a discrete Newton-relaxation pseudo-transient continuation solverwith explicit enforcement of boundary conditions. We retained the discretization as embodied in uxbalance routines for steady-state residual construction and �nite-di�erence Jacobian construction. Thefunction evaluations are undertaken to second-order in the upwinding scheme, and the Jacobian matrix(used mainly as a preconditioner, but also tested as an explicit Jacobian) is evaluated to �rst order. Wereplaced the explicit boundary conditions with a fully implicit variant [76] and added the Van Albadalimiter [2] option to three limiter options provided.3.1. Governing Equations. The governing system of PDEs for inviscid steady-state ow can beexpressed in coordinate-invariant form by r � (�u) = 0;(3.1) r � (�uu+ pI) = 0;(3.2) 10

r � ((�e + p)u) = 0;(3.3)where �, u, and e represent the density, three-dimensional velocity, and energy density �elds, respec-tively, and the pressure �eld p is determined by an algebraic equation of state,e = p � 1 + 12�(u2 + v2 + w2);where is the ratio of speci�c heats.In the computational example of this paper, we work on a mapped structured grid of \C-H" type,in which the Cartesian coordinates (x; y; z) are functions of (�; �; �), discretely indexed by (i; j; k). TheJacobian of the coordinate transformation,J = x�(y�z� � z�y�) � y�(x�z� � z�x�) + z�(x�y� � y�x�);appears briey in this section only and is not to be confused with the Jacobian matrix of Newton'smethod. In addition to the Cartesian velocities (u; v; w), it is convenient to consider the velocities inthe mapped coordinate system, (U; V;W), the so-called contra-variant velocities, de�ned byU = �xu+ �yv + �zw;V = �xu+ �yv + �zw;W = �xu+ �yv + �zw:In the standard notation (see, e.g., [34]), the transient form of the Euler equations (3.1) is given by@Q@t + @F@� + @G@� + @H@� = 0;(3.4)where Q = J 0BBBBBB@ ��u�v�we 1CCCCCCA ;and the ux vectors take the formF = J 0BBBBBB@ �U�uU + �xp�vU + �yp�wU + �zp(e + p)U 1CCCCCCA ;G = J 0BBBBBB@ �V�uV + �xp�vV + �yp�wV + �zp(e + p)V 1CCCCCCA ; and H = J 0BBBBBB@ �W�uW + �xp�vW + �yp�wW + �zp(e + p)W 1CCCCCCA :The conservation form of (3.4) can also be written in the quasilinear form@Q@t + A@Q@� +B @Q@� +C @Q@� = 0;which de�nes the pointwise ux Jacobians A � @F@Q , B � @G@Q , and C � @H@Q .11

3.2. Finite Volume Scheme. The system (3.4) is discretized via a �nite volume scheme in whichsimplicial control volumes are centered on the vertices [89]. Using �rst-order backward di�erencing intime, one can express the resulting discrete nonlinear system asQn+1i;j;k �Qni;j;k�t + �iF(Qn+1) + �jG(Qn+1) + �kH(Qn+1) = 0;(3.5)where �iF(Qn+1) = Fi+1=2(Qn+1)� Fi�1=2(Qn+1);and Fi+1=2(Qn+1) denotes the numerical ux at cell face i + 1=2; analogous de�nitions hold for theremaining terms of (3.5). The numerical ux is computed by augmenting the �rst-order term thatresults from Roe's approximate Riemann solver [34, 66] with a second-order component. Details ofthe formulation, which now can be considered standard, are beyond the scope of this paper but arepresented in [89].3.3. Flux Limiters. Flux limiters are typically used when upwind discretization techniques areapplied to ows with supercritical phenonema or material interfaces in order to produce steady-statesolutions that avoid unrealistic oscillations (that would be properly damped by the model if the scaleson which molecular viscosity acts could a�ordably be represented). Di�erentiability of the limiter isrequired when using derivative information in the numerical scheme. Unfortunately, many popularlimiters were designed for solution algorithms of defect correction type, in which the true Jacobiannever appears on the left-hand side, and are nondi�erentiable (e.g., Van Leer, Superbee, Minmod) andare therefore inappropriate for direct use in Newton methods [85].As we show in Section 6.3, this problem is not just of theoretical concern but is a weakness ofsuch limiters in the matrix-free context, since they can cause stagnation or breakdown of the numericalscheme. Thus, for all experiments in this paper, we use the Van Albada limiter [2].3.4. Boundary Conditions. Ghost (or \phantom" or \halo") cells are used so that the interiorEuler equations, discretized on a seven-point star stencil for each conservation law, may be employedon vertices up to and including the physical boundaries. Arti�cial values (generally depending uponadjacent interior state variable values) are speci�ed at the ghost vertices to complete these stencils.The values at the ghost vertices are included in the unknown state vector, and the partial derivatives ofthe ghost-vertex boundary conditions with respect to the ghost unknowns are included in the implicitlyde�ned Jacobian; however, these additional values do not represent any additional resolution of thephysical problem. (For this reason, we regard the coarse, medium, and �ne grids in Section 6 as havingrecursively \doubled" dimensions of the form (2pnx + 2) � (2pny + 2) � (2pnz + 2), for p = 0; 1; 2,respectively, even though the number of algebraic unknowns, including ghostpoints, does not preciselydouble.)In the C-H mapped coordinate system used in our simulation (see Fig. 3.1), four types of boundingsurfaces at extremal values of the three indices are used to enumerate the gridfunction values: k indexesthe transverse direction, from low k at the root of the wing, to ktip in the plane of the wingtip, to highk in the transverse freestream; j indexes the normal direction from low j on the wing itself to highj in the freestream; and i wraps longitudinally around the wing and along the C-cut, from low i onthe lower side in the rear of the wake, forward through ilower;te at the trailing edge, through ile at the12

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Mesh Cross−Section: Constant−K Surface

0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Mesh Cross−Section: Constant−J Surface

Subset Above Upper Wing Surface

Fig. 3.1. Constant-coordinate cuts of the \medium" grid: (a) a clipped cross-section of the constant-k surface�ve cells away from the wing root; (b) a clipped perspective of the constant-j surface on the upper side of thewing, looking in from the outboard front of the wing. (Index i wraps around the wing streamwise.)leading edge, rearward across the upper surface of the wing through iupper;te, and �nally to high i onthe upper side in the rear of the wake region.The root of the wing (low k) is considered to be a symmetry plane, with the k = 1 values set equalto their k = 2 counterparts. For points in the wake region and beyond ktip of the wing, where for low jand for each k, a range of i indices maps gridpoints on either side of the C-cut back on themselves, thevalues at ghost vertices are set equal to the corresponding interior values on the other side of the cut.For the freestream and impermeable wing surfaces, we use locally one-dimensional characteristicvariable boundary conditions, which are briey summarized below; see, for example, [88] for details. Ateach constant-coordinate surface on which a boundary condition must be derived, the nonconservativeform of the Euler equations is locally linearized. Characteristic values (eigenvalues) and variables (righteigenvectors) are determined for the 5� 5-block of the ux Jacobian matrix (A, B, or C) that premul-tiplies the derivatives of the primitive variables in the direction normal to the bounding surface. Termsinvolving derivatives in the plane of the bounding surface are set to zero. The sign of the each charac-teristic value determines whether the corresponding characteristic variable propagates information into,or out of, the computational domain.In our test cases, we need consider only subsonic inow and outow boundaries and impermeableboundaries. The cases of supersonic inow and outow are considered in, for example, [88]. At subsonicinow, four characteristics enter the domain and may be �xed at Dirichlet values from the freestream.One characteristic exits the domain and is set by extrapolation from adjacent interior values. Fivealgebraic relationships are thereby derived for the �ve values at each ghost vertex. At subsonic outow,the opposite situation prevails: one characteristic variable is set from freestream conditions, and fourare extrapolated. On impermeable surfaces, one characteristic enters the domain and is set by thecondition of no-ow across the surface. This, in e�ect, provides the pressure. The remaining values areset by extrapolation so as to satisfy the no-ow constraint on the physical boundary. As illustrated inone of the experiments to follow, and as discussed by Whit�eld & Taylor [89] and for similar problems13

