
Preprint ANL/MCS-P792-0200, February 2000Mathematics and Computer Science DivisionArgonne National LaboratoryJean-Pierre Goux � Je� Linderoth? �Michael YoderMetacomputing and the Master-Worker Paradigm??February 9, 2000Abstract. The goal of our work is to create a tool that easily allows users to distribute large scienti�c compu-tations in metacomputing environments. To achieve this goal, a number of di�cult implementation issues mustbe addressed, which may explain the relative lack of complete tools addressing this purpose. Our tool relies onthe simple master worker paradigm, and we show that this paradigm is nicely suited for performing many of therequisite tasks of our metacomputing tool. We describe an implementation and present a case study showing theparadigm's e�ectiveness in solving large scienti�c computing problems.1. IntroductionAs a result of decreasing computer hardware costs and the increasing connectivity between com-puters, typical users now have access to more computational resources than ever before. Whenlarge sets of resources are connected by local or wide area networks or the Internet, they canbe assembled into \metacomputers" and used to solve large and complex scienti�c computingproblems.Before users can take advantage of metacomputers, however, there are numerous issues thatmust be confronted. To bring together computational resources to attack a single problem, ex-isting algorithms must be made to work in a distributed fashion. The problem of distributing acomputation has been studied and is understood in the context of traditional computing envi-ronments, but less is known about how to e�ectively distribute computations in a metacomput-ing environment. Projects such as Condor [LBRT97], Charlotte [BKKW99], Legion [GFKH99],SNIPE [FMD99], MOL [RBD+97], and Globus [FK97] all provide basic software infrastructurefor supporting metacomputing. For application programmers, however, using this infrastructureto build a metacomputing application can be quite di�cult. The goal of our work, then, is toJean-Pierre Goux: Department of Electrical and Computer Engineering, Northwestern University, 2145 SheridanRoad, Evanston, IL 60208, goux@ece.nwu.eduJe� Linderoth: Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South CassAvenue, Argonne, Illinois 60439 linderoth@mcs.anl.govMichael Yoder: Computer Sciences Department, University of Wisconsin - Madison, 1210 West Dayton Street,Madison, WI 53706, yoderme@cs.wisc.eduMathematics Subject Classi�cation (1991): ??, ??, ??? Research of this author supported by the Mathematical, Information, and Computational Sciences Divisionsubprogramof the O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy, under ContractW-31-109-Eng-38.?? This work was supported in part by Grant No. CDA-9726385 from the National Science Foundation.

2 Jean-Pierre Goux et al.develop a complete, easy-to-use tool whereby users can distribute large, diverse scienti�c compu-tations in a metacomputing environment. The goals of this project are quite similar to that ofthe EveryWare toolkit [WBK+99].The primary purpose of this paper is to show that the implementation di�culties encounteredwhen distributing computations on a metacomputer can easily be resolved through the use ofthe master-worker paradigm. Furthermore, we describe our implementation of a master-workerframework that enables users quickly and easily to build master-worker applications that will runon metacomputing platforms.The paper is organized as follows. In Section 2, we describe the distinguishing characteris-tics of our target computing environment, we mention features of an ideal parallel metacom-puting tool for distributing large scienti�c computations, and we discuss the degree to whichthe master-worker paradigm can achieve this ideal. Section 3.2 describes the framework fromwhich metacomputing-based, master-worker applications can be easily built. In Section 4, wedemonstrate how to exploit algorithm characteristics in order to build e�cient master-workerimplementations. Section 5 presents a case study showing the e�ectiveness of the master-workerapproach in solving a complex mathematical optimization problem. We conclude by giving somefuture directions of research.2. An E�ective Paradigm for MetacomputingThe term metacomputing is generally used to denote the idea of bringing together diverse, het-erogeneous, possibly geographically distributed computing environments in a seamless fashionin order to attack large-scale computing problems. A metacomputer di�ers from a traditionalparallel computer in a number of ways, but two characteristics are important to this discussion:{ Dynamic availability. The quantity of resources available and the amount of computationdelivered by a single resource may vary over time. Participating resources may also disappearwithout notice.{ Heterogeneity. Resources may have varying physical characteristics, such as architecture,operating system, amount of memory, and processor speed.2.1. A Parallel Metacomputing ToolThe dynamic environment of a metacomputing system raises the need for resource managementsoftware that detects when processors are available, determines when they leave the computa-tion, and matches jobs to available processors. Parallelizing a computation involves breakingthe computation into elementary tasks, scheduling these tasks, and making the results of thetasks available. Therefore, to enable parallel applications to run on metacomputers, we require atool that performs resource management, facilitates the decomposition of the problem into man-ageable computational subtasks, and enables the exchange of information between processors.Ideally, this parallel metacomputing tool should have the following characteristics:(I) Programmability. Users should easily be able to take an existing application code andinterface it with the system.

