
Interacting with Scienti�c Visualizations:User-Interface Tools within SpatiallyImmersive DisplaysJohn Bresnahan1, Joseph Insley1;5, and Michael E. Papka2;3;41 Distributed Systems Laboratory, Mathematics and Computer Science Division,Argonne National Laboratory, Argonne, IL 604392 Futures Laboratory, Mathematics and Computer Science Division, ArgonneNational Laboratory, Argonne, IL 604393 Computation Institute, University of Chicago, Chicago, IL 606374 Department of Computer Science, University of Chicago, IL 606375 Department of Electrical Engineering and Computer Science, University ofIllinois at Chicago, Chicago, IL 60612Abstract. User interfaces represent a doorknob to computer applications and di-rectly relate to the usability of a given application. The desktop WIMP interfacehas been developed and re�ned over the past 15 years and works well for thedesktop environment. The question is, What does one do in the case of today'sthree-dimensional immersive environments? Does one translate the desktop toolsto the 3D space, and how does one interact within these spaces? In building nu-merous immersive scienti�c visualization applications, we have developed a varietyof di�erent user interface tools for use within these environments. These interfacesinclude methods of controlling and driving the applications, tools for navigatingdatasets, and underlying libraries for the development of collaborative versions ofthese tools. With the development of these tools, we have learned many lessons, aswell as gained new insight into future user interface work.1 IntroductionThe bene�ts of scienti�c visualization to the analysis and understanding pro-cess is nothing new. Scientists have embraced its use in order to gain mean-ingful insight into the data that they collect, generate, and compute. As thecompute resources scientists use continue to improve, the complexity of thedata that they are trying to interpret increases. This situation has sparkeda new wave of data analysis that moves scienti�c visualization o� the desk-top and into immersive virtual environments. What scientists need now is anintuitive way to interact with their data within these virtual environments.Depending on the data being visualized and the type of visualizationbeing performed, there are myriad di�erent aspects of the visualization thatone would like to be able to control. These range from changing the positionand orientation of a volume of data that is being explored to adjusting theparameters of an on-going simulation whose output is being rendered in realtime. One would also like to be able to control all of these aspects from within



2 Bresnahan, Insley, and Papkathe virtual environment, without having to return to the desktop to type insome command on the keyboard.One solution is to borrow the familiar 2D menuing scenario from thedesktop. But 2D menus don't always transition easily into 3D. Because theresolution of many virtual reality systems is somewhat limited, text-basedmenus are often di�cult to read. In addition, it is often necessary to navi-gate through several levels of menus to change the modality of the task thatis being performed. This process can be tedious and can make the systemdi�cult to use. The problem can be alleviated somewhat by having multiplemenus open at once, but that can lead to clutter, where the menus start toobscure one's view of the data that is being visualized. Furthermore, it issimply unnatural to use 2D menus to interact with a 3D world, whether thatworld is real or simulated.As with any user interface, it is important to provide visual cues anduser feedback on the state of the system. Such cues may involve highlightingan object to let users know that it has been selected or changing its color toindicate that its state has changed. These cues let users know how the systemhas interpreted their actions, provide a better understanding of how thoseactions are a�ecting the visualization, and enable users to make informeddecisions about how to proceed.Our experiences have been with developing scienti�c visualization applica-tions primarily for the CAVE and ImmersaDesk [3]. Both are projection-basedvirtual reality (VR) devices that use a pair of tracked LCD shutter glassesto provide a stereo, user-centered perspective. Users interact with the envi-ronment using a tracked 3D mouse-like input device called a wand that hasthree buttons and a joystick. We describe here our experiences with some ofthe tools that we have developed for interacting with scienti�c visualizationsin these virtual environments. In particular, we discuss a control panel inter-face and data selection/navigation tool, a 2D-based menuing system, and aninfrastructure for connecting these tools in a collaborative session. We brieydescribe the each tool, discuss some lessons learned, and present ideas onwhere we see the tool heading. We conclude with an overall discussion of thefuture of 3D user interfaces.2 ControlPanelIn order to control di�erent aspects of a visualization from within a virtualenvironment, it is often desirable to use valuators, such as sliders, for changingthe value of some parameter, or a variety of buttons and toggles to changemodalities or to trigger certain events. As more control over a greater numberof aspects of the visualization is added, however, managing the placement ofall of these controls often becomes problematic. If individual componentsare left oating freely in the space, the space quickly becomes cluttered andunmanageable. To help alleviate this problem, we developed the ControlPanel