by Tidriri [76, 77], the implicit form of these boundary conditions is needed to maintain stability astimesteps adaptively increase.All of the boundary conditions for the ghost vertex unknowns are local (involving, at most, valuesat immediately interior vertices), with the exception of the C-cut ghost-to-interior identity mappings.For traditional lexicographic orderings of the gridpoints, the entries of the Jacobian matrix that tietogether these spatially identical but logically remote degrees of freedom lie outside of the normal bandstructure, and would, if used, generate extensive �ll in a full factorization. We thus choose to includethese nonzeros in the matrix-free action of the Jacobian only, not in the Jacobian preconditioner.4. 	NKS Algorithmic Details. Careful attention to details of CFL advancement strategiesand matrix-free Jacobian-vector product approximations is crucial for the successful implementation of	NKS methodology for large-scale problems. This section discusses these issues in some detail.4.1. CFL Advancement. We use a locally adapted pseudo-timestep of the form �ijk = �ijkNCFL,where �ijk is a ratio of signal transit time (based on local convective and acoustic velocities in eachcoordinate direction) to cell volume and NCFL is a global dimensionless scaling factor, which wouldhave to be kept of order unity to satisfy explicit stability bounds on the timestep and which shouldapproach 1 for a steady-state Newton method. The constraints on CFL advancement in our implicitcontext are the robustness of the nonlinear iterative process and the cost of the iterative linear solver.We employ an advancement strategy based on the SER technique [57],NC̀FL = N `�1CFL kf(u`�2)kkf(u`�1)k ;with clipping about the current timestep so that CFL increases by a maximum of two and decreasesby no more than ten at each step. Experiments show that when the linearized Newton systems aresolved su�ciently well at each step the CFLmay often advance according to this strategy without furtherrestrictions. Jiang & Forsyth [37] discuss conditions under which more stringent measures are needed tolimit CFL advancement. Experiments on compressible ows with this strategy alone in [41] occasionallyled to NaNs, which were attributed to negative densities. Whereas in a conventional Newton-like methodan infeasible Newton update �u` can be caught before evaluation of f(u`�1 + �`�u`), and �` cut backaccordingly for robustness, a matrix-free Newton code may \probe" f(�) at an infeasible point whilebuilding up the Krylov subspace. Thus, the input to every call to the subroutine that evaluates f(�)must be checked. In the pseudo-transient context an infeasible state vector may be handled the sameway convergence stagnation is handled [41], namely, by restoring the state at the previous timestep andrecommencing the current timestep with a drastically reduced NCFL.4.2. Matrix-Free Methods. Matrix-free Jacobian-vector products are de�ned by directionaldi�erencing of the form f 0(u)v � f(u + hv) � f(u)h ;where the di�erencing parameter h is chosen in an attempt to balance the relative error in functionevaluation with the magnitudes of the vectors u and v. Selection of an appropriate parameter isnontrivial, as values either too small or too large will introduce rounding errors or truncation errors,respectively, that can lead to breakdowns. Investigators with relatively small, well-scaled discrete14

problems (guided by a wise nondimensionalization) sometimes report satisfaction with a simple choice ofh, approximately the square root of the \machine epsilon" or \unit roundo�" for their machine's oating-point system. A typical double-precision machine epsilon is approximately 10�16, with a correspondingappropriate h of approximately 10�8. More generally, adaptivity to the vectors u and v is desirable.We choose the di�erencing parameter dynamically using the technique proposed by Brown andSaad [10], namely, h = ereljjvjj2max�juTvj; typuT jvj� sign(uT v);where jvj = [jv1j; :::; jvnj]T , typu = [jtypu1j; :::; jtypunj]T for typuj > 0 being a user-supplied typical sizeof uj and erel � square root of relative error in function evaluations.Determining an appropriate estimation of the relative noise or error in function evaluations iscrucial for robust performance of matrix-free Newton-Krylov methods. Assuming double-precisionaccuracy (or erel � 10�8) is inappropriate for many large-scale applications. A more appropriaterelative error estimate for the compressible ow problems considered in this work is erel = 10�6,as determined by noise analysis techniques currently under investigation by McInnes and Mor�e [55].When evaluating gradients too close to the noise level in a given problem, we have found that otherwiseidentical executions may converge on one system with a given oating-point convention for roundingand fail to converge in a reasonable time on another with a di�erent rounding convention. Backing o�to larger values of h generally resolves such discrepencies.Taking h too large is one of many ways of damping the nonlinear iteration in NKS methods, inthat it replaces a tangent hyperplane estimate with a chordal plane estimate. However, we do notrecommend using h to control the nonlinear convergence in this manner. It should generally be takenas close to the noise level as robustness requirements permit, and damping should be applied moreconsciously at a higher level in the code.In addition to evaluating the Jacobian-vector products with directional di�erencing within GMRES,the preconditioner is constructed in a blackbox manner, without recourse to analytical formulae for theJacobian elements, by directional di�erencing as described in [89] and as provided in the JULIANNEcode.Another approximate Jacobian-vector product derived from the same multivariate Taylor expan-sion that underlies the �nite-di�erence approximations above, which is, however, free of subtractivecancellation error, has recently been rediscovered by Whit�eld & Taylor [90]. It features an imaginaryperturbation, f(u + ihv) = f(u) + ihf 0(u)v + c2O(h2) + ic3O(h3);about any point u, where f , interpreted as a complex function of a complex-valued argument, is analytic.Here, u and v are real vectors. When f is real for real argument, as is true for the Euler equations, allquantities except for i in the expansion above are also real; therefore, by extracting real and imaginaryparts, we can identify f(u) = Re[f(u + ih)] + O(h2) and f 0(u)v = Im[f(u + ihv)]=h + O(h2). Specialcare is needed for Roe-type ux functions and any other nondi�erentiable features of f(u), but withminor code alterations, both f(u) and f 0(u)v are available without subtraction from a single complexevaluation of f(u). Implications for evaluation of sensitivity derivatives by this technique are exploredin [59]. 15

5. Parallel ImplementationUsing PETSc. This section discusses some issues that arise in thetransition of a legacy code originally developed for uniprocessor vector architectures to a distributed-memory variant. After providing an overview of our conversion strategy, we discuss some performanceoptimizations for memory management, message passing, and cache utilization.The parallelization paradigm we recommend in approaching a legacy code is a compromise be-tween the \compiler does all" approach, for which some in the scienti�c and engineering communitieshave been waiting many years now, and the \hand-coded by expert" approach, which some othersinsist is still the only means of obtaining good parallel e�ciency. We employ PETSc [4, 6], a librarythat attempts to handle in a highly e�cient way, through a uniform interface, the low-level detailsof the distributed-memory hierarchy. Examples of such details include striking the right balance be-tween bu�ering messages and minimizing bu�er copies, overlapping communication and computation,organizing node code for strong cache locality, preallocating memory in sizable chunks rather than in-crementally, and separating tasks into one-time and every-time subtasks using the inspector/executorparadigm. The bene�ts to be gained from these and from other numerically neutral but architecturallyimportant techniques are so signi�cant that it is e�cient in both programmer time and execution timeto express them in general-purpose code.PETSc is a versatile package integrating distributed vectors, distributed matrices in several sparsestorage formats, Krylov subspace methods, preconditioners, and Newton-like nonlinear methods withbuilt-in trust region or line search strategies and continuation for robustness. It has been designed toprovide the numerical infrastructure for application codes involving the implicit numerical solution ofPDEs, and it sits atop MPI for portability to most parallel machines. The PETSc library is writtenin C, but may be accessed from user codes written in C, Fortran, and C++. PETSc has featuresrelevant to computational uid dynamics, including matrix-free Krylov methods, blocked forms ofparallel preconditioners, and various types of timestepping.5.1. Converting Legacy Codes. Converting a legacy code to a production parallel version in-volves two types of tasks: parallelization and performance optimization. Abstractly, parallelizationincludes the discovery or creation of concurrency, orchestration of data exchange between the concur-rent processes, and mapping of the processes onto processors.For converting structured-grid legacy codes, the major reprogramming steps are essentially: con-verting global data structures in the legacy code to distributed data structures provided by the domaindecomposition library; replacing domain-wide loop bounds with subdomain-wide loop bounds in theroutines that evaluate the governing equation residuals and Jacobian elements; and parameterizing thesolution algorithm supplied by the library, which ordinarily replaces the solution algorithm in the legacycode.A coarse diagram of the calling tree of a typical 	NKS application appears in Fig. 5.1. Thetop-level user routine performs I/O related to initialization, restart, and post-processing; it also callsPETSc subroutines to create data structures for vectors and matrices and to initiate the nonlinear solver.Subroutines with the PETSc library call user routines for function evaluations f(u) and (approximate)Jacobian evaluations J(u) at given state vectors. Auxiliary information required for the evaluation of fand J that is not carried as part of u is communicated through PETSc via a user-de�ned \context" thatencapsulates application-speci�c data. (Such information would typically include dimensioning data,grid geometry data, physical parameters, and quantities that could be derived from the state u but are16

Initialization
Application

PETSc

KSPPC

Linear Solver (SLES)

Matrix VectorNonlinear Solver (SNES)