Metacomputing and the Master-Worker Paradigm 3(II) Adaptability. The system should transparently (to the user) adapt to the dynamic and het-erogeneous execution environment. Thus, new resources of varying types should be seamlesslyintegrated into the computation at any point.(III) Reliability. The system should perform the correct computations in the presence of proces-sors failing.(IV) E�ciency. The system should be e�ective in the high-throughput sense [LR99]. That is, theresources should do useful work over long time periods.In a heterogeneous and unreliable computing environment, building an e�cient high-throughputsystem is a more realistic goal than aiming for traditional high-performance computing metricssuch as FLOP rates. The focus of high-throughput computing is on the amount of useful workdone over long time spans. Since the problems that we target to solve will require days or weeksof computing time, it makes sense to build a system that is e�ective on this time scale.2.2. The Master-Worker ParadigmIn this section, we address the e�ectiveness of the master-worker paradigm in light of its abilityto meet each of the goals of our parallel metacomputing system.The master-worker paradigm is very easy to program. All algorithm control is done by oneprocessor|the master. The user need not be burdened with the di�cult issue of how to dis-tribute algorithm control information to the various processors. Moreover, the typical parallelprogramming hurdles of load balancing and termination detection are circumvented. Having acentral point of control facilitates the collection of a job's statistics. Furthermore, a surpris-ing number of sequential approaches to large-scale problems can be mapped naturally to themaster-worker paradigm. Tree search algorithms [KRR88], genetic algorithms [CP98], parameteranalysis for engineering design [ASGH95], and Monte Carlo simulations [BRL99] are just a fewexamples of natural master-worker computations. All these features increase a system's ease ofuse, accomplishing goal (I) of our parallel metacomputing system.Programs with centralized control are easily able to adapt to a dynamic and heterogeneouscomputing environment. If additional processors become available during the course of the com-putation, they simply become workers and are given portions of the computation to perform.Having centralized control also eases the burden of adapting to a heterogeneous environment,since only the master need be concerned with the matchmaking process of assigning tasks toresources making the best use of the resource characteristics. Thus, we are able to accomplishgoal (II) for our parallel metacomputing tool.Using the master-worker paradigm, we can easily achieve goal (III) of our metacomputing tooland ensure that the computation is fault-tolerant. If a worker fails and is executing a portionof the computation, the master simply reschedules that portion of the computation. A smalldi�culty is that the basic master-worker paradigm is not robust in the presence of failure of themaster. To overcome this liability, the state of the computation can be occasionally checkpointed.This is a simple matter, since all state information is located in the master process.Attaining e�ciency of our parallel metacomputing tool (goal (IV)) is not completely straight-forward, but the master-worker paradigm can be used to build e�cient implementations in thehigh-throughput sense. In this context, there are two main roadblocks to e�ciency: scalabilityand task dependence. The master-worker paradigm is not scalable, since as the number of workers