Interacting with Scienti�c Visualizations 3
Fig. 1. Image of user interacting with the CP on a Idesk.(CP), which is a central location where all of these controls can be kept.Originally designed for the ImmersaDesk (Idesk), which is a single-screen,drafting table-sized virtual reality device, the CP sits at the bottom edge ofthe screen. Much like on the dashboard of a car, all of the controls are noweasily accessible, yet out of the way so as to not obscure the user's view ofthe rest of the environment (See Figure 1). Similar to windows in a desktopenvironment, the CP can also be minimized to hide the controls and providean even better view of the scene.The ControlPanel library is implemented by using OpenInventor. TheCP provides a number of generic widgets. Interaction with these widgets ismanaged by the CP, which uses ray-casting from a ray at the end of thewand to determine whether an object has been intersected. A pointer, whichcoincides with the ray, is drawn at the end of the wand to make the selectionof objects easier. When an object is intersected, it changes color, to indicatethat it can now be selected. The object can then be selected by pressing oneof the buttons on the wand, which causes the object to change color again,letting the user know that it is now active. All of these widgets are userprogrammable. That is, the application developer can specify value ranges,indicate how the behavior of some widgets is a�ected by the value of others,and so on. Also, the widgets remain independent of the other objects in the



4 Bresnahan, Insley, and Papkascene. Once the ControlPanel has been updated, the developer can get thevalues of the various widgets from the CP and use them to determine how orwhether the rest of the scene should be altered. This approach keeps the CPsomewhat generic, while giving the programmer the desired control.Since providing users with feedback about what they are communicatingto the system is so important, the CP also has a joystick object that representsthe joystick on the CAVE wand. When the user pushes forward, back, left, orright on the wand's joystick, the joystick on the CP moves in the same way,to reect the user input. If the joystick's values are not being used to controlanything, then the joystick on the CP remains in the default position.In addition to the widgets provided by the ControlPanel library, devel-opers can add their own custom objects to the CP. Typically, one simplyprovides the CP with methods to get the object's root node (OpenInventor),so that it can be added to the CP's scene graph for updating it and for gettingand setting its values.2.1 WidgetsAmong the widgets that the ControlPanel provides are sliders, buttons, textobjects, and scrolling lists. Figure 2 shows a view of the CP.
Fig. 2. Snapshot of the CP, taken from the CAVE simulator.Sliders The sliders can be a single slider or a group of them. Their minimumand maximum values are set by the programmer, as well as whether theirvalue should be an integer or a oating-point number.



Interacting with Scienti�c Visualizations 5Buttons Buttons can also be added to the CP individually or a group, andthey have variety of modalities. Within a group of buttons, each button maybe turned on and o� independently of the others. Alternatively, it is possibleto allow at most one button to be active at a time, so that when a buttonis activated, if another button was already active, it becomes deactivated.A third modality is much like that of a radial button, where exactly onebutton is active at all times; in this case, the currently active button can bedeactivated only by selecting one of the other buttons.Text Objects The text object is just a wrapper around OpenInventor's 3Dtext object that makes it easier to add text to the ControlPanel. As mentionedearlier, text is often di�cult to read in many virtual reality systems, and theIdesk is no exception, but it is also often necessary. One needs to be carefulwhen adding text to ensure that it is large enough to read, but that it is keptshort enough to avoid cluttering up the space. Text on the ControlPanel isgenerally fairly easy to read because it is close to the user and on an opaquebackground, which helps separate it from the rest of the environment.Scrolling List The scrolling list is a combination of the other three objects.It allows the user to scroll through a list of text strings, such as a list ofavailable datasets that one might want to visualize, and select one of them.The programmer can also dynamically update the list of strings, if he sochooses.2.2 Widget ManagementBecause the ControlPanel has a �nite amount of space, it is often di�cult to�t all of the desired controls on the CP at the same time. There are severalways to address this problem.Tabs One way is to use the multiple panels available on the CP. Groupingsets of related controls onto di�erent panels alleviates some of the congestionon a single panel and makes it easier to �nd a desired control. A row of tabsis displayed across the top of the CP, each with a label that describes whatthe set of controls on that panel does, thereby enabling the user to switchbetween panels easily. If there is not enough room for all of the tabs to �tacross the top of the CP, the last tab becomes a pop-up list that shows all ofthe available panels. When the user selects the desired panel, its tab is placedat the center of the row of tabs, and as many of the adjacent tabs as will �tare also displayed.FunctionGrouping Another way to free up space on a given panel is to usea group of buttons to select what the other widgets are used to control. For



