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Abstract

Segmentation of features is often a necessary step
in the analysis of volumetric data. We have devel-
oped a simple technique for extracting voids from a
irregular volumetric data sets. In this work we look at
extracting pores from soil aggregates. First we iden-
tify a threshold that gives good separability of the
object from the background. We then segment the
object, and perform connected components analysis
on the pores within the object. Using our technique
pores that break break the surface can be segmented
along with pores completely contained in the initially
segmented object.

1 Introduction

The objective of this research is to segment the
pores, or voids, from an object imaged in three di-
mensions by x-ray microtomography. One area of ap-
plication is soil science. The pores between particle ar-
rangements within soil aggregates modify convective-
dispersive flow of inorganics, organics, and radionu-
cleotides through soil. The flow and uptake of ma-
terials through these pores within aggregates deter-
mine how well plants will grow [1]. Techniques such as
Marching Cubes [2] can be used to extract the surface
of the pores, but do not handle surface-breaking pores.
Surface breaking pores produce concavities in the sur-
face, raising the question of where the pore terminates.
These pores are interesting since they provide informa-
tion about voids in the object rather than the object
itself. We propose a technique that preserves surface
breaking pores, and clearly identifies the location and
termination of individual pores.

2 Experimental Apparatus

We used a rotating microtomographic apparatus to
acquire soil aggregate data which was collected at the
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GSECARS! beamline at the Advanced Photon Source
(APS) at Argonne National Laboratories. The experi-
mental setup is shown in Figure 1. The x-ray source is
a 7 GeV synchrotron, which produces an x-ray beam
by a bending magnet. The appropriate energy was
selected from the white beam using the monochroma-
tor. This microtomographic experiment was run at 20
KeV. Soil aggregates being scanned were positioned in
the beam between the monochromator and the scintil-
later. The camera, a Princeton Instruments Pentamax
with a Kodak 1035 x 1317 CCD, then acquired three
hundred sixty projections of each aggregate onto the
scintillater as the object was rotated. Once all of the
data was collected, a three dimensional volume model
was reconstructed using filtered back projection [3].

3 Algorithm

The input is an n-level volume where n is some
number greater than 1. The volume is assumed to bro-
ken into two broad classes, object and background. It
is assumed that the grey-level distribution is approxi-
mated by a bi-modal Gaussian, Figure 2. We extract
the object from the volume, and then isolate and an-
alyze the voids in the object.

The major steps in the pore extraction algorithm
are given below.

1. Automatic Threshold Determination
2. Extract Aggregate From Background
3. Pore Identification

4. Connected Components [4] on Pores

5. Label Components
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3.1 Automatic Threshold Determination

In order to segment the aggregate from the sur-
rounding air a threshold is used. A global threshold is
used to clip out the entire volume.

The first derivative is computed and used to iden-
tify maximas and minimas in the histogram. The two
largest local maximas are identified. The threshold is
then set to the intensity with the fewest counts be-
tween the maximas. If the actual data is well approx-
imated by the assumption of a bi-modal Gaussian dis-
tribution, then the threshold will be the smallest min-
ima between the maximas, Figure 3.

3.2 Extract Aggregate From Background

The aggregate is extracted from the background in
order to define a boundary for surface breaking pores.
The boundary of the aggregate is determined using a
convex hull on a per slice basis. Areas outside of the
hull are indicated using a sentinel value.

The initial separation of the soil aggregate from the
background is done by thresholding a median filtered
version of the slice. This thresholding produces a bi-
nary image of the aggregate and some noise in the
air around the aggregate. Erosion and dilation opera-
tions are then applied to the binary image to remove
the noise in the air region. A Roberts edge detector is
then applied to the cleaned image. The points from
the edge detector are then used to construct a convex
hull.

Once the hull has been constructed, all points out-
side of the hull are labeled with a sentinel value to
indicate they are not part of the soil aggregate.

The input image is shown in Figure 4a, and the
segmented image is shown in Figure 4b. Note that
there are air spaces around the edges of the aggregate
in the segmented image. These spaces may correspond
to either surface breaking pores or concavities in the
surface of the soil aggregate.

Once all of the slices are processed, they are recom-
bined to generate the segmented soil aggregate vol-
ume.

3.3 Pore Identification

Once the aggregate has been segmented from the
background the pores may be identified via a bandpass
operation. The sentinel value is the smallest value that
can be represented for a given data type. The pores
are those regions whose intensity value is between the
sentinel and threshold values determined for each slice.
A binary image of the pores is generated by setting
all pixels whose intensity is between the sentinel and
threshold to 1, and all other values to 0. In three
dimensions this generates a binary representation of
all pores in the soil aggregate.

Feature | Theoretical | Measured | Error %
Sphere | 4189 4112 1.83
Tube 20944 20277 3.18

Table 1: Sizes of pores in phantom in voxels.

