
Preprint ANL/MCS-P793-0200NONLINEAR PROGRAMS WITH UNBOUNDED LAGRANGEMULTIPLIER SETSMIHAI ANITESCU�Abstract. We investigate nonlinear programs that have a nonempty but possibly unboundedLagrangemultiplier set and that satisfy the quadratic growth condition. We show that such programscan be transformed, by relaxing the constraints and adding a linear penalty term to the objectivefunction, into equivalent nonlinear programs that have di�erentiable data and a bounded Lagrangemultiplier set and that satisfy the quadratic growth condition. As a result we can de�ne, for thistype of problem, algorithms that are linearly convergent, using only �rst-order information, andsuperlinearly convergent.1. Introduction. Recently, there has been renewed interest in analyzing andmodifying sequential quadratic programming (SQP) algorithms for constrained non-linear optimization for cases where the traditional regularity conditions do not hold[5, 9, 15, 14, 26, 30, 31]. This research is partly motivated by the fact that large-scalenonlinear programming problems tend to be almost degenerate (have large conditionnumbers for the Jacobian of the active constraints). We term as degenerate those non-linear programs (NLPs) for which the gradients of the active constraints are linearlydependent. In this case there may be several feasible Lagrange multipliers.In addition, there are classes of problems that are explicitly formulated as degener-ate nonlinear programs and whose Lagrange multiplier set not only is not a singleton,but also is unbounded. One such type of nonlinear program is mathematical programswith equilibrium constraints, or MPECs [19, 20, 25]. The complementarity part ofthe equilibrium constraints generally violate the Mangasarian-Fromovitz constraintquali�cation (MFCQ) [22]. MFCQ, in turn, is equivalent to the boundedness of theconstraints [12], which means that such MPECs will have an unbounded Lagrangemultiplier set. One approach that has been proposed to deal with these constraints isto enforce the complementarity conditions by a nondi�erentiable penalty term addedto the objective function and to restrict explicitly the size of the Lagrange multipliers[20]. Lack of di�erentiability is a serious problem for de�ning e�cient algorithms.However, in the special case where the noncomplementarity constraints are linear,it is shown that the penalty term becomes di�erentiable. For this particular case,the approach becomes suitable for use with a nonlinear programming algorithm. An-other problem with unbounded multipliers appears in the context of model reductionfor chemical kinetics [32]. There the reduction equations are enforced by equalityconstraints whose gradients are 0 at a solution of the problem.Many of the previous analysis and rate of convergence results for degenerate NLP[5, 9, 15, 14, 26, 30, 31] are based on the validity of some second-order conditions,� Thackeray 301, Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15213(anitescu@math.pitt.edu). Part of this work was completed while the author was the WilkinsonFellow at the Mathematics and Computer Science Division, Argonne National Laboratory. Thiswork was supported by the Mathematical, Information, and Computational Sciences Division sub-program of the O�ce of Advanced Scienti�cComputing, U.S. Department of Energy, under ContractW-31-109-Eng-38. This work was also supported by award DMS-9973071 of the National ScienceFoundation. 1