4 Jean-Pierre Goux et al.increases, there may be a bottleneck at the master, because it attempts to deal with the manyrequests from the workers. By task dependence, we mean the degree to which the start of onetask computation depends on the completion of other task computations. A high degree of taskdependence can greatly decrease e�ciency in metacomputing environments, since processing andcommunication times of tasks and results are highly variable. The combination of this variabilityand task dependence can result in a large number of idle processors that are waiting on the com-pletion of a small number of tasks. To overcome the potential problems with the master-workerparadigm in a metacomputing environment, it may be necessary to exploit certain characteristicsof the parallel algorithm. These characteristics may be inherent in the algorithm, or the algorithmmay be modi�ed in order to highlight these characteristics.One algorithm characteristic that can be exploited is dynamic grain size, which refers to theability to break the computation into portions of work of variable size. We can use a dynamicgrain size in order to increase a program's scalability. For example, in a tree search, the mastercan assign larger portions of the tree to each processor, reducing the rate at which the processorsmake work requests. However, this contention reduction technique comes at the expense of a lossin algorithm control, since workers now process for longer amounts of time without any feedbackon whether their search is useful. Section 4.2 gives a case study showing the importance of thisalgorithm characteristic.A second algorithm characteristic that can be exploited is an incremental data requirement,referring to the situation in which a large amount of data is required to initialize a workerprocess, while each individual task can be de�ned by a relatively small amount of additionaldata. Scalability problems at the master can stem from the large amount of network tra�cto the workers. Only passing the incremental data required for the task reduces the necessarybandwidth and increases the scalability.A �nal algorithm characteristic that can be exploited is a weak synchronization requirement,or a low task dependence, meaning that the ability to execute a task does not depend on thecompletion of a large number of other tasks. In a cutting plane algorithm for stochastic pro-gramming [KW94], each iteration consists of a number of tasks. However, the correctness of thealgorithm does not depend on all of the tasks completing before proceeding to the next iteration.The synchronization requirement can be reduced, and the e�ciency increased, by starting thenext iteration after only a certain number of the previous iteration's tasks have completed. Thesigni�cance of exploiting this algorithm characteristic will be demonstrated in Section 4.1.Note that increasing the e�ciency of the algorithm by increasing the grain size or by reducingthe synchronization requirement may actually worsen the basic algorithm;more tree nodes mightbe explored or more iterations required. This algorithm deterioration is made in the hope ofobtaining a higher parallel e�ciency and lower overall computation time. Users of metacomputersand the master-worker paradigm should be keenly aware of this tradeo�, however.One �nal point can be made in the case where the task dependencies of a computation canbe grouped into \work cycles", where the whole algorithm is blocked until a certain set of tasksis completed. As noted before, ideally the parallel algorithm would not require this much taskdependence. If work cycles are unavoidable, and tasks in a work cycle are not of equal size, or theprocessors performing the tasks are not of equal speed, then many processors may be left idle.An advantage of using the master-worker paradigm in this case is that the master can attemptto balance the work cycles by varying the size of the tasks sent to various processors. Pruyne andLivny [PL96] have made a similar observation.

Metacomputing and the Master-Worker Paradigm 53. A Software FrameworkWe have developed a software framework that meets the goals of programmability, adaptability,reliability, and e�ciency outlined in Section 2.1. Based on the master-worker paradigm, it iscalled MW. In this section, we briey discuss the resource management system used by MW(Section 3.1) and then describe the abstract base classes of MW (Section 3.2).3.1. Resource Scheduling and Message PassingMW uses Condor [LBRT97] as its resource management system. Condor di�ers from many otherresource management systems in that it harnesses nondedicated computing resources that wouldotherwise go wasted. The Condor system matches user-submitted jobs with idle machines in its\pool". Speci�cally, MW uses Condor's support for the popular PVM software package [PL96].PVM provides the necessary message-passing interface between the master and workers. Condor'sresource management decisions are passed to the master process through special PVM messages.The master is held on a dedicated processor, and the workers are nondedicated resources fromthe Condor pool. These relationship are depicted in Figure 1.

Fig. 1. Relationship between the MWDriver, Condor, and PVM.