Main Routine

DA

Function Jacobian Post-
Evaluation Evaluation ProcessingFig. 5.1. Coarsened calling tree of the JULIANNE-PETSc code, showing a user-provided main program and user-provided callback routines for supplying the initial nonlinear iterate, evaluating the nonlinear residual vector at a PETSc-requested state, and evaluating the Jacobian (preconditioner) matrix.most conveniently stored instead of recalculated, such as constitutive quantities.)We emphasize that the readiness of legacy codes for high-performance parallel ports of any kindvaries considerably. Codes making heavy use of COMMON blocks should �rst be transformed topassed-argument form and made to execute at high computation rates on a cache-based uniprocessor.This process will often involve combining component �elds of u found in separate arrays into a singleinterleaved structure, with contiguous locations in memory corresponding to unknowns associated withthe same gridpoint, rather than with the same component �eld at an adjacent gridpoint. Codes in whichsolver, function evaluation, and Jacobian evaluation logic are interwoven should be modularized so thatfunction and Jacobian evaluation routines can be cleanly and independently extracted. (Some codesuse common gradient and ux evaluation logic in the subassembly of function and Jacobian evaluation,a practice we applaud. However, such common code should normally be isolated for separate calls fromeach major routine.)For memory economization and high performance, we have found it advantageous to transfer ele-ments of f and J into the distributed PETSc data structures in dense blocks of intermediate size, ratherthan to form an entire copy of f or J in some other user data structure and then transfer it.5.2. Memory Management-Oriented Optimizations. Many code developers have observedthat dynamic memory management within PDE-based simulations, particularly through the C librarymalloc and free routines, can consume signi�cant amounts of time. In addition, even when im-plemented e�ciently, such allocation can lead to memory fragmentation that is not well suited tocache-based memory hierarchies. Further, reallocation of memory space to enlarge a memory arrayoften requires that data be copied from an old area to a new area. This memory copy does no usefulwork and can lead to a loss in performance. Since parallel sparse matrix memory management can beparticularly challenging, we discuss some techniques to aid its e�ciency; many of these ideas also applyto management of vectors, grids, and so forth.5.2.1. Memory Preallocation. PETSc provides a number of ways to preallocate sparse matrixmemory based on knowledge of the anticipated nonzero structure (corresponding to mesh connectivity).17

However, PETSc does not require preallocation; this approach avoids having programs fail simplybecause su�cient memory was not preallocated. PETSc also keeps track of memory use; this pro�linginformation can be very valuable in tracking usage patterns and identifying memory problems.5.2.2. Aggregation in Assembly. A related issue is that of the granularity of operations, par-ticularly for matrix assembly. It is common to de�ne operations in terms of their most general, single-element form, such as \set matrix element to value" or \add value to matrix element." This approachis ine�cient, however, because each operation requires a number of steps to �nd the appropriate entryin a data structure (particularly for sparse matrix formats). Thus, PETSc includes a variety of opera-tions for handling larger numbers of elements, including logically regular dense blocks. Such aggregateoptimizations signi�cantly improve performance during operations such as matrix assembly.Within the subject parallel compressible ow code, we specify in advance the sparsity pattern forthe �rst-order approximation of the Jacobian that serves as the preconditioner. Thus, all matrix storagespace is preallocated once and is then continually reused as the nonlinear simulation progresses. Matrixelements are assembled in aggregates of �ve, as they are naturally computed for this problem.5.3. Message Passing-Oriented Optimizations. Any kind of communication of data betweenparallel processes involves two steps: the transfer of data and the noti�cation that the transfer hascompleted. Message passing combines these two operations: for each message sent, there is a \synchro-nization" that indicates when the data is available for use. (In the case of shared-memory programming,this synchronization is implemented through locks, ags, or barriers.) Such synchronizations can be asource of performance problems; e�cient code tries to defer any synchronization until the last possiblemoment. The PETSc approach to communication aims to balance ease of use and e�ciency of im-plementation; it does not attempt to completely conceal parallelism from the application programmer.Rather, the user initiates combinations of high-level calls, but the library handles the detailed (datastructure-dependent) message passing. For a detailed philosophy of PETSc implementation, see [5].5.3.1. Multiphase Exchanges. A common way to avoid problems due to early synchronizationis to divide an operation into two parts: an initiation and a completion (or ending) phase. For ex-ample, asynchronous I/O uses this approach. The MPI message-passing standard [56, 28] providesasynchronous operations; send and receive operations are divided into starting (e.g., MPI Isend orMPI Irecv) and completion (e.g., MPI Wait) phases. PETSc takes the same multiphased approach withother operations that would otherwise su�er from severe performance problems, including matrix assem-bly of nonlocal data and generalized vector scatter/gathers. For example, the starting version of theseoperations issues the appropriate MPI nonblocking communication calls (e.g., MPI Isend). The endingversion then concludes by using the appropriate completion routine (e.g., MPI Waitall). Because thePETSc operations explicitly defer their completion, it is easy to change the underlying implementa-tion to take advantage of di�erent optimization approaches, including alternate MPI operations (e.g.,persistent (MPI Rsend init)) or even non-MPI code (e.g., one-sided or remote memory operations).5.3.2. Algorithmic Reduction in Synchronization Frequency. Pseudo-transient Newton-Krylov methods make extensive use of inner products and norms, which are examples of global reduc-tions or commutatives and impose global synchronization on the parallel processes. The inner productsare associated primarily with the conjugation process in the Krylov method. The norms are associatedwith the Krylov method, with convergence monitoring, and with various stability and robustness fea-18

tures in the selection of the timestep, the linesearch parameter, and the Fr�echet di�erencing parameter.To reduce the penalty of these synchronizations, PETSc o�ers options such as an unmodi�ed Gram-Schmidt operation in GMRES [67], and lagged parameter selection. In severe circumstances it wouldbe unwise to back o� from the robust practices of modi�ed Gram-Schmidt and frequent refreshing ofthe Fr�echet parameter or the CFL number. All of the cases described herein, however, use deferredsynchronization via unmodi�ed Gram-Schmidt and reevaluate other parameters less frequently thandictated by conventional sequential practice.5.4. Cache-OrientedOptimizations. Cache-oriented optimizations are crucial, since good over-all parallel performance requires fast per processor computation as well as e�ective parallel algorithmsand communication. Scalability studies often omit attention to single-node performance optimizationand thereby demonstrate high scalability on code that nonetheless makes ine�cient user of the hard-ware, overall. Here we discuss three optimization strategies: exploitation of dense block operations,�eld component interleaving, and grid reordering.5.4.1. Exploitation of Dense Block Operations. The standard approach to improving theutilization of memory bandwidth is to employ \blocking". That is, rather than working with individualelements in a preconditioning matrix data structure, one employs blocks of elements. Since the use ofimplicitmethods in CFD simulations leads to Jacobian matrices with a naturally blocked structure (witha block size equal to the number of degrees of freedom per cell), blocking is extremely advantageous.The PETSc sparse matrix representations use a variety of techniques for blocking, including� a generic sparse matrix format (no blocking);� a generic sparse matrix format, with additional information about adjacent rows with identicalnonzero structure (so called I-nodes); this I-node information is used in the key computationalroutines to improve performance; and� storing the matrices using a �xed (problem-dependent) block size.The advantage of the I-node approach is that it is a minimal change from a standard sparse matrixformat and brings a relatively large percentage of the improvement one obtains via blocking. Using a�xed block size delivers the absolute best performance, since inner loops can be hardwired to a particularsize, removing their overhead entirely.Table 5.1 presents the oating-point performance for a basic matrix-vector product and a triangularsolve obtained from an ILU(0) factorization using these three approaches: a basic compressed rowstorage format, the same compressed row format using the I-nodes option, and a �xed block size code(with a block size of �ve). These rates were attained on one node of an IBM SP2 for a coarse gridEuler problem of dimension 25,000 (described in Section 6.1). The speeds of the I-node and �xed-blockoperations are several times those of the basic sparse implementations. These examples demonstratethat careful implementations of the basic sequential kernels in PETSc can dramatically improve overalloating-point performance relative to casually coded legacy kernels.Much of the approximate Jacobian matrix has block-band structure corresponding to the three-dimensional, seven-point stencil, with �ve degrees of freedom per node (three-dimensional momentum,internal energy, and density). We use the PETSc matrix format for block, compressed, sparse rows(block CSR) to exploit this structure. 19

Table 5.1Basic kernel op rates (Mop/s).Kernel Basic I-Node Version Fixed Block SizeMatrix-Vector Product 28 58 90Triangular Solves from ILU(0) 22 39 655.4.2. Field Component Interleaving. For consistency with the matrix storage scheme and toexploit better cache locality within the application portion of code, we modi�ed the original nonlinearfunction evaluation code to use the same interleaved ordering employed for matrix storage for the Q-vector instead of the original �eld-oriented ordering. Table 5.2 compares the performance of these twoorderings for local function evaluations (excluding the global-to-local scatters needed to assemble ghostpoint data). The timings within this table for a single function evaluation were computed from overallexecution times and iteration counts collected during a complete nonlinear simulation for a problem ofmatrix dimension 158,600 (see Section 6.1). These performance studies indicate a savings for the localfunction evaluation component of between four and twenty percent on the SP2, depending on the ratioof cache size to problem size. Similar results are reported in [20].Table 5.2Comparison of multicomponent orderings for local function evaluations with �ve degrees of freedom per node.Number of Time for a Single Function Evaluation (sec) PercentageProcessors Noninterlaced Interlaced Improvement1 .983 .779 212 .477 .375 214 .237 .191 208 .115 .103 1016 .061 .056 75.4.3. Grid Reordering. Another technique that can improve cache utilization is the reorderingof grid entities. This is discussed in [45] for unstructured grids but not employed in the structured-grid computational examples of this paper, where its use would destroy one of the main advantages ofstructured grids, namely, the ability to employ direct addressing to locate data at neighboring vertices(or cells, in cell-centered codes). The idea behind grid reordering for enhanced cache residency in anedge-based CFD code is simple: vertices that share an edge need to have their data co-resident in thecache to compute the ux along the edge. If edges common to a vertex are ordered near each other,the data at that vertex may su�er as little as one (compulsory) cache miss during a ux-computationcycle. If edges are ordered in a greedy way, away from the initial set of edges, there may be low datamiss rates on average throughout the entire domain for the entire cycle. It remains to be seen whether,in processors with deep memory hierarchies, the data locality enhancements possible with unstructuredproblems can overcome the overheads (in time and space) of indirect addressing.5.5. Importance of Pro�ling. Pro�ling a code's overall performance for realistically sized prob-lems, including timings, oating-point operations, computational rates, and message-passing activity20