which imply the existence of a locally strictly convex augmented Lagrangian. In arecent approach, it has been shown that both linear convergence, using only �rst-orderinformation, and superlinear convergence can be achieved for nonlinear programs evenwhen there does not exist any locally strictly convex augmented Lagrangian [1, 2].The results were obtained assuming only that the nonlinear program satis�es theboundedness of the set of Lagrange multipliers and the quadratic growth condition[6]. Here we extend the results from [1, 2] to the case of unbounded sets of Lagrangemultipliers. We deal with the NLP problemminx f(x) subject to g(x) � 0;(1.1)where f : IRn ! IR and g : IRn ! IRm. In this work, we assume only that1. At a local solution x� of (1.1), the set of Lagrange multipliers is not empty.2. The quadratic growth condition [6, 17] is satis�edmaxff(x) � f(x�); g1(x); g2(x); : : : ; gm(x)g � � jjx� x�jj2for x in some neighborhood of x� and � > 0.3. The data of the problem, f; g, are twice continuously di�erentiable.These assumptions are related to a weaker form of the second-order su�cient con-ditions [16, 6], which does not imply the existence of a locally convex augmentedLagrangian as is the case in [5, 9, 15, 14, 26, 30, 31].To accommodate the case where the Lagrange multiplier set is not bounded, wemodify (1.1) by relaxing the constraints and adding a penalty term to the objectivefunction: minx;� f(x) + c� subject to gi(x) � �; i = 1; 2; : : : ;m; � � 0:(1.2)The modi�ed program (1.2) is closely related to the use of the L1 exact penaltyfunction for nonlinear programming [3, 4]. Clearly, (1.2) has twice di�erentiable dataunder our assumptions. We show that for a su�ciently large parameter c, the modi�ednonlinear program has the local solution (x�; 0), has bounded multipliers, and satis�esa corresponding quadratic growth constraint. Therefore, the algorithms from [1, 2]can be applied to (1.2).1.1. Previous Work and Framework. We call x a stationary point of (1.1)if the Fritz-John conditions conditions hold: There exist the multipliers � = (�0; �1;: : : ; �m) 2 IRm+1, such thatrxL(x; �) = 0; � � 0; g(x) � 0; mXi=1 �igi(x) = 0; jj�jj1 = 1:(1.3)Here L is the Lagrangian functionL(x; �) = �0f(x) + mXi=1 �igi(x):(1.4)A local solution x� of (1.1) is a stationary point [24]. We introduce the sets ofmultipliers 2




0(x) = �� 2 IRm+1 j � satis�es (1.3) at x 	 ;(1.5) 
1(x) = f� 2 
0(x) j �0 > 0g :(1.6)The active set at a stationary point x isA(x) = fi = 1; 2; : : : ;m j gi(x) = 0g :(1.7)The inactive set at x is the complement of A(x):�A(x) = f1; 2; : : :;mg { A(x):(1.8)With this condition, the complementarity condition from (1.3), Pmi=1 �igi(x) = 0,becomes � �A(x) = 0.If certain regularity conditions hold at a stationary point x (discussed below),there exist � 2 IRm that satisfy the Karush-Kuhn-Tucker conditions (or KKT condi-tions) [3, 4, 10]:rxf(x) + mXi=1 �irxgi(x) = 0; � � 0; g(x) � 0; �Tg(x) = 0:(1.9)In this case, � are referred to as the Lagrange multipliers.The regularity condition, or constraint quali�cation, ensures that a linear approx-imation of the feasible set in the neighborhood of a stationary point x captures thegeometry of the feasible set. The regularity condition that we will use at times ata stationary point x is the Mangasarian-Fromovitz constraint quali�cation (MFCQ)[22, 21]: rxgi(x)T p < 0; for some p 2 IRn and i 2 A(x):(1.10)It is well known [12] that MFCQ is equivalent to the boundedness of the set M(x) ofLagrange multipliers that satisfy (1.9), that is,M(x) = f� � 0 j (x; �) satisfy (1.9)g :(1.11)Note that M(x) is certainly polyhedral in any case. It is immediate from (1.3) and(1.9) that M(x) 6= ; , 