6 Bresnahan, Insley, and Papkaexample, in an application in which a group of sliders are used to manipulatethe parameters of a color lookup table, there may be a slider for the red,green, blue, and transparency components of the color. For each of thosecomponents, the user may want to alter the center, width, and amplitude ofa sine curve that is used to calculate the lookup table. Rather than havingtwelve sliders on the panel simultaneously, the user could have four sliders,one for each color component, and three buttons (which take up considerablyless space) that could be used to select the particular aspect of the sine curvethat the sliders are currently being used to control.Similarly, users often want to use the joystick on the wand to controldi�erent aspects of the visualization. For instance, when visualizing a volumeof data, one may want to adjust the size, position, or orientation of thevolume. One may also want to use the wand to navigate to a di�erent positionin order to view the data from a new perspective. Buttons on the CP workwell: they may be used to select the particular values being controlled by thewand's joystick.2.3 Lessons LearnedIn using the ControlPanel for several di�erent applications and continue todevelop it, we've observed that it has many strengths and weaknesses. Wehave received primarily positive feedback about the usability of the CP. Oneuser commented that it was big and clunky, but that's what he liked aboutit; it made everything easy to �nd. In many cases the CP is quite e�ectivein helping to organize the controls by keeping them all centrally locatedand by forcing users to group controls according to their function. Becauseof the CP's limited space, however, it was often di�cult to �t all of therelated controls on the same panel. Some users solved this problem by puttingcontrols in multiple places for easier access.One of our main observations is that the ControlPanel is better suited forsome display devices than others. It works quite well on the ImmersaDesk, forwhich it was originally designed. It sits along the bottom edge of the screenand is easily accessible. Since the Idesk is a single-screen device, the userdoesn't physically move around very much. He may take a step in any direc-tion, but he remains in the same general location, keeping the CP comfortablyin front of him. In the CAVE, however, the ControlPanel is less convenient.For one thing, the controls often get obscured by the data being displayedon the three walls and the oor. For another, since the CAVE|a ten-footcube|allows the user to move around a lot, the user may �nd himself infront of the ControlPanel, where he can no longer reach its controls. Further,since the CAVE often has several observers in it at once, the ControlPanelcan be obscured by one of the other people in the space.



Interacting with Scienti�c Visualizations 72.4 Future WorkThe ControlPanel was intended to be a generic reusable toolkit that appli-cation developers could easily customize and drop into their applications. Afew developers have succeeded in doing just that, but there is much room forimprovement in this area. Also, just as the visible cues are important userfeedback, so are audible cues. One possible future direction is to experimentwith adding sounds that indicate user interactions with the system.3 Box-in-BoxOne of the goals of visualization is to enable users to gain insight into theirdata. Today's simulations are generating ever increasing amounts of data,making the task of visualizing the data even more challenging. The largeramounts of data can cause a visualization that used to be interactive to slowto a snail's pace. The larger amounts of data can also overwhelm the user.The box-in-box (BIB) tool was designed to address these problems.The BIB (see Figure 3) provides simple feedback to users on where theyare in their dataset and a reference point to how much of the dataset as awhole they are looking at. The BIB consists of a box within a box. The outerbox represents the dataset as a whole. The inner box represents the subsetof data the user is currently viewing, and indicates where within the globaldata space the subset is located. This tool thus provides users with a globalcontext of the dataset size with respect to the size of the subset of data beingused.
Fig. 3. Example of Box-in-Box tool selecting a subset of data to be volume rendered.