(such as the number and size of messages sent and collective operations), is crucial for gaining anunderstanding of sections that can bene�t most from performance enhancements and parameter tun-ing. We have employed the automatic pro�ling capabilities within PETSc [6] to target performanceenhancements for the parallel 	NKS methods of this work.Such pro�ling indicates that throughout a complete matrix-free nonlinear simulation using blocksparse matrix data structures, the solution time (for various problem sizes and processor con�gurations,including all associated communication overheads) is roughly divided as follows:� 1% for initialization (including parallel mesh partitioning and setup of vector scatter/gathersfor handling ghost point data),� 16% for formation of the linearized Newton systems (including right-hand-side vectors andlagged �rst-order preconditioner matrices),� 82% for linear system solution, and� 1% for other nonlinear solver operations.Further breakdown of the linear solve phase indicates roughly 2% of overall time devoted precondi-tioner setup (including determination of additive Schwarz overlap and incomplete factorization of eachprocessor's local submatrix), 17% for preconditioner application, 59% for matrix-free Jacobian-vectorproducts, and the remainder for other vector operations. The e�ciency of the sparse numerical linearalgebra has resulted from tuned data structures and message-passing activity, as discussed above. Thedominance of function evaluation time within the total solution process has led us to focus on the tuningof various numerical parameters to aim for the fewest possible overall �ne grid function evaluations (orux balances) needed to achieve steady state.6. Numerical Experiments. We illustrate in this section the importance of some of the designdecisions above in the context of a legacy CFD application that has been parallelized and acceleratedthrough 	NKS. We briey describe the test problems and then discuss issues of boundary conditions,limiters, preconditioner quality, convergence tuning, and scalability.6.1. Test Problems. The ONERA M6 wing is a standard three-dimensional test case, for whichextensive experimental data is given in [68]. A frequently studied parameter combination combinesa freestream Mach number of 0.84 with an angle of attack of 3:06o. This transonic case gives riseto a characteristic �-shock, as depicted within Fig. 6.1. As discussed in Section 3, the basis for ourimplementation is a legacy sequential Fortran77 code (JULIANNE) by Whit�eld & Taylor [89].Tests on three di�erent successively doubled grid resolutions, the sizes of which are given in Ta-ble 6.1, provide a demonstration of the grid independence of the solution, as evidenced by the agreementof the overall values of CL (lift) and CD (drag) on the intermediate and �nest grids in Fig. 6.2. Com-parisons of the aerodynamic coe�cients with the data in [68] replotted in Fig. 6.3 show reasonableagreement for an inviscid model.Thus far, we have employed only the simplest decomposition strategies in inducing locality in theSchwarz preconditioner: recursive bisection cuts along the i, j, and k coordinate directions to createsubdomains. The order of the cuts is determined so as to produce subdomains that are as close tounit aspect ratio as possible in logical space, a strategy that minimizes communication volume. Giventhe 6:1 logical aspect ratio of the full domain, the �rst three cuts are made in the i direction. Beyondeight processors, the j and then the k directions are also partitioned. On the basis of investigations21

Fig. 6.1. Mach number contours (the local tangential velocity magnitude divided by the local sound speed) of theconverged ow�eld on the upper wing surface for the �nest grid.Table 6.1Test problem dimensions (system size includes boundary ghost nodes).Grid Dimensions System Size Nonzeros in Jacobian Approx.50� 10� 10 25,000 622,12098� 18� 18 158,760 4,636,200194� 34� 34 1,121,320 35,742,760of domain decomposition preconditioners on other ow problems [12, 33], it is well known that therecan be a strong interaction between ow direction and cutting planes. Our study of this phenomenonin the present problem and a collection of others will appear elsewhere. The main implication of thepartitioning strategy in interpreting the scalability results of this section is that the linear conditioningis a�ected by the number and orientation of the cuts and that performance results for di�erent ways ofobtaining p-fold concurrency will generally di�er from the samples included. Furthermore, for tuningsof 	NKS in which the linear systems are only very incompletely converged, such as ours, the nonlineartrajectory of convergence can be a�ected by the cut.6.2. Implicit Boundary Conditions and Matrix-free Jacobian Action. Figure 6.4 com-pares the convergence in terms of both nonlinear iterations and total time of the various approachesunder consideration: explicit boundary conditions (limiting CFL to 7.5), implicit boundary conditionswith the same CFL, implicit boundary conditions with advancing CFL, and implicit boundary condi-tions with advancing CFL and matrix-free application of the Jacobian. This �gure presents performancedata for the medium mesh problem run on two processors of the SP2; the relative convergence ratesand timings are analogous for the other test problems under consideration for various machines andprocessor con�gurations. Whenever required, the explicit Jacobian is computed to �rst-order accu-racy in space via �nite di�erences, stored with the block sparse scheme discussed in Section 5.4, andrefreshed once every ten pseudo-timesteps. This Jacobian served as the left-hand-side matrix of theNewton systems (corresponding to (2.11)) or as the preconditioner for the matrix-free method. Thisfrequency of Jacobian recomputation provides a reasonable trade-o� in terms of convergence rate andthe computational cost of matrix evaluation. 22

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iteration Number

W
in

g
Li

ft
an

d
D

ra
g

C
oe

ffi
ci

en
ts

Convergence Rate: Wing Lift and Drag Coefficients

Lift Coefficient

Drag Coefficient

Coarse Mesh
Medium Mesh
Fine Mesh Fig. 6.2. Dimensionless aerodynamic functionals CL and CD as functions of pseudo-transient iteration step on thecoarse, medium, and �ne grids.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

X/C

P
re

ss
ur

e
D

is
tr

ib
ut

io
n

(−
C

p)

Experimental Pressure Distributions at the 45% Span Location

Upper Surface (Simulation)
Lower Surface(Simulation)
Upper Surface (AGARD)
Lower Surface (AGARD)

Fig. 6.3. Dimensionless aerodynamic functional CP (x) from leading to trailing edge, upper and lower wing surfaces,at 45% of wingspan, and comparison with experiment.For the cases in Fig. 6.4, we solved the linearized Newton systems approximately with a relativelinear convergence tolerance of 10�2 using preconditioned GMRES. For the matrix-free variant weemployed the additive Schwarz preconditioner with an overlap of 1 cell, and for the other cases weused the cheaper but su�ciently powerful block Jacobi method (equivalent to additive Schwarz withno overlap); both versions used one subdomain block per processor, solved with ILU(0) (the issue ofpreconditioner quality is discussed in Section 6.4). When retaining a �xed CFL of 7.5, only 3{4 lineariterations were required for each step to reach the 10�2 tolerance for both explicit and implicit boundarycondition variants. Experiments indicate that because of the mismatch of �rst-order and second-orderschemes in the left- and right-hand sides of these defect correction methods, more accurate linear solves23

0 100 200 300 400 500 600 700 800
−14

−12

−10

−8

−6

−4

−2

0

2
Number of Nonlinear Iterations (Medium Mesh, 2 Processors)

Iteration Number

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Exp BC, Exp Jac (Constant CFL)
Imp BC, Exp Jac (Constant CFL)
Imp BC, Exp Jac (Advancing CFL)
Imp BC, Matrix−Free Jac (Advancing CFL)

0 200 400 600 800 1000 1200 1400 1600 1800
−14

−12

−10

−8

−6

−4

−2

0

2

Time (Seconds)

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Computation Times (Medium Mesh, 2 Processors)

Exp BC, Exp Jac (Constant CFL)
Imp BC, Exp Jac (Constant CFL)
Imp BC, Exp Jac (Advancing CFL)
Imp BC, Matrix−Free Jac (Advancing CFL)