1(x) 6= ;and that � 2 M(x), � = (1; �)jj(1; �)jj1 2 
1(x) � 
0(x):(1.12)The critical cone at a stationary point x is [8, 28]C(x) = �u 2 IRn j rxgi(x)Tu � 0; i 2 A(x); rxf(x)Tu � 0	 :(1.13)The second-order necessary conditions for x� to be a local minimum are that [16]8u 2 C(x�); 9�� 2 
0(x�); such that uTr2xxL(x�; ��)u � 0:(1.14) 3



The second-order su�cient conditions for x� to be a local minimum are that
0(x�) 6= ; and [16]8u 2 C(x�); 9�� 2 
0(x�); such that uTr2xxL(x�; ��)u > 0:(1.15)Further analysis shows that, in the presence of MFCQ (1.10), these conditionsare necessary and su�cient for the quadratic growth condition to hold [6, 16, 17, 28].We denote the L1 nondi�erentiable penalty function byP (x) = maxf0; g1(x); :::gm(x)g :(1.16)The nonlinear program (1.1) satis�es the quadratic growth condition with a pa-rameter � if maxff(x) � f(x�); g1(x); g2(x) : : : gm(x)g � � jjx� x�jj2(1.17)for some � > 0 and all x in a neighborhood of x�.The quadratic growth condition can be rewritten in terms of P (x) asminff(x) � f(x�); P (x)g � � jjx� x�jj2(1.18)for some � > 0 and all x in a neighborhood of x�.Recent results have shown that, if MFCQ (1.10) and the quadratic growth con-dition (1.17) hold at x�, then x� is an isolated stationary point of (1.1) [1]. Moreover,an algorithm with a line-search procedure based on the direction that is the solutionof the subproblemmind2IRn rxf(x)T d+ dTd;subject to gi(x) +rxgi(x)Td � 0; i = 1; 2; : : :;m(1.19)induces the Q-linear convergence of the merit function�(x) = f(x) + c�P (x)(1.20)to �(x�) and the R-linear convergence of the iterates. The quantity c� is a parameterwith the property [1] c� > max�2M(x�) jj�jj1 :(1.21)In addition, the penalty function satis�es an unconstrained quadratic growth conditionon a neighborhood V(x�) with some parameter ~� > 0 [1]�(x) = f(x) + c�P (x) � ~� jjx� x�jj2 :(1.22)Superlinear convergence can also be obtained under the same conditions by usingas progress direction a stationary point of the following quadratically constrainedquadratic program [2]:mind2IRn f(x) +rxf(x)T d+ 12dTr2xxf(x)dsubject to gi(x) +rxgi(x)Td+ 12dTr2xxgi(x)d � 0; i = 1; 2; : : : ;mdTd � 2:4



1.2. Assumptions. As we speci�ed in the introduction, we do not assume thatMFCQ (1.10) holds at x�. Instead we assume only that1. The Lagrange multiplier set of (1.1), M(x�) is not empty, or, equivalently,
1(x�) 6= ;.2. The quadratic growth condition (1.17) holds near x�. From [16], this condi-tion is equivalent to the su�cient second-order condition (1.15).3. f; g are twice continuously di�erentiable.The objective of this paper is to transform (1.1) into a nonlinear program (1.2)that satis�es the same conditions at x�, and MFCQ (1.10) in addition to those. Asa result, the algorithms from [1, 2] can be used on the modi�ed nonlinear program.1.3. Notation. To distinguish between quantities associated with the originalNLP (1.1) and the modi�ed NLP (1.2), we use separate notations.� The point at which we conduct the analysis is x� for (1.1) and (x�; 0) for(1.2).� The set of generalized multipliers (1.5) is 