8 Bresnahan, Insley, and Papka3.1 InteractionA user can interact with both the inner box and the outer box in an intuitivemanner: the intersection of the wand ray and a button press are all thatis required to use the BIB. Selection of the outer box allows the tool to bemoved within the virtual environment, allowing the user to place the tool in aconvenient location and out of the way of the visualization results. Interactionwith the inner box happens in two ways. On the one hand, a small box inthe lower left-hand corner can be selected to resize the inner box, and in turndetermine which data is used in the visualization. On the other hand, theinner box can be selected and moved within the outer box. Thus, the usercan navigate the global dataspace while keeping the visible data down to amanageable state, be it for responsive interaction rates or for compresehsion.3.2 Lessons LearnedBIB was originally designed to be used with molecular visualization of struc-tures constructed from millions of atoms. The large number of structuresmade visualization both slow and overloaded with information. The BIB al-lowed the user to select regions of interest within the dataset; and, in com-bination with a sampling selection programmed to the wand's joystick, theuser was able to explore the dataset without a loss of interaction.Since its original use, the BIB has been used to select regions of interestwithin volumetric datasets, passing the selected data to volume-renderingtools for visualization within the CAVE.The BIB generally has been well received. On the positive side, it providesa rather straightforward approach to navigation and management of datasets,and most users have been able to grasp the interface relatively quickly.On the negative side, however, the BIB is somewhat di�cult to use withinthe CAVE simulator, but this is more a problem of interacting with 3D toolswith a 2D device. Another criticism of the BIB involves the alignment of theinner box to the outer box: users would like to be able to select a region ofthe data that is not axis aligned to the outer box.3.3 Future WorkAddressing the alignment of the inner box to the outer box is one of thehighest priorities on our future work list. This should be rather straightfor-ward because the BIB works on the data spatially. The challenge, however,is handing o� the newly selected data to the visualization tool of choice andensuring that that tool can handle the data. We would also like to see the BIBused with a greater variety of applications and application areas. Feedbackfrom a larger community of users will help steer where future developmenton the tool goes.



Interacting with Scienti�c Visualizations 94 Shared Controls - For Remote and Collaborative UseIt is often desirable for several people to share the same visualization of sci-enti�c data at the same time. By having a simultaneous view of the samedataset, researchers can exchange ideas more easily. Collaborative visual-ization also allows a variety of people with di�erent expertise to study theresults, thereby yielding more insight than a single person could in the sameamount of time.We believe that in addition to seeing the data collaboratively, peopleshould be able to control the visualization collaboratively. Speci�cally, eachparticipating member should have a view of the data and a means to controlthe visualization parameters (such as position and orientation). However, itis not necessary or even desirable that each participant have the same typeof display capabilities or the same look and feel to the control widgets usedto manipulate the visualization.For example, it should be possible to have a collaboration in which oneof the users was using an ImmersaDesk and the other participant a CAVE.All they should need to share is the same state information that controls therendering process. The program running in the CAVE knows how to rendera dataset in its environment, just as the program running on the Idesk knowshow to render to its display. If a user rotates a volume ninety degrees aroundthe x-axis, both programs need to know that the data has been rotated sothat they can display it correctly, but the Idesk need not know that the CAVEhas rendered part of it on the front wall and part on the oor.Further, it should not be necessary to have all the control widgets in thecollaboration share any qualities except state information. An valuator maybe used to share color ranges from 0 to 255; but that valuator could be visuallydisplayed as a vertical slider, a horizontal slider, or even a textbox where thevalue is entered. The look and feel of the widget should be irrelevant to thecollaboration. The mode of input/interaction should �t the environment thecollaborator is working in.To this end, we developed the CIF Shared State library, written on top ofNexus, which is the communication component of Globus [5,4]. The librarypropagates state information to all processes participating in the collabora-tion [1]. Figure 4 shows a diagram of a two-user collaborative session withone user in a CAVE and one user using a desktop application.Sun has a Java product similar to the CIF Shared State library, called theShared Data Toolkit [2]. Since we needed access to high-end graphics hard-ware, however, Java was not a complete solution for us. Instead, we created across-platform library in both C++ and Java, and they are completely com-patible with each other. In this way, we maximized the amount of graphicsresources we could use.The CIF Shared State library ensures that user-de�ned states are keptsynchronized. A user-de�ned state can consist of arrays of primitive datatypes or can comprise combinations of di�erent primitive data types. Such