Fig. 6.4. Comparison of four globalized solution algorithms, showing the cumulative advantages of implicit BCs,advancing CFL, and matrix-free representation of the Jacobian, in terms of both iteration count (number of pseudo-timesteps) and overall execution time on an IBM SP2.and more frequent Jacobian refreshment do not appreciably accelerate convergence. For the cases withincreasing CFL, the linear systems become more challenging to solve as they transition toward trueNewton systems, requiring up to 30 iterations to reach the speci�ed 10�2 tolerance when CFL reachesits maximum value of 105. The quality of linear solves is further discussed in Section 6.5.The key observation from this data is that the combination of implicit boundary conditions coupledwith the higher-order discretization enabled by the matrix-free technique solves the nonlinear problemto machine precision several times faster than does the defect correction method. Neither the use ofimplicit boundary conditions alone nor the use of increasing CFL with a low-order Jacobian allows theapproach of quadratic convergence. We also note, on the basis of analogous experiments with the otherproblem sizes considered in the paper, that the impact of using this combination increases with problemsize.In addition to pseudo-time continuation, the original JULIANNE code employs a subtle form of con-tinuation in boundary conditions. The boundary conditions for mass density and energy density at theimpermeable wing surface are initially of simple Neumann type, and are switched to full characteristicboundary conditions only after the tenth pseudo-timestep. (This accounts for the spikes seen in thesteady-state residual norm histories in Figs. 6.4{6.8.) We have found this device to be important forrobustness in a fully implicit approach in which the steady-state residuals are evaluated to second orderfrom the outset. Alternatively, we have employed full characteristic boundary conditions for all vari-ables from the outset in a �rst-order discretization, and then switched to a second-order discretizationafter approximately 10�2 reduction in the steady-state residual norm.6.3. Di�erentiable Limiters. As discussed in Section 3.3, di�erentiability of limiters is essentialwhen using derivative information in the numerical scheme. When using matrix-free di�erencing ap-proximations of Jacobian-vector products, di�erentiable limiters are required to avoid breakdown (asmanifested by the introduction of NaNs in the iterate update) or stagnation. Fig. 6.5 shows convergencestagnation when the coarse mesh is run with the nondi�erentiable Van Leer limiter and the penetrationof this stagnation with the Van Albada limiter. 24

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

2

Iteration Number

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Comparison of Limiters (1 Processor, Coarse Mesh)

Van Albada Limiter (Differentiable)
Van Leer Limiter (Nondifferentiable)

Fig. 6.5. Illustration of the \hang up" characteristic of nondi�erentiable limiters within a nonlinearly implicitcritical ow.6.4. Preconditioner Quality. Preconditioner quality dramatically impacts the overall e�ciencyof the parallel 	NKS methodology, as demonstrated in the closely related Figs. 6.6 and 6.7 for severalvariants of additive Schwarz techniques. The graphs within these �gures compare convergence rate (interms of relative residual norm) versus both nonlinear iteration number (left-hand graphs) and time(right-hand graphs) for the medium mesh on 16 processors of an IBM SP2; analogous results wereachieved for other problem sizes and processor con�gurations. All plotted runs use preconditionedrestarted GMRES with a Krylov subspace of maximum dimension 30 and a �xed relative convergencetolerance of 10�2 (this issue is discussed in the following section); each processor hosts a single precon-ditioner block, which is solved via point-block ILU(0).We contrast in Fig. 6.6 a zero-overlap (subdomain-)block Jacobi preconditioner with a two-cell-overlap additive Schwarz method (ASM) and a two-cell-overlap restricted additive Schwarz method(RASM), which were presented in Section 2.4. We observe that modest overlap is crucial in providing ahigh-quality preconditioner that allows the overall numerical scheme to progress rapidly in the nonlinearsense. Further, we see that the RASMmethod, which eliminates communicationduring the interpolationphase, not only saves time in terms of communication overhead, but also provides more powerfulpreconditioning, as evidenced by faster convergence in terms of the nonlinear iteration count.Figure 6.7 contrasts various degrees of overlap for RASM. In particular, we see that two-cell overlapprovides a good balance in terms of power and cost. Less overlap trades o� cheaper cost per iteration fora preconditioner that does not allow the nonlinear iterations to converge proceed as rapidly, while moreoverlap is costly to apply and does not su�ciently contribute to faster nonlinear convergence. Similarbehavior was observed for structured-grid problems at other problem sizes and processor con�gurations,even when using other criteria to determine linear inner iteration convergence.In the context of unstructured tetrahedral grids, where each successive level of subdomain overlapis de�ned by following edges incident on vertices belonging to the subdomain at the previous level, ourexperience with overlap for RASM has led to a more extreme trade-o�. Cost per iteration rises rapidlywith overlap, since a vertex may be a member of 15 or more tetrahedra, and iteration reduction does25

ASM/RASM: Overlap 0
ASM: Overlap 2
RASM: Overlap 2

0 20 40 60 80 100 120 140 160
−14

−12

−10

−8

−6

−4

−2

0

2

Nonlinear Iteration Number

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Comparison of ASM and RASM Preconditioners (16 Processors, Medium Mesh)

ASM/RASM: Overlap 0
ASM: Overlap 2
RASM: Overlap 2

0 100 200 300 400 500 600
−14

−12

−10

−8

−6

−4

−2

0

2

Time (sec)

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Comparison of ASM and RASM Preconditioners (16 Processors, Medium Mesh)

Fig. 6.6. Comparison of three domain-decomposed preconditioners: subdomain-block Jacobi, standard additiveSchwarz with overlap of 2 cells, and restricted additive Schwarz with overlap of 2 cells. All methods solve point-blockILU(0) on 16 subdomains on an IBM SP2.not signi�cantly counterbalance this cost, for the weak levels of linear convergence required. We oftenuse no overlap in such cases.
Overlap 0

Overlap 1

Overlap 2

Overlap 3

0 20 40 60 80 100 120 140 160
−14

−12

−10

−8

−6

−4

−2

0

2

Nonlinear Iteration Number

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Comparison of Overlap for RASM Preconditioner (16 Processors, Medium Mesh)

Overlap 0

Overlap 1

Overlap 2

Overlap 3

0 100 200 300 400 500 600
−14

−12

−10

−8

−6

−4

−2

0

2

Time (sec)

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Comparison of Overlap for RASM Preconditioner (16 Processors, Medium Mesh)

Fig. 6.7. Comparison of four domain-decomposed preconditioners: subdomain-block Jacobi and restricted additiveSchwarz with overlap of 1, 2, and 3 cells. All methods solve point-block ILU(0) on 16 subdomains on an IBM SP2.6.5. Convergence Tuning. Convergence tuning for terminating the inner Krylov iterations inthe Newton correction is tightly coupled with preconditioner quality, and the two must be consideredin concert. Figure 6.8 contrasts various convergence criteria using the restricted additive Schwarzpreconditioner with an overlap of two cells, which was shown in Section 6.4 to be an e�ective choicefor the problems considered in this work. This �gure presents convergence data in terms of solutiontimes and work per linear iteration for three methods: �xed Krylov subspace dimension, �xed relativetolerance for residual norm reduction, and a hybrid strategy that terminates upon the earlier of satisfyinga relative residual norm reduction or exceeding a Krylov subspace dimension. These graphs focus on26

0 500 1000 1500 2000 2500 3000 3500 4000
−14

−12

−10

−8

−6

−4

−2

0

2

Time (Sec)

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Comparison of Krylov Termination Criteria: Residual Norm vs. Time

16 Processors, Fine Mesh

Fixed Subspace Dimension
Fixed Relative Tolerance with Moderate Max Subspace Dimension
Fixed Relative Tolerance

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

90

N
um

be
r

of
 L

in
ea

r
Ite

ra
tio

ns

Time (Sec)

Comparison of Krylov Termination Criteria: Number of Linear Iterations per Newton Step vs. Time

16 Processors, Fine Mesh

Fixed Subspace Dimension
Fixed Rel Tol; Max Subspace Dim
Fixed Relative Tolerance

Fig. 6.8. Comparison of three di�erent tunings of the linear convergence tolerance: �xed work, �xed relative toler-ance, and a loose hybrid.the 16-processor case with the �ne mesh, although they are representative of experiments on variousnumbers of processors for di�erent problem sizes. The left-hand graph within Fig. 6.8, which plots thelog of the residual norm versus solution time, indicates that using a loose �xed relative tolerance of10�2 is preferable over the other choices when a su�ciently robust preconditioner is employed.The corresponding right-hand graph better illustrates where within the total simulation processthe bulk of computational work occurs within the linear solves. In particular, we see that the commonpractice of specifying a �xed amount of work per nonlinear iteration does not fare as well as alternativesthat focus linear solver work where it is truly needed during the second and third phases of the 	NKSprocess (recall Section 2.1). The �xed-work case for this problem employed thirty iterations of GMRES;experiments with fewer GMRES iterations and more frequent restarts encountered stagnation beforeconverging to steady state. In contrast, the approaches that use a �xed relative tolerance or hybridscheme fared much better.Strategies that dynamically adjust the linear tolerances to achieve greater relative residual reductionduring steps of the �nal 	NKS phase and thereby aim for quadratic convergence (e.g., [25]), have beenof limited bene�t when a su�ciently robust linear solver is employed. We note that others with strongincentives to watch the \bottom line" of execution time in production line design use have convergedon fairly loose tolerances for inner linear iterations [92]. However, further investigation of tuning suchstrategies should prove valuable.Figure 6.9 illustrates the evolution of the shock structure (characterized by the number of supersonicmesh points) as a function of time for the mediumand �ne meshes. Notice that the number of supersonicpoints scales approximatelywith the number of gridpoints (factor of 8 between the two curves), reectingthe convergence to a grid-independent feature in physical space. We also observe that each run from auniform ow initial iterate passes through the same intermediate condition during which the supersonicregion is larger than its asymptotic value. The duration of this period is inversely proportional to theresolution, suggesting that the shock advances in units of gridpoints per iteration, based on a cell-size-dependent CFL, not with physical temporal accuracy. Properly applied grid sequencing would su�er27

this period of settling of shock location on the coarsest grid only.
0 20 40 60 80 100 120