0(x�) � IRm+1 for (1.1) and
c0((x�; 0)) 2 IRm+2 for (1.2).� The set of generalized multipliers with a positive �rst component (1.6) is
1(x�) � IRm+1 for (1.1) and 
c1((x�; 0)) � IRm+2 for (1.2).� The set of Lagrange multipliers (1.1) isM(x�) � IRm for (1.1) andMc((x�; 0))� IRm+1 for (1.2).� The critical cone (1.13) is C(x�) � IRn for (1.1) and Cc((x�; 0)) � IRn+1 for(1.2).� The active set (1.7) A(x�) for (1.1), and Ac((x�; 0)) for (1.2). It is immediatethat Ac((x�; 0)) = A(x�) [ fm + 1g.In general, we use the superscript c to denote a quantity connected to (1.2).We also de�ne the reduced set of Lagrange multipliers of (1.2), Mcr(x�), to bethe projection of the Lagrange multiplier set of (1.2), Mc((x�; 0)), on its �rst mcomponents:Mcr(x�) = f� 2 IRm j 9�m+1 2 IR such that (�; �m+1) 2Mc((x�; 0))g :(1.23)2. Multiplier Sets of the Penalized Problem. We show that the penaltyterm in (1.2) has the e�ect of �ltering the Lagrange multipliers of (1.1): The Lagrangemultipliers of (1.2) are essentially the Lagrange multipliers of (1.1) whose 1 norm isless than or equal c.We characterize the properties of the nonlinear program (1.2) at x = x�, and� = 0 or (x�; 0). In the next lemma we show that, for a su�ciently large c, (1.1) and(1.2) have essentially the same critical cone and closely related multiplier sets.Lemma 2.1. Let �� 2M(x�) be a Lagrange multiplier of (1.1). Then for c suchthat c > jj��jj1, we have that(i) Cc((x�; 0)) = f(u; 0) j u 2 C(x�)g :(ii) �� 2 
0(x�); ��0 � 11+c , 9�c = (�c0; �c1; : : : ; �cm+1) 2 
c0((x�; 0)), such that�� = (�c0; �c1; : : :�cm)jj(�c0; �c1; : : :�cm)jj1 :Proof Let (u; y) be in the critical cone for (1.2) at (x�; 0), (u; y) 2 Cc((x�; 0)),u 2 IRn, y 2 IR. This means that (u; y) satis�es the critical cone conditions (1.13)rxf(x�)Tu+ cy � 0(2.1) 5



rxgi(x�)Tu� y � 0; i 2 A(x�)(2.2) �y � 0:(2.3)We now take the Lagrange multiplier �� 2 M(x�) de�ned in the hypothesis of theLemma. We add the inequality (2.1) with the inequalities (2.2), each multiplied withthe corresponding ��i � 0. Since from (1.9) ��i = 0, 8i =2 A(x�), we obtain thefollowing inequality: rxf(x�) + mXi=1 ��irxgi(x�)!T u+ c� mXi=1 ��i! y � 0:(2.4)Since �� 2 M(x�) satis�es the KKT conditions (1.9) for (1.1), we must have inparticular that rxf(x�) + mXi=1 ��irxgi(x�) = 0:Using this relation in (2.4), we obtain that c� mXi=1 ��i! y � 0:Since, from our assumptions, c >Pmi=1 ��i , this results in y � 0, which, together with(2.3), implies that y = 0. It now follows by inspection of (2.1) and (2.2) that, sincey = 0, u is in the critical cone C(x�) (1.13) of (1.1) at x�. Therefore(u; y) 2 Cc((x�; 0))) u 2 C(x�); y = 0:(2.5)It is immediate that for any u 2 C(x�), we must have (u; 0) 2 Cc((x�; 0)) (by examina-tion of the critical cone conditions (2.1), (2.2), and (2.3)), which together with (2.5)proves part i.Now let �c = (�c; �cm+1) 2 
c0((x�; 0)), where�c = (�c0; �c1; : : : �cm):Therefore, �c � 0 and �cm+1 � 0 satisfy the Fritz-John conditions (1.3) for (1.2):�c0rxf(x�) + mXi=1 �cirxgi(x�) = 0;(2.6) �c�A(x�) = 0; mXi=0 �ci + �cm+1 = 1;(2.7) c�c0 � mXi=1 �ci � �cm+1 = 0:(2.8)From (2.8), (2.7), we have that (c + 1)�c0 =Pmi=0 �ci + �cm+1 = 1. Therefore�c0 = 11 + c ;(2.9) 6