10 Bresnahan, Insley, and Papkathings as rotation, translation, color mappings, and widget states were syn-chronized via these states.
Fig. 4. Diagram of how CIF Shared State library �ts into an application for col-laborative or remote use.Using the CIF Shared State library, we created an application that al-lowed the collaborative visualization of a volume-rendered dataset (See Figure5). The application had a control panel (See Section 2) with several sharedwidgets, including buttons, sliders, and checkboxes. CIF Shared State wasused to synchronize these widgets. In the case of a shared checkbox, a sharedBoolean state was used. When the user checked the visual checkbox, theshared Boolean state was set to true. The CIF Shared State library thenpropagated this information to all programs participating in the collabora-tion by way of an event. When a program received an event telling it that theshared Boolean state was changed to true, it then set its visual representationof the checkbox to true. Similar shared states were used to share informationabout where the volume was in three-dimensional space and how to visualizeit.4.1 Lessons LearnedBy decoupling the visual component from the state information and leav-ing the display entirely up to the rendering program, we were able to cre-ate a collaborative environment that could run on several di�erent displaytechnologies. Further, we were able to remotely control a rendering program.Since the shared-state information was in no way visual, we were able to haveone process do nothing but render frames on a high-end graphics machine(Oynx II In�nite Reality Monster). That process provided no user interfacefor control. Instead, it was controlled by a two-dimensional Java GUI control



Interacting with Scienti�c Visualizations 11
Fig. 5. Example of a collaborative application that shows both the immersive ap-plication interface and the desktop java based interface.panel in a separate process running on a separate machine. The Java con-trol panel was run on a machine with essentially no graphics abilities. Theremotely rendered frames were then streamed to the machine controlling thevisualization. We were therefore able to do reasonable high-end visualizationon desktop hardware.4.2 Future WorkIn the CIF Shared State library, total order was achieved by having one ofthe programs in the collaboration elect itself a server. The order in whichmessages got to this server determined the order in which all other clientswould see messages. This left the situation that the last message to the serverdetermined the value of the state. Unfortunately, when multiple users triedto set the state at the same time, the client with the slowest connectionto the server would make the determination. In the future we would liketo implement oor control policies so that control could be arbitrated morefairly.5 ConclusionOur experience in building scienti�c visualization applications for immer-sive environments has demonstrated the need for user interfaces to allow formaximumexibility in the application. The user interface plays a major rolein determining whether an application will be useful. Experience has alsoled us to conclude that much more research, development, and �eld testingare needed on user interfaces with immersive environments. Borrowing fromthe desktop environment provides a start, but it is unnatural for a three-dimensional space and doesn't fully exploit the bene�ts of the environment.We have also learned that a given user interface solution for one immersivedisplay device is not always the right answer for another. Finally, we believe



12 Bresnahan, Insley, and Papkathat group analysis of data will become increasingly popular and that userinterfaces will have to meet the increasing demands of collaboration modes.AcknowledgmentWe gratefully acknowledge the members of the Distributed Systems Labo-ratory and the Futures Laboratory within the Mathematics and ComputerScience Division of Argonne National Laboratory for help and input. Thiswork was supported by the Mathematical, Information, and ComputationalSciences Division subprogram of the O�ce of Advanced Scienti�c Comput-ing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.Globus research and development is supported by DARPA, DOE, and NSF.References1. Bresnahan, J., Foster, I., Insley, J., Toonen, B., Tuecke, S.: Communication Ser-vices for Advanced Network Applications, Proceedings of the InternationalConference on Parallel and Distributed Processing Techniques andApplications 1999, Volume IV, 1999, pp. 1861{1867.2. Burridge, R.: Java Shared Data Toolkit User Guide, Sun Microsystems UserGuide, Version 1.4, June 1998.3. Cruz-Neira, C., Sandin, D. J., DeFanti, T. A.: Surround-Screen Projection-BasedVirtual Reality: The Design and Implementation of the CAVE,Proceedings ofSIGGRAPH '93 Annual Conference, 1993, pp. 135{142.4. Foster, I., Kesselman, C., Tuecke, S.: The Nexus Task-Parallel Runtime System,Proceedinggs of the First International Workshop on Parallel Pro-cessing, 1994, pp. 457{462.5. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit, In-ternational Journal Supercomputer Applications, 11(2), 1997, pp. 115{128.