3.4 Pore Labeling

Once the pores have been segmented they are la-
beled for future analysis. Labeling is accomplished
through a three dimensional connected components
analysis. All adjacent voxels that are within a pore are
marked as belonging to the same pore. The resulting
labels then correspond to the order of discovery of the
pores by the connected components algorithm. After
the pores have been identified, volume, diameter, and
other features can be be computed for each pore.

4 Results

We show results on two data sets, Figures 6 and
4. The first data set is a numerical phantom, Figure
6, while the second is a soil aggregate from Kenya,
Figure 4.

The phantom is a sphere with a radius of sixty vox-
els. A ten voxel sphere has been removed from the
phantom as well as a tube with radius ten. Once the
phantom was constructed, normally distributed noise
was added to simulate sensing and reconstruction er-
ror. The histogram for the phantom is shown in Figure
5. A slice of the phantom is shown in Figure 6a. In
Figure 6b the phantom has been segmented from the
background. The extracted pores are shown in Figure
6¢c. The sizes of the detected pores in the phantom
are given in Table 1. The larger error for the tube is
due to the tube breaking the surface of the aggregate,
and the tube’s larger surface area proportional to its
volume.

We have also run our algorithm on a topographic
reconstruction of a soil aggregate from Kenya. An in-
put image is shown in Figure 4a. Note the outer edge
of the soil aggregate is irregular. Figure 4b shows the
slice after the aggregate has been segmented. The
surface breaking pores are now shown. Shown in Fig-
ure 4c are large pores in a soil aggregate from Kenya.
The light areas in the image represent pores in the
soil aggregate, while the black area corresponds to the
actual soil aggregate and surrounding air. All pores
smaller than 2000 voxels were not rendered. The di-
agonal strip across that center of the image is a pore
that goes through the center of the aggregate. The
flat area on the right side of the image is where a sur-
face breaking pore was terminated by our algorithm.
The separated pores on the left side of the image are



relatively small, in the range of 2000 — 3000 voxels.

Shown in Table 2 are the volumes and centroids for
all pores in Figure 4c greater that 2000 voxels. The
very large pores in the Kenya soil aggregate are surface
breaking pores.

5 Concluding Discussions

We are able to extract pores from a volumetric data
set with our algorithm. The algorithm outlined is rela-
tively simple, and is applicable to segmenting objects
where there are no assumptions other than that the
object is separable from the background via thresh-
olding. Future work on this algorithm involves im-
proving the segmentation procedures for the soil ag-
gregate. The convex hull may identify regions on the
surface of the aggregate that do not correspond to ac-
tual pores. Currently being explored is the use on non-
convex hulls, particularly energy minimizing splines.
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Pore
Volume | Centroid Surface Area
989119 | (203.3,243.3,163.4,) | 405078
548577 | (271.2,205.3,359.7,) | 252646
353981 | (466.1,266.5,181.8,) | 114082
221925 | (293.7,351.0,224.9,) | 60956
86243 (371.3,431.5,139.1,) | 38884
62347 (340.8,122.7,152.0,) | 44924
35183 (155.0,407.7,310.6,) | 21698
26259 (473.2,138.2,229.3,) | 14516
25469 (254.5,244.8,211.3,) | 14106
24929 (431.2,317.5,190.1,) | 10656
17677 (408.9,402.8,233.0,) | 14208
14013 (256.9,240.5,273.6,) | 13878
10968 (238.9,452.2,139.8,) | 10600
9382 (266.8,178.0,211.4,) | 4918
7792 (148.8,430.0,167.9,) | 4804
6465 (404.2,279.5,220.5,) | 6054
5163 (207.8,196.8,323.6,) | 3678
5085 (368.7,92.3,362.4,) | 5954
5003 (263.1,264.8,249.8,) | 5300
4540 (178.5,360.8,348.1,) | 3584
4447 (115.9,177.7,351.6,) | 4570
4363 (247.2,128.5,201.9,) | 4696
3541 (274.3,283.1,166.4,) | 5148
3422 (92.8,360.1,310.6,) | 2782
3092 (327.0,327.9,126.4,) | 2606
2880 (390.4,356.7,216.8,) | 2916
2652 (254.7,120.2,286.3,) | 2838
2596 (433.1,157.0,192.1,) | 2200
2553 (163.3,111.1,302.4,) | 2668
2533 (450.7,122.6,298.7,) | 2908
2400 (412.4,338.2,288.8,) | 4074
2248 (125.4,269.3,402.9,) | 3326
2208 (301.0,218.4,384.5,) | 1790
2198 (340.4,231.7,278.8,) | 1828
2124 (348.1,417.4,223.0,) | 2078
2111 (387.8,58.8,302.2,) | 2510
2035 (130.9,326.1,224.1,) | 1354

Table 2: Pore features from Kenya soil aggregate.
Each voxel is approximately 131 cubic microns
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Figure 1: Microtomographic Experimental Setup
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Histogram of Kenya Aggregate
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Figure 3: Real Data
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Figure 4: Aggregate Data



Histogram of Phantom
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Figure 5: Phantom Histogram
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