and �c satis�es 0 < 11 + c = �c0 � jj�cjj1 = 1� �cm+1 � 1:(2.10)Since jj�cjj1 6= 0, we can thus de�ne �� = �cjj�cjj1 ;(2.11)which satis�es �� � 0, jj��jj1 = 1. Also, by dividing (2.6) and (2.7) by jj�cjj1, weobtain ���A = 0 and ��0rxf(x�) + mXi=1 ��irxgi(x�) = 0;which shows that �� = (��0; ��1; : : :��m) satis�es the Fritz-John conditions (1.3) for(1.1). Therefore �� 2 
0(x�). In addition, from (2.9), (2.10) and (2.11) we have that��0 = �c0jj�cjj1 � 11 + c :We have thus shown that(�c; �cm+1) 2 
c0((x�; 0))) �� = �cjj�cjj1 2 C(x�); ��0 � 11 + c :(2.12)Assume now that �� = (��0; ��1; : : : ; ��m) 2 
0(x�), with ��0 � 11+c . Therefore ��satis�es (1.3) at x�:��0rxf(x�) + mXi=1 ��irxg(x�) = 0; �� � 0; ���A(x�) = 0; jj��jj1 = 1:(2.13)From jj��jj1 = 1 it follows thatmXi=1 ��i = 1� ��0 � 1� 11 + c = c1 + c � c��0:Therefore we can de�ne ��m+1 = c��0 � mXi=1 ��i � 0;which ensures that c��0 � m+1Xi=1 ��i = 0:(2.14)De�ne now �c = (��; ��m+1)����(��; ��m+1)����1 :(2.15) 7



We denote the components of �c by �c0; �c1; : : : ; �cm+1. Since from (2.13) we have thatjj��jj1 = 1, it follows from (2.15) that�� = (�c0; �c1; : : :�cm)jj(�c0; �c1; : : :�cm)jj1 :We divide the relations (2.13) and (2.14), which are linear in ��, by ����(��; ��m+1)����1.From (2.15) we obtain that �c satis�es (2.6), (2.7), and (2.8), with �ci = �ci , fori = 0; 1; : : : ;m, which are precisely the Fritz-John conditions for (1.2). Therefore,�c 2 
c0((x�; 0)). We have thus proved that�� 2 
0(x�); ��0 � 11 + c ) 9�c 2 
c0((x�; 0)); such that �� = (�c0; �c1; : : :�cm)jj(�c0; �c1; : : :�cm)jj1 :(2.16)From (2.12) and (2.16), the conclusion of part ii follows. The proof is complete. �We now show that the penalty term results in the reduced Lagrange multiplierset Mcr(x�) (1.23) of (1.2) being a bounded subset of the set of Lagrange multipliersM(x�) of (1.1).Lemma 2.2. The set of Lagrange multipliers of (1.2) satis�es Mc((x�; 0)) =Mc (x�), whereMc (x�) = ��c 2 IRm+1 j �� = (�c1; �c2; : : :�cm) 2M(x�);jj��jj1 � c; �cm+1 = c � jj��jj1	 :In particular �c 2Mc((x�; 0))) jj�cjj1 = c. The reduced set of Lagrange multipliers(1.23) thus satis�esMcr(x�) = f�� 2 IRm j �� 2M(x�); jj��jj1 � cg :Note In the case where there is no �� 2 M(x�) such that jj��jj1 � c, we havethat Mc (x�) = ;, and Mcr(x�) = ;.Proof We will prove the results �rst assuming that both Mc((x�; 0)) and Mc(x�) are not empty. Let �c 2 Mc((x�; 0)). From the KKT conditions (1.9) for (1.2)at (x�; 0), �c = (�c1; �c2; : : :�cm+1) satis�esrxf(x�) +Pmi=1 �cirxgi(x�) = 0; Pm+1i=1 �ci = c;�c � 0; g(x�) � 0; Pmi=1 �cigi(x�) = 0;(2.17)Then, in particular, �� = (�c1; �c2; : : :�cm) satis�es jj��jj1 � c, �cm+1 = c � jj��jj1:rxf(x�) +Pmi=1 �cirxgi(x�) = 0; �� � 0;g(x�) � 0; Pmi=1 �cigi(x�) = 0;(2.18)which represents the KKT conditions (1.9) for (1.1). Therefore, �� 2 M(x�), andthis proves that Mc((x�; 0)) �Mc (x�).For the reverse inclusion, if �� 2Mc (x�), then �� 2 M(x�), and jj��jj1 � c.We can thus de�ne �cm+1 = c � jj��jj1 � 0 and �ci = ��i ; i = 1; 2; : : :;m. It is then8