6 Jean-Pierre Goux et al.Although we build our framework from these speci�c tools, the ideas presented in the pre-ceding section are general enough to work with other scheduling and message-passing software.We are investigating porting our framework to other systems.3.2. MWMW is a set of C++ abstract base classes. These classes hide the di�cult metacomputing issues,allowing for rapid development of sophisticated scienti�c computing applications. In the rest ofthis section, we describe the design of MW and how to build an application using MW.Three abstract base classes must be reimplemented. The MWDriver class corresponds to themaster process and contains the control center for distributing tasks to workers. The MWTaskclass describes the inputs and outputs|the data and results|that are associated with a singleunit of work. The MWWorker class contains code to initialize a worker process and to executeany tasks that are sent to it by the master.3.2.1. MWDriver To create the MWDriver|the master process|the user need only implementfour pure virtual functions:{ get userinfo(){ Processes arguments and does basic setup. This is called once when themaster is started up.{ setup initial tasks(){ Returns a set of tasks for the computation to begin work on. Thisis executed once at the beginning.{ pack worker init data(){ Sends some initial data to a worker (if necessary) upon startup.{ act on completed task(){ Is called every time a task �nishes. Some actions that the usercould take include adding more tasks or making calculations based on the result of the task.The MWDriver manages a set of MWTasks and a set of MWWorkers to execute those tasks.The MWDriver base class handles workers joining and leaving the computation, assigns tasksto appropriate workers, and rematches running tasks when workers are lost. All this complex-ity is hidden from the application programmer. Further, the MWDriver o�ers more advancedfunctionality, as explained in Section 3.2.4.3.2.2. MWTask The MWTask is the abstraction of one unit of work. The class holds both thedata describing that task and the results computed by the worker. The derived task class mustalso implement functions for sending and receiving its data between the master and worker. Thenames of these functions are self-explanatory: pack work(), unpack work(), pack results(),and unpack results().3.2.3. MWWorker The MWWorker class is the core of the worker executable. Two pure virtualfunctions must be implemented:{ unpack init data(){ Unpacks the initialization information passed in the MWDriver'spack worker init data().{ execute task(){ Given a task, computes the results.

Metacomputing and the Master-Worker Paradigm 7After doing some basic initialization, the MWWorker sits in a simple loop. It asks the masterfor a task, computes the results, reports the results back, and waits for another task. The loop�nishes when the master asks the worker to end. It is an easy matter to bring in other libraries,such as highly optimized FORTRAN routines, to the worker. They can be linked with the C++code, and called by the execute task() function.3.2.4. Other MWDriver Features To make computations fully reliable, MWDriver o�ers fea-tures to checkpoint the state of the computation on a user-de�ned frequency. MWDriver canrestart from that state after a crash of the master. To enable checkpointing, the user must imple-ment functions for writing and reading the state contained in its application's master and tasks.This feature can be used to perform rudimentary \computational steering" if the user stops thecomputation by hand, modi�es the checkpoint �le or executable, and then restarts from thatcheckpoint.To help the user make the best use of available resources, MWDriver has abstract mechanismsto sort the task pool according to user-supplied priorities. MWDriver also maintains informationabout each participating worker. This information can be used to develop advanced schedulingpolicies that match tasks with the best-suited workers.By using the set target num workers() function, the user can set the number of workers de-sired for a computation. This function can be called as needed to change the target size of the poolof workers. To deal with heterogeneous resources, MWDriver currently uses the multi-architecturefeatures of Condor-PVM. The user compiles the workers for the targeted architectures, and theMWDriver selects the correct executable as new workers enter the computation.4. E�ciency ConsiderationsThis section contains two brief experiments showing the impact that varying algorithmic char-acteristics can have on the e�ectiveness of master-worker algorithms running in a metacomput-ing environment. MW has been used to build master-worker implementations of parallel algo-rithms for solving mathematical optimization problems, and we use these implementations forthe purposes of our study. The experiments are not meant to be comprehensive, only to give thereader a feel for the issues that application programmers must consider when building e�cientmaster-worker applications for metacomputing environments. The computing environment usedfor these studies was the University of Wisconsin Condor pool, consisting of over 350 heteroge-neous, nondedicated processors.4.1. Task DependenceThe �rst experiment shows the potential improvements resulting from reducing task dependencein the parallel algorithm. As mentioned in Section 2.2, each iteration of the cutting plane methodfor stochastic programming consists of a number of tasks that must be completed; however, alltasks need not complete before beginning the next iteration. The degree of task dependence canbe varied in this algorithm by changing the percentage of tasks that must complete successfullybefore starting a new iteration. A parallel algorithm that exploits this weak synchronizationrequirement was built using MW. Figure 2 shows the e�ciency of the parallel code, and Figure 3