0

200

400

600

800

1000

1200

Time (sec)

N
um

be
r

of
 S

up
er

so
ni

c
P

oi
nt

s

Number of Supersonic Points (16 Processors) Medium Mesh

0 200 400 600 800 1000 1200 1400 1600 1800
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (sec)

N
um

be
r

of
 S

up
er

so
ni

c
P

oi
nt

s

Number of Supersonic Points (16 Processors) Fine Mesh

Fig. 6.9. Illustration of the evolution of the shock structure as reected in the number of gridpoints contained in thesupersonic \bubble" on the upper surface of the airfoil, as a function of pseudo-timestep number, for the medium and�ne grids.6.6. Scalability. There are many aspects to parallel scalability in a nonlinear PDE problem. Wemay usefully distinguish between the numerical scalability of the algorithm (reecting how the numberof iterations depends upon the partitioning|which makes the \best preconditioner" at each granularityalgebraically di�erent) and the implementation scalability (reecting how well a given \market basket"of operations within a single iteration at some level executes at di�erent granularities). We also report�xed-problem-size scalability and �xed-memory-per-node or \Gustafson" scalability.In Table 6.2 we present computation rates on an IBM SP2 for the matrix-vector product and anentire linear solve using an explicitly stored Jacobian with implicit boundary conditions averaged overa �xed number of Newton corrections of a particular pseudo-timestep. The linear Newton systems aresolved using restarted GMRES with a Krylov subspace of maximum dimension 30 and block Jacobipreconditioning, where each processor has one block that is solved with ILU(0). The speedup overtwo processors (the smallest number on which the entire problem �ts, when both the explicit Jacobianand its preconditioner must be stored) is given in parentheses in the tables. To put in perspectivethe average single-node performance of 73.5 Mop/s (parallel overheads included) for the block-sparselinear solution of the 2-processor case, we note that the peak performance of one processor of the quad-issue IBM SP2 is 266 Mop/s, the dense LINPACK-100 benchmark produces 130 Mop/s, and a sparsematrix-vector product that uses the standard compressed sparse row format (CSR) attains 27 Mop/s.We next present in Table 6.3 similar runs for the same problem on the �ne mesh, which produces asystem that is roughly eight times as large as the previous one. For this problem of 1,121,320 unknowns,the computation rate on sixteen processors for the matrix-vector product was 1.28 Gop/s, while thecomplete linear solve achieves 1.01 Gop/s. On sixty-four processors the matrix-vector product runs at4.22 Gop/s, while the complete linear solve achieves 3.74 Gop/s. The data presented here is basedon op counters embedded in the PETSc library routines and pertains to the solvers only. The functionevaluation and Jacobian evaluation application routines are not yet instrumented for oating-pointoperation counting; therefore, self-contained linear solutions (with explicitly stored matrix operations,28

Table 6.2Performance on medium grid problem (computation rate in Mop/s).Number of Matrix-Vector Products Linear SolvesProcessors Mop/s Speedup Mop/s Speedup2 179 � 147 �4 337 (1.9) 286 (2.0)8 620 (3.5) 540 (3.7)16 1137 (6.4) 994 (6.8)32 2038 (11.4) 1785 (12.1)64 3003 (16.8) 2546 (17.3)Table 6.3Performance on �ne grid problem (computation rate in Mop/s).Number of Matrix-Vector Products Linear SolvesProcessors Mop/s Speedup Mop/s Speedup16 1281 � 1011 �32 2483 (1.9) 2154 (2.1)64 4217 (3.3) 3744 (3.7)not matrix-free approximations) were employed for these computational rate tests. Scalability analysisin terms of time for the matrix-free variants is presented in Fig. 6.10 and Table 6.6.Table 6.4 presents timing data for a single NKS iteration, including evaluation of the right-hand-sidevector as well as the linear solve, on the SP2 for 8 and 64 processor cases. We partition the 8-processorcase as 8� 1� 1 for the medium mesh and the 64-processor case as 16� 2� 2 for the �ne mesh. Theseparticular cases have identical local mesh con�gurations, so that the problems require the same amountof memory per processor and therefore have similar caching pro�les (which controls for one of the maine�ects that renders parallel performance studies di�cult).Table 6.4Time (s) for one nonlinear iteration on an SP2.Solution Medium Mesh Fine Mesh PercentTechnique 8 Procs (8x1x1) 64 Procs (16x2x2) Di�erenceMatrix-explicit .39 .46 15Matrix-free 1.20 1.60 25It is encouraging that the parallel matrix-free version of the code also has good parallel e�ciencyin the Gustafson (memory-constrained) sense. For example, given two versions of the same problem,one eight times larger than the other (a factor of two mesh re�nement in each of three dimensions), andgiven eight times as many processors to run the larger case, the two problems have per-iteration costswithin 5{15% of being identical for the matrix-explicit case, and within 12{25% for the matrix-free29

case. The slightly lower e�ciency for the matrix-free case arises because of the dominance of time forfunction evaluations for this method.Despite the slightly poorer scalability of the matrix-free method in the memory-constrained sense,the faster convergence of the matrix-free method relative to the matrix-explicit method becomes in-creasingly important as problem size increases. Table 6.5 presents the time for total nonlinear solutionusing both matrix-explicit and matrix-free approaches for the coarse, medium, and �ne meshes on 1, 8,and 64, processors, respectively. We see that in each case the matrix-free method performs more thantwice as fast as its matrix-explicit counterpart for a given problem size and processor con�guration.Table 6.5Time (s) for total nonlinear solution on an SP2.Processor Matrix Matrix RatioGrid Con�guation Free Explicit (ME/MF)Coarse 1 64.4 142.6 2.2Medium 8 (8� 1� 1) 217.5 499.2 2.3Fine 64 (16� 2� 2) 1019.3 2353.5 2.3The plots in Fig. 6.10 show the scaling of the complete nonlinear simulation for the �ne mesh on16, 32, and 64 processors of an IBM SP with 120 MHz P2SC nodes with two 128 MB memory cardseach and a TB3 switch; analogous performance trends are seen also on the SP2. The data indicate amodest decrease in nonlinear convergence rate as the number of processors grows; overall solution timesscale reasonably well.
0 50 100 150 200 250

−14

−12

−10

−8

−6

−4

−2

0

2

Iteration Number

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Nonlinear Iterations for Convergence (Fine Mesh)

16 Processors
32 Processors
64 Processors

0 200 400 600 800 1000 1200 1400 1600 1800
−14

−12

−10

−8

−6

−4

−2

0

2

Time (Sec)

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Computation Times (Fine Mesh)

16 Processors
32 Processors
64 Processors

Fig. 6.10. Scalability of nonlinear solver (�ne mesh).Finally, Table 6.6 compares the scalability on two contemporary high-performance parallel comput-ers, the IBM SP2 and the Cray T3E. Timings are given for a single matrix-free NKS iteration on the�ne mesh, including evaluation of the right-hand-side vector as well as the linear solve. We consider 16,32, and 64-processor con�gurations and present speedup over the 16-processor case.30

Table 6.6Scalability on the SP2, T3E: Timings for one nonlinear iteration on �ne mesh.Machine Number of Processors Time (s) Speedup over 16 Procs.16 4.39 {IBM SP2 32 2.46 1.864 1.60 2.716 5.15 {Cray T3E 32 2.71 1.964 1.71 3.07. Conclusion. We have shown that the pseudo-transient matrix-free Newton-Krylov-Schwarz(NKS) methodology is robust and reasonably e�cient for the parallel solution of large-scale CFDproblems, as demonstrated here for the three-dimensional compressible Euler equations. For a givenproblem class, the various parameters that a�ect algorithmic performance can be systematically studiedand tuned. We have also shown how any one of several missing or mis-tuned functionalities can causeconvergence to slow or to hang at a level far from the best attainable. An integrated approach toinvestigating innovative numerical methods and developing software is crucial to designing e�cient,reusable tools.In our experience, conversion of a legacy code to the matrix-free NKS framework is a \�ltering"process. During the conversion to a Newton method, initially unrecognized explicit updates may bediscovered and unrecognized nondi�erentiability or destabilizing sensitivity of local gradient informationabout a function may be stumbled upon.Additional work in progress includes the following:� Investigation of techniques for evaluating relative function noise. As indicated in Section 4.2,the robustness of matrix-free methods is potentially sensitive to the �nite di�erencing parameterfor the Fr�echet derivative. Its selection should be automatically adaptive.� Incorporation of multilevel methods. Coarse-to-�ne grid sequencing is a continuation tool aspowerful as pseudo-transient continuation. Linear multilevel methods that revisit the coarselevels are also arithmetically optimal solvers for the Newton correction equations. Althoughsuch methods may be very di�cult for non-experts to tune in anisotropic, non-monotone-inverseproblems, they can be used e�ectively as preconditioners, as in [49]. Nonlinear multilevelmethods can also be directly accelerated by nonlinear Krylov methods, as in [61].� Problem-adaptive domain partitioning. The deterioration of convergence rate of Schwarz meth-ods with increasing subdomain granularity can be minimized when the cuts introduced tocreate the partitions are along edges in the Jacobian matrix with minimal coe�cient weight(in some norm to be made more precise with further research). Obviously, load balance andcommunication-to-computation ratio criteria may conict with coe�cient weight criteria inpartitioning, but there is often signi�cant latitude (particularly in unstructured problems) inchoosing partitions, which could be exploited by such problem-speci�c knowledge.� Nonlinear Schwarz methods. The global Newton method advocated in this paper is an asymp-totically attractive implicit strategy, but many important problems have the property of beingstrongly nonlinear in limited subregions and weakly nonlinear (or even linear) elsewhere. When31