immediate by inspection that �c = (�c1; �c2; : : :�cm+1) satis�es (2.17). Therefore, thisproves the reverse inclusion,M (x�) �Mc((x�; 0)).From our proof, if either ofMc((x�; 0)) andMc (x�) is not empty, the other alsois not empty. Therefore, if one is empty, the other is empty. Thus, we have provedthat Mc((x�; 0)) =Mc (x�) even when one of the sets is empty.From (2.17) we have in particular that if �c 2Mc((x�; 0)), then jj�cjj1 = c. Thus,the second part of the claim is proved.The statement concerning Mcr(x�) follows by inspection of the de�nition of M(x�). The proof is complete. �The main consequence of the preceding lemma is that the projection of the La-grange multiplier set Mc((x�; 0)) of (1.2) on the �rst m components is the Lagrangemultipliers �� of (1.1) satisfying jj��jj1 � c. Therefore, adding a penalty term in (1.1)results in retaining only those multipliers of (1.1) that are less than c in jj�jj1.Example Consider the following nonlinear programming problem [27]:minx x2subject to x6 sin 1x = 0:(2.19)The data of the problem are twice continuously di�erentiable. To put the problemin the framework we used so far, we replace the equality constraint by two inequalityconstraints minx f(x) = x2subject to g1(x) = x6 sin 1x � 0:g2(x) = �x6 sin 1x � 0:(2.20)The global solution of the problem is x� = 0. At x� we have that rxf(x�) = 0,rxg1(x�) = 0, and rxg2(x�) = 0 and that both constraints are active.Therefore, the Lagrange multipliers �� = (��1; ��2) are those �� that satisfy theKKT conditions (1.9), or �� � 0; 0 = 0 + ��1 � 0 + ��2 � 0;and the Lagrange multiplier set is thusM(0) = ��� 2 IR2 j ��1 � 0; ��2 � 0	 :(2.21)Since the nonlinear program (2.20) does not satisfy (1.10), its Lagrange multiplierset M(0) is unbounded. We now construct the corresponding penalized nonlinearprogram (1.2) for this case, for c = 1. We obtainminx;� fc(x; �) = x2 + �subject to gc1(x; �) = x6 sin 1x � � � 0gc2(x; �) = �x6 sin 1x � � � 0gc3(x; �) = � � � 0:(2.22)At (0; 0), the gradients are r(x;�)fc(0; 0) = (0; 1)T , r(x;�)gc1(0; 0) = (0;�1)T ,r(x;�)gc2(0; 0) = (0;�1)T , and r(x;�)gc3(0; 0) = (0;�1)T . The Lagrange multipliers�c = (�c1; �c2; �c3) of (2.20) at (0; 0) satisfy (1.9), or �c � 0 and� 00 � = � 01 �+ �c1� 0�1 �+ �c2� 0�1 �+ �c3� 0�1 � :9



We thus have that the set of Lagrange multipliers of (2.22) isMc((0; 0)) = ��c 2 IR3 j �c � 0; �c1 + �c2 + �c3 = 1	 ;and the projection of the Lagrange multiplier set on its �rst two coordinates, or thereduced Lagrange multiplier set, (1.23), thus becomesMcr(0) = �� 2 IR2 j � � 0; �1 + �2 � 1	 :It is immediate that Mcr(0) = f� 2M(x�) j jj�jj1 � 1g ;which is the claim of the Lemma 2.2: The projection of the Lagrange multiplier setMc((0; 0)) of the penalized problem (2.22) on its �rst two coordinates (the originalLagrange multiplier variables) consists of the elements of the Lagrange multiplier setM(0) of the original problem (2.20) whose 1 norm is less than the penalty parameter,c = 1. In this sense, the penalty term c� of (1.1) acts like a �lter: it retains only theLagrange multipliers of the original problem whose 1 norm is less than c.3. The Quadratic Growth Condition for the Penalized Problem. Wenow discuss the connection between the parameter � involved in the de�nition of(1.17) and the corresponding parameter for the second-order conditions (1.14) and(1.15).Lemma 3.1. A necessary condition for the quadratic growth condition to holdwith parameter � in a neighborhood of a stationary point x� of (1.1) is8u 2 C(x�); 9�� 2 
0(x�) such that uTr2xxL(x�; ��)u � 2� jjujj2 :(3.1)A su�cient condition for the quadratic growth condition to hold with parameter � ina neighborhood of a stationary point x� is8u 2 C(x�); 9�� 2 