8 Jean-Pierre Goux et al.shows the number of iterations required for convergence for various values of the task dependencepercentage. E�ciency is de�ned as the ratio of total time that workers process tasks to thetotal time allocated to the workers by the resource management system. Each test has beenrepeated multiple times in an attempt to smooth the randomness inherent to metacomputingcomputations, and the average and extreme values are reported.
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ffi

ci
en

cy

Task Dependence CoefficientFig. 2. E�ect of Task Dependence on E�ciencyAs expected, lowering the task dependence increases the algorithm's e�ciency. The improvede�ciency comes at the expense of having to perform more iterations.4.2. Grain SizeThe second experiment shows the e�ect of varying the grain size of the computation. The branch-and-bound algorithm is a tree search method. The grain size of the worker tasks is controlled byspecifying the maximumnumber of nodes that a worker is allowed to visit before reporting to themaster. Using MW, a parallel branch-and-bound algorithm for the quadratic assignment problem(QAP) was implemented. The QAP is a di�cult combinatorial optimization problem, the aimof which is to minimize the (quadratic) assignment cost of n given facilities to n given locations.Di�erent grain sizes have been tried on a size n = 16 problem. Average and extreme results forthe e�ciency and the number of nodes explored in the search are reported as a function of thegrain size in Figures 4 and 5.The e�ective use of the workers increases with the grain size but at the price of a largertotal number of nodes explored. In order to minimize the overall run time for this application, atrade-o� must be found between a high e�ciency and a small number of nodes explored.

Metacomputing and the Master-Worker Paradigm 9
85

90

95

100

105

110

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ite
ra

tio
ns

Task Dependence CoefficientFig. 3. E�ect of Task Dependence on Iteration Count
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

E
ffi

ci
en

cy

Grain Size (Nodes)Fig. 4. E�ect of Grain Size on E�ciency

10 Jean-Pierre Goux et al.
120000

130000

140000

150000

160000

170000

180000

190000

1 10 100 1000

T
ot

al
 N

od
es

Grain Size (Nodes)Fig. 5. E�ect of Grain Size on Search Size5. Case StudyIn this section, a large case study is presented that demonstrates the power and usefulness of theMW software tool for solving computational problems requiring considerable resources over longtime spans. Despite the simplicity with which the QAP is stated, it is still a computationallyhard task to solve modest-size problems, say of size n � 20 [BKR97]. For instance, the solutionof a size n = 22 problem (NUG22) on a single fast workstation requires 11 days of computationwith a sequential version of the algorithm [AB99].With MW, a parallel version of the sequential code was rapidly prototyped. Based on insightgained from the results of the preceding experiment, we chose a grain size of 1000 nodes maximumper task. The code solved NUG22 in around 11 hours on idle machines from the University ofWisconsin Condor pool. Figure 6 shows the evolution of the number of workers during thecomputations. At 4:50 AM the master machine was shut down for a system update, but the jobwas automatically restarted from the checkpoint �le as explained in Section 3.2.4.Participating in this run were 116 machines of type Intel/Solaris and 39 of type Intel/Solaris.The RAM installed on these machines ranged from 32 MB to 512 MB and the CPU speed rangedfrom 50 to 446 MIPS. MW-based solvers can truly harness the power of a heterogeneous collectionof computers. The overall e�ciency obtained by this run was over 80%.The case study demonstrates the power of metacomputing to solve highly complex problems,requiring tremendous computational power that is otherwise far beyond what practitioners cana�ord. This has been made possible and easy by using the MW framework. These results showthat our goals of programmability, adaptability, reliability, and e�ciency can be achieved byusing MW.

Metacomputing and the Master-Worker Paradigm 11
0

10

20

30

40

50

60

70

80

90

18:00 20:00 22:00 0:00 2:00 4:00 6:00 8:00

N
um

be
r

of
 M

ac
hi

ne
s

Clock TimeFig. 6. Number of Workers Involved in the Computation6. Conclusions and Future DirectionsThe concepts in this paper can help bridge the gap between existing metacomputing infrastruc-ture and the solution of di�cult real-world problems. Master-worker programs are simple for theapplication programmer, they can deftly handle an environment where processors are unreliable,and they can easily incorporate heterogeneous resources into one computation.Future work includes addressing the limitations of the master-worker paradigm. Issues such asscalability can be addressed in a number of ways. Di�erent paradigms, such as having a hierarchyof masters that control the computation, or the gossip-based distributed protocol described byIamnitchi [Iam99] should be explored. MW will be tested on geographically diverse resourcepools, where network latency issues enter the picture. In addition, MW will be extended to usedi�erent resource management software.The MW code and documentation can be found athttp://www.cs.wisc.edu/condor/mwAcknowledgmentsThe authors thank Miron Livny, Ian Foster, Steve Wright, Jorge Nocedal, and Gail Pieper fordiscussions and comments that led to an improved presentation.