such problems are solved with global Newton methods, work is often wasted on the well-behavedregions while the solution slowly evolves in the strongly nonlinear regions (see, e.g., [14]). Non-linear Schwarz methods, including asynchronous varieties, can adapt the work to the degree ofnonlinearity in the way that adaptive mesh re�nement methods can adapt the work to solutionactivity. We expect that NKS will �t into an overall solution strategy as a closing strategy, afternonlinear Schwarz (employing NK as a subdomain solver) is adaptively applied as an openingstrategy.Acknowledgments. The authors owe a large debt of gratitude to Professor Dave Whit�eld of the En-gineering Research Center at Mississippi State University for providing JULIANNE as the legacy code thatdrove several aspects of this work. M. D. Tidriri is supported by the Air Force O�ce of Scienti�c Researchunder contract number Grant F49620-99-1-0197. Satish Balay and Barry Smith of Argonne National Labora-tory co-developed the PETSc software employed in this paper, together with Gropp and McInnes, under theMathematical, Information, and Computational Sciences Division subprogram of the O�ce of Advanced Scien-ti�c Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. Dr. George K. Leaof the National Science Foundation supported the work of the Keyes and McInnes at Old Dominion Universityunder ECS-9527169. Dr. James L. Thomas of the NASA Langley Research Center supported the work of SatishBalay at Old Dominion University under NAG-1-1692, and all four authors have collaborated while in residenceat ICASE under NASA contract NAS1-19480, where early results of this paper were employed in a \BringYour Own Code" Workshop on the Parallelization of PDE-based Codes in December, 1996. Barry Smith, KeesOosterlee, and Alex Povitsky provided valuable feedback on early versions.REFERENCES[1] K. Ajmani, W.-F. Ng, and M.-S. Liou. Preconditioned conjugate gradient methods for the Navier-Stokes equations. J. Computational Physics, 110:68{81, 1994.[2] G. D. Van Albada, B. Van Leer, and W.W. Roberts, Jr. A comparative study of computationalmethods in cosmic gas dynamics. Astronomics and Astophysics, 108:76{84, 1982.[3] W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Achieving highsustained performance in an unstructured mesh CFD application. In Proceedings of Supercom-puting'99. IEEE Computer Society, 1999. Bell Prize award paper, Special Category.[4] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. The PETSc home page.http://www.mcs.anl.gov/petsc.[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. E�cient management of parallelism inobject oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen,editors,Modern Software Tools in Scienti�c Computing, pages 163{202. Birkhauser Press, 1997.[6] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. PETSc 2.0 users manual. TechnicalReport ANL-95/11 - Revision 2.0.24, Argonne National Laboratory, April 1999.[7] T. J. Barth and S. W. Linton. An unstructured mesh Newton solver for uid ow and its parallelimplementation. Technical Report 95-0221, AIAA, 1995.[8] P. Bjorstad, R. Espedal, and D. E. Keyes, editors. Proceedings of the Ninth International Confer-ence on Domain Decomposition Methods. Domain Decomposition Press, 1999.32

[9] P. N. Brown and A. C. Hindmarsh. Matrix-free methods for sti� systems of ODE's. SIAM J.Numerical Analysis, 23:610{638, 1986.[10] P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAM J.Scienti�c and Statistical Computing, 11:450{481, 1990.[11] X.-C. Cai. Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partialdi�erential equations (Ph.D. thesis). Technical Report 461, Courant Institute, September 1989.[12] X.-C. Cai, C. Farhat, and M. Sarkis. Schwarz methods for the unsteady compressible Navier-Stokesequations on unstructured meshes. In Proceedings of the Eighth International Conference onDomain Decomposition Methods, pages 453{460. Wiley, 1997.[13] X.-C. Cai, C. Farhat, and M. Sarkis. A minimumoverlap restricted additive Schwarz preconditionerand applications in 3d ow simulations. In Proceedings of the Tenth International Conferenceon Domain Decomposition Methods, pages 238{244. AMS, 1998.[14] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation. SIAM J. Scienti�c Computing,19:246{265, 1998.[15] X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri. Newton-Krylov-Schwarz methods inCFD. In Proceedings of the International Workshop on Numerical Methods for the Navier-Stokes Equations, pages 17{30. Vieweg, 1995.[16] X.-C. Cai, D. E. Keyes, and V. Venkatakrishnan. Newton-Krylov-Schwarz: An implicit solver forcfd. In Proceedings of the Eighth International Conference on Domain Decomposition Methods,pages 387{400. Wiley, 1997.[17] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linearsystems. SIAM J. Scienti�c Computing, 21:792{797, 1999.[18] T. F. Chan and K. R. Jackson. Nonlinearly preconditioner Krylov subspace methods for discreteNewton algorithms. SIAM J. Scienti�c and Statistical Computing, 5:535{542, 1984.[19] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture. Morgan-Kaufman, 1998.[20] V. D. Decyk, S. R. Karmesin, A. de Boer, and P. C. Kuewer. Optimization of particle-in-cell codeson RISC processors. Technical Report CRPC-95-6, CRPC, October 1995.[21] R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. NumericalAnalysis, 19:400{408, 1982.[22] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and NonlinearEquations. Prentice-Hall, 1983.[23] J. E. Dennis and V. Torczon. Direct search methods on parallel machines. SIAM J. Optimization,1:448{474, 1991.[24] M. Dryja and O. B. Widlund. An additive variant of the Schwarz alternating method for the caseof many subregions. Technical Report 339, Courant Institute, NYU, 1987.[25] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method. SIAMJ. Scienti�c Computing, 17:16{32, 1996.[26] A. Ern, V. Giovangigli, D. E. Keyes, and M. D. Smooke. Towards polyalgorithmic linear systemsolvers for nonlinear elliptic systems. SIAM J. Scienti�c Computing, 15:681{703, 1994.[27] C. Farhat, M. Lesoinne, and N. Maman. Mixed explicit/implicit time integration of coupledaeroelastic problems: Three-�eld formulation, geometric conservation and distributed solution.33

International J. for Numerical Methods in Fluids, 21:807{835, 1995.[28] Message Passing Interface Forum. MPI: A message-passing interface standard.http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html, May 1994.[29] R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems.SIAM J. Scienti�c and Statistical Computing, 14:470{482, 1993.[30] C. W. Gear and Y. Saad. Iterative solution of linear equations in ode codes. SIAM J. Scienti�cand Statistical Computing, 4:583{601, 1983.[31] W. D. Gropp and D. E. Keyes. Complexity of parallel implementation of domain decompositiontechniques for elliptic partial di�erential equations. SIAM J. Scienti�c and Statistical Comput-ing, 9:312{326, 1988.[32] W. D. Gropp and D. E. Keyes. Domain decomposition on parallel computers. Impact of Computingin Science and Engineering, 1:421{439, 1989.[33] W. D. Gropp, D. E. Keyes, and J. S. Mounts. Implicit domain decomposition algorithms forsteady, compressible aerodynamics. In A. Quarteroni, J. Periaux, Yu. A. Kuznetsov, and O. B.Widlund, editors, Sixth International Symposium on Domain Decomposition Methods, pages203{213, Providence, 1994. AMS.[34] C. Hirsch. Numerical Computation of Internal and External Flows: Volume 2: ComputationalMethods for Inviscid and Viscous Flows. John Wiley and Sons, 1988.[35] C. B. Jenssen and P. A. Weinerfelt. Coarse grid correction scheme for implicit multiblock Eulercalculations. AIAA J., 33:1816{1821, 1995.[36] C. B. Jenssen and P. A. Weinerfelt. Parallel implicit time-accurate Navier-Stokes computationsusing coarse grid correction. AIAA J., 36:946{951, 1995.[37] H. Jiang and P. A. Forsyth. Robust linear and nonlinear strategies for solution of the transonicEuler equations. Computers and Fluids, 24:753{770, 1995.[38] Z. Johann, T. J. R. Hughes, and F. Shakib. A globally convergent matrix-free algorithm for implicittime-marching schemes arising in �nite element analysis in uids. Computational Methods inApplied Mechanics and Engineering, 87:281{304, 1991.[39] D. K. Kaushik, D. E. Keyes, and B. F. Smith. On the interaction of architecture and algorithm inthe domain-based parallelization of an unstructured grid incompressible ow code. In Proceed-ings of the Tenth International Conference on Domain Decomposition Methods, pages 311{319.AMS, 1998.[40] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.[41] C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient continuation. SIAM J.Numerical Analysis, 35:508{523, 1998.[42] D. E. Keyes. Domain decomposition methods for the parallel computation of reacting ows. Com-puter Physics Communications, 53:181{200, 1989.[43] D. E. Keyes. Aerodynamic applications of Newton-Krylov-Schwarz solvers. In Proceedings of the14th International Conference on Numerical Methods in Fluid Dynamics, pages 1{20. Springer,1995.[44] D. E. Keyes and W. D. Gropp. Domain decomposition techniques for nonsymmetric systems ofelliptic boundary value problems: Examples fromCFD. In T. F. Chan, R. Glowinski, J. P�eriaux,and O. Widlund, editors, Second International Symposium on Domain Decomposition Methods,34