0(x�); such that uTr2xxL(x�; ��)u > 2� jjujj2 :(3.2)Proof If the nonlinear program (1.1) satis�es the quadratic growth conditionwith a parameter � (1.17), it follows that the modi�ed nonlinear programminx f(x) � � jjx� x�jj2subject to gi(x)� � jjx� x�jj2 � 0; 8i = 1; 2; : : : ;m(3.3)satis�es maxnf(x) � f(x�)� � jjx� x�jj2 ; g1(x)� � jjx� x�jj2 ;g2(x)� � jjx� x�jj2 : : : gm(x)� � jjx� x�jj2o � 0(3.4)in a neighborhood of x�. Thus, in particular, x� is a local minimum for (3.3). Sincerx jjx� x�jj2 = 0 at x�, it follows that (1.1) and (3.3) have the same multiplier set
0(x�) and critical cone Cc(x�). If L� is the Lagrangian of (3.3), it immediatelyfollows that, since jj��jj1 = 1 for �� 2 
0(x�), L�(x; ��) = L(x; ��) � � jjx� x�jj2.As a result, we have from the second-order necessary condition (1.14) applied to thelocal minimum x� that 8u 2 C(x�); 9�� 2 
0(x�) such thatuTr2xxL(x; ��)u � 2�uTu = uTr2xxL�(x�; ��)u � 0;(3.5) 10



which proves (3.1), the necessary condition part of the lemma. Assume now that x�is a stationary point of (1.1) satisfying (3.2). It follows that (3.3) satis�es8u 2 C(x�); 9�� 2 
0(x�); such thatuTr2xxL�(x�; ��)u = uTr2xxL(x; ��)u� 2�uTu > 0:(3.6)This means that (3.3) satis�es the second-order conditions (1.15) at x�, and x� is, asa result, a strict local minimum of (3.3). Therefore, there exists a neighborhood of x�such that maxnf(x) � f(x�)� � jjx� x�jj2 ; g1(x)� � jjx� x�jj2 ;g2(x)� � jjx� x�jj2 : : : gm(x)� � jjx� x�jj2o > 0:(3.7)It is then immediate that (1.1) satis�es the quadratic growth condition (1.17) withparameter �, which completes the proof. �We now show that under our assumptions, the second order su�cient conditions(1.15) hold with multipliers �� 2 
1(x�). From (1.12) this will ultimately imply thatthe modi�ed nonlinear program (1.2) satis�es the second-order conditions and has abounded Lagrange multiplier set.Lemma 3.2. Let � 2M(x�) and~� = (1; �)1 + jj�jj1 ; � = � + ������r2xxL(x�; ~�)������2� + ������r2xxL(x�; ~�)������ :Then 8u 2 C(x�), 9�� = (��0; ��1; : : :��m) 2 
0(x�) such that��0 � �� = (1� �) 11 + jj�jj1 > 0; uTr2xxL(x�; ��)u � � jjujj2 :Proof Let u 2 C(x�). Since (1.1) satis�es the quadratic growth condition (1.17),it follows from Lemma 3.1 that, 8u 2 C(x�), there exists �+ 2 
0(x�) such thatuTr2xxL(x�; �+)u � 2� jjujj2 :(3.8)Let now �� = (1 � �)~� + ��+:(3.9)From the linearity of the Lagrangian (1.4) with respect to the multipliers �, it followsthat L(x�; ��) = (1� �)L(x�; ~�) + �L(x�; �+):Therefore from the de�nition of � in our hypothesis and (3.8), we will have thatuTr2xxL(x�; ��)u = (1� �)uTr2xxL(x�; ~�)u+ �uTr2xxL(x�; �+)u ��(1 � �) ������r2xxL(x�; ~�)������ jjujj2 + �2� jjujj2 =� �������r2xxL(x�; ~�)������+ 2�� jjujj2 � ������r2xxL(x�; ~�)������ jjujj2 =�������r2xxL(x�; ~�)������+ �� jjujj2 � ������r2xxL(x�; ~�)������ jjujj2 = � jjujj2 :(3.10) 11



Since 
0(x�) (1.5) is a convex set, and ~� 2 
0(x�) from (1.12), �+ 2 
0(x�),from (3.9) and since 0 < � < 1, it follows that �� 2 
0(x�). From the de�nition of ~�in our hypothesis, we have that ~�0 = 11 + jj�jj1 :From (3.9) it follows that��0 = (1� �)~�0 + ��+0 � (1� �) 11 + jj�jj1 = �� :The conclusion follows from the preceding equation, from (3.10). and from the factthat 0 < � < 1. �We now show that the modi�ed nonlinear program (1.2) satis�es (1.14), with aparameter possibly di�erent from �. The Lagrangian function for (1.2) is, following(1.4), Lc(x; �; �c) = �c0f(x) + mXi=1 �cigci (x) + �cm+1�:(3.11)We keep denoting by L(x; �) the Lagrangian function of (1.1). We write�� = (�c0; �c1; : : :�cm):(3.12)Note that �� is not necessarily an element of 