12 Metacomputing paradigmReferences[AB99] K. M. Anstreicher and N. Brixius. A new bound for the quadratic assignment problembased on convexquadratic programming. Technical report, Department of Management Sciences, University of Iowa,1999. Available from http://www.biz.uiowa.edu/faculty/anstreicher/qapqp.ps.[ASGH95] D. Abramson,R. Sosic, J. Giddy, and B. Hall. Nimrod:A tool for performingparameterised simulationsusing distributedworkstations. In Symposium on High Performance Distributed Computing, Virginia,August 1995. Available from http://www.dgs.monash.edu.au/~davida/papers/nimrod.ps.Z.[BKKW99] A. Baratloo, M. Karaul, Z. Kedem, and P. Wycko�. Charlotte: Metacomputing on the Web. Inter-national Journal on Future Generation Computer Systems, 15:559{570, 1999.[BKR97] R. E. Burkard, S. E. Karisch, and F. Rendl. QAPLIB { A Quadratic Assignment Problem library.Journal of Global Optimization, 10:391{403, 1997.[BRL99] J. Basney, R. Raman, and M. Livny. High throughputMonte Carlo. In Proceedings of the Ninth SIAMConference on Parallel Processing for Scienti�c Computing, San Antonio, Texas, 1999.[CP98] E. Cantu-Paz. Designing e�cient master-slave parallel genetic algorithms. In J. Koza, W. Banzhaf,K. Chellapilla, K. Deb, M. Dorigo, D. Fogel, M. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors,Genetic Programming: Proceedings of the Third Annual Conference, San Francisco, 1998. MorganKaufmann.[FK97] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl. J. SupercomputerApplications, 1997. Available as ftp://ftp.globus.org/pub/globus/papers/globus.ps.gz.[FMD99] G. Fagg, K. Moore, and J. Dongarra. Scalablenetworked informationprocessing environment (SNIPE).International Journal on Future Generation Computer Systems, 15:595{605, 1999.[GFKH99] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey. Legion: An operating system for wide-areacomputing. Available as http://legion.virginia.edu/papers/CS-99-12.ps.Z, 1999.[Iam99] A. Iamnitchi. Branch and bound in grid environments. Master's thesis, Computer ScienceDepartment,University of Chicago, Chicago, IL, 1999.[KRR88] V. Kumar, K. Ramesh, and V. N. Rao. Parallel best-�rst search of state-space graphs: A summaryof results. In Proceedings of the 1988 National Conference on Arti�cial Intelligence, pages 122{127,August 1988.[KW94] P. Kall and S. Wallace. Stochastic Programming. John Wiley and Sons, New York, 1994.[LBRT97] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for high throughput computing.SPEEDUP, 11, 1997. Available from http://www.cs.wisc.edu/condor/doc/htc mech.ps.[LR99] M. Livny and R. Raman. High-throughput resource management. In Ian Foster and Carl Kesselman,editors, The Grid: Blueprint for a New Computing Infrastructure. Morgan Kau�mann, 1999.[PL96] J. Pruyne and M. Livny. Interfacing Condor and PVM to harness the cycles of workstation clusters.Journal on Future Generations of Computer Systems, 12, 1996.[RBD+97] A. Reinefeld, R. Baraglia, T. Decker, J. Gehring, D. Laforenza, J. Simon, T. R�omke, and F. Ramme.The MOL project: An open extensiblemetacomputer. In Heterogenous Computing Workshop at IPPS,1997.[WBK+99] R. Wolski, J. Brevik, C. Krintz, G. Obertelli, N. Spring, and A. Su. Running EveryWare on thecomputational grid. In SC99 Conference on High-performance Computing, 1999. Available fromhttp://www.cs.utk.edu/ rich/papers/ev-sc99.ps.gz.