pages 321{339, Philadelphia, 1989. SIAM.[45] D. E. Keyes, D. K. Kaushik, and B. F. Smith. Prospects for CFD on petaops systems. In CFDReview 1998, pages 1079{1096. Wiley, 1998.[46] D. E. Keyes and M. D. Smooke. A parallelized elliptic solver for reacting ows. In A. K. Noor,editor, Parallel Computations and Their Impact on Mechanics, pages 375{402. ASME, 1987.[47] D. A. Knoll, P. R. McHugh, and D. E. Keyes. Newton-Krylov methods for low Mach numbercompressible combustion. AIAA J., 34:961{967, 1996.[48] D. A. Knoll and W. J. Rider. A multilevel Newton-Krylov method for nonsymmetric, nonlinearboundary value problems. Technical report, Los Alamos National Laboratory, 1997.[49] D. A. Knoll and W. J. Rider. A multilevel preconditioned Newton-Krylov method. Technicalreport, Los Alamos National Laboratory, 1997.[50] D. A. Knoll, W. J. Rider, and G. L. Olson. Newton-Krylov methods applied to nonequilibriumradiation di�usion. Technical report, Los Alamos National Laboratory, 1998.[51] J. Mandel, C. Farhat, and X.-C. Cai, editors. Proceedings of the Tenth International Conferenceon Domain Decomposition Methods. AMS, 1998.[52] D. J. Mavriplis. On convergence acceleration techniques for unstructured meshes. Technical Report98-2966, AIAA, 1998.[53] P. R. McHugh and D. A. Knoll. Inexact Newton's method solutions to the incompressible Navier-Stokes and energy equations using standard and matrix-free implementations. In Proceedingsof the AIAA Eleventh Annual Computational Fluid Dynamics Conference, 1993.[54] P. R. McHugh, D. A. Knoll, V. A. Mousseau, and G. A. Hansen. An investigation of Newton-Krylovsolution techniques for low mach number compressible ow. In Proceedings of the ASME FluidsEngineering Division Summer Meeting, 1995.[55] L. C. McInnes and J. J. Mor�e. Unpublished information, Mathematics and Computer ScienceDivision, Argonne National Laboratory, 1999.[56] MPI Forum. MPI: A message-passing interface standard. International J. for SupercomputingApplications, 8(3/4), 1994.[57] W. Mulder and B. Van Leer. Experiments with implicit upwind methods for the Euler equations.J. Computational Physics, 59:232{246, 1985.[58] N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How fast are nonsymmetric matrix iterations?SIAM J. Matrix Analysis and Applications, 13:778{795, 1992.[59] J. C. Newton, W. K. Anderson, and D. L. Whit�eld. Multidisciplinary sensitivity derivatives usingcomplex variables. Technical Report 98-08, Mississippi State University Engineering ResearchCenter, July 1998.[60] E. J. Nielsen, R. W. Walters, W. K. Anderson, and D. E. Keyes. Application of Newton-Krylovmethodology to a three-dimensional unstructured Euler code. Technical Report 95-1733, AIAA,1995.[61] C. W. Oosterlee and T. Washio. Krylov subspace acceleration of nonlinear multigrid schemes.Electronic Transactions in Numerical Analysis, 6:271{290, 1997.[62] P. D. Orkwis. Comparison of Newton's and quasi-Newton's method solvers for the Navier-Stokesequations. AIAA J., 31:832{836, 1993.[63] M. Pernice, L. Zhou, and H. F. Walker. Parallel solution of nonlinear partial di�erential equations35

using a globalized inexact Newton-Krylov-Schwarz method. Technical Report 48, University ofUtah Center for High Performance Computing, 1997.[64] N. Qin, D. K. Ludlow, and S. T. Shaw. A matrix-free preconditioned Newton/GMRES method forNavier-Stokes equations. To appear in International J. for Numerical Methods in Fluids, 1999.[65] G. H. Golub R.W. Freund and N. M. Nachtigal. Iterative solution of linear systems. Acta Numerica,pages 57{100, 1992.[66] P. L. Roe. Approximate Riemann solvers, parameter vector, and di�erence schemes. J. Computa-tional Physics, 43:357{372, 1981.[67] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Scienti�c and Statistical Computing, 7:856{869, 1986.[68] V. Schmitt and F. Charpin. Pressure distributions on the ONERA M6 wing at transonic Machnumbers. Technical Report AR-138, AGARD, May 1979.[69] R. Schreiber and H. B. Keller. Driven cavity ows by e�cient numerical techniques. J. Computa-tional Physics, 49:310{333, 1983.[70] F. Shakib, T. J. R. Hughes, and Z. Johan. Element-by-element algorithms for nonsymmetric matrixproblems arising in uids. In Superlarge Problems in Computational Mechanics, pages 1{34.Plenum, 1987.[71] B. F. Smith, P. Bj�rstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel Methodsfor Elliptic Partial Di�erential Equations. Cambridge University Press, 1996.[72] M. D. Smooke. An error estimate for the modi�ed Newton method with applications to the solutionof nonlinear two-point boundary value problems. J. Optimization Theory and Applications,39:489{511, 1983.[73] M. D. Smooke and R. M. Mattheij. On the solution of nonlinear two-point boundary value problemson successively re�ned grids. Applied Numerical Mathematics, 1:463{487, 1985.[74] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Scienti�cand Statistical Computing, 10:36{52, 1989.[75] M. D. Tidriri. Development of Newton-Krylov-Schwarz algorithms in CFD. To appear in Interna-tional Journal of Computational Fluid Dynamics.[76] M. D. Tidriri. Krylov methods for compressible ows. Technical Report 95-48, ICASE, June 1995.[77] M. D. Tidriri. Schwarz-based algorithms for compressible ows. Technical Report 96-4, ICASE,January 1996.[78] M. D. Tidriri. E�cient preconditioning of Newton-Krylov matrix-free algorithms for compressibleows. J. Computational Physics, 132:51{61, 1997.[79] M. D. Tidriri. Hybrid Newton-Krylov/domain decomposition methods for compressible ows.In Proceedings of the Ninth International Conference on Domain Decomposition Methods inSciences and Engineering, pages 532{539, 1998.[80] E. Turkel. Review of preconditioning methods for uid dynamics. Applied Numerical Mathematics,12:27{46, 1993.[81] H. van der Vorst. Bi-CGSTAB: A fast and smoothly converging varient of Bi-CG for the solution ofnonsymmetric linear systems. SIAM J. Scienti�c and Statistical Computing, 13:631{644, 1992.[82] S. P. Vanka. Block-implicit calculation of steady turbulent recirculating ows. International J. ofHeat and Mass Transfer, 28:2093{2103, 1985.36

[83] V. Venkatakrishnan. Newton solution of inviscid and viscous problems. AIAA J., 27:885{891,1989.[84] V. Venkatakrishnan. Parallel implicit unstructured grid Euler solvers. AIAA J., 32:1985{1991,1994.[85] V. Venkatakrishnan. Convergence to steady state solutions of the Euler equations on unstructuredgrids with limiters. J. Computational Physics, 118:120{130, 1995.[86] V. Venkatakrishnan and D. J. Mavriplis. Implicit solvers for unstructured meshes. J. ComputationalPhysics, 105:83{91, 1993.[87] G. Wang and D. K. Tafti. Performance enhancement on microprocessors with hierarchical memorysystems for solving large sparse linear systems. International J. for Supercomputer Applicationsand High Performance Computing, 13:63{79, 1999.[88] D. L. Whit�eld and J. M. Janus. Three-dimensional unsteady Euler equations using ux vectorsplitting. In Proceedings of the AIAA 17th Fluid Dynamics, Plasma Dynamics, and LasersConference, 1984.[89] D. L. Whit�eld and L. K. Taylor. Discretized Newton-relaxation solution of high resolution ux-di�erence split schemes. In Proceedings of the AIAA Tenth Annual Computational Fluid Dy-namics Conference, pages 134{145, 1991.[90] D. L. Whit�eld and L. K. Taylor. Variants of a two-level method for the approximate numericalsolution of �eld simulation equations. Technical Report 98-09, Mississippi State UniversityEngineering Research Center, July 1998.[91] L. B. Wigton, N. J. Yu, and D. P. Young. GMRES acceleration of computational uid dynamicscodes. Technical Report 85-1494, AIAA, 1985.[92] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant, and J. E. Bussoletti.A locally regined rectangular grid �nite element method: Applications to computational uiddynamics and computational physics. J. Computational Physics, 92:1{66, 1991.
37