0(x�), since ����������1 may not be equal to1. Then the Hessian of the Lagrangian Lc(x; �c) (3.11) becomesr2(x;�)(x;�)Lc(x; �; �c) = � r2xxL(x; ��) 00 0 � :(3.13)Lemma 3.3. Let � 2M(x�) andc� = max�jj�jj1 ; 1�� � 1� ;where �� is the parameter de�ned in Lemma 3.2. Then for any c satisfying c > c� wehave the following property: For all uc 2 Cc((x�; 0)), 9�c 2 
c((x�; 0)) such that(uc)Tr2(x;�)(x;�)Lc(x�; 0; �c)uc � �(1 + c) jjucjj2 :Proof Let uc 2 Cc((x�; 0)). Then from Lemma 2.1, since c > c� � jj�jj1, itfollows that uc = (u; 0), where u 2 C(x�). From Lemma 3.2 it follows that there exists�� 2 
0(x�) such that ��0 � �� anduTr2xxL(x�; ��)u � � jjujj2 :(3.14)Since c > c� � 1�� � 1 and ��0 � �� , we have that(1 + c)��0 � 1 ) ��0 � 11 + c :12



Therefore from Lemma 2.1 (ii) it follows that there exists �c = (��c; �cm+1) 2
c0((x�; 0)) such that �� = ��cjj��cjj1 , where��c = (�c0; �c1; � � � ; �cm):(3.15)From (3.13) and the linearity of the Lagrangians (1.4) and (3.11), since uc = (u; 0)and from (3.14) it follows that(uc)T 1������c����1r2(x;�)(x;�)Lc(x�; 0; �c)uc = (uc)Tr2(x;�)(x;�)Lc(x�; 0; �c������c����1 )uc =uTr2xxL(x; ��)u � � jjujj2 = � jjucjj2or (uc)Tr2(x;�)(x;�)Lc(x�; 0; �c)uc � � ������c����1 jjucjj2 :(3.16)Since �c 2 
0((x�; 0)), �c must satisfy the Fritz-John condition (1.3) for (1.2),which leads to (2.8), or c�c0 = m+1Xi=1 �ci ;and jj�cjj1 = 1. Therefore,(c+ 1)�c0 = �0 + m+1Xi=1 �ci = jj�cjj1 = 1;which results in �c0 = 11 + c :As a result we have from (3.15) that ������c����1 � �c0 = 11+c . Using this inequality in(3.16), we obtain that, 8uc 2 Cc((x�; 0)), there exists �c 2 
c0((x�; 0)):(uc)Tr2(x;�)(x;�)Lc(x�; 0; �c)uc � �(1 + c) jjucjj2 :The proof is complete. �We are now ready to state our main result of this work.Theorem 3.4. Let x� be a minimum of the nonlinear program (1.1) at whichthe quadratic growth condition with parameter � (1.17) holds, and for which the setof Lagrange multipliers M(x�) is not empty. There exists c� > 0 such that, for anyc > c� i The nonlinear program (1.2) satis�es the Mangasarian-Fromovitz constraintquali�cation at (x�; 0).ii The nonlinear program (1.2) satis�es the quadratic growth condition at (x�; 0)with any parameter �� < �2(1+c) .iii There exists a neighborhood Vc(x�) of x� and ~� > 0 such that8x 2 Vc(x�); f(x) + (c+ 1)P (x)� f(x�) � ~� jjx� x�jj2 :13



Proof Let c� be the quantity introduced in Lemma 3.3. For any c > c� , fromLemma 2.2, it follows that the Lagrange multiplier set of (1.2), Mc((x�; 0)) is notempty and bounded, which, from [12], is equivalent to (1.2) satisfying MFCQ (1.10).The same conclusion can also be drawn by noting that the direction pc = (p; p�) withp 2 IRn, p = 0, and p� = 1 satis�es rxgi(x�)T p � p� < 0, i = enumm, �p� < 0 andthus satis�es (1.10) proving part i.Now let uc 2 Cc((x�; 0)). From Lemma 3.3, it follows that, since c > c� , thereexists �c 2 
c(c�; 0) such that(uc)Tr2(x;�)(x;�)Lc(x�; 0; �c)uc � �(1 + c) jjucjj2 :From Lemma 3.1, it follows that the preceding relation is a su�cient condition for(1.2) to satisfy the quadratic growth condition (1.17) with any parameter �� > 0,�� < �2(1+c) . This proves part ii.Since c > c� , it follows from Lemma 2.2 that if �c is a Lagrange multiplier of(1.1), �c 2Mc((x�; 0)), then jj�cjj1 = c. We therefore have thatc+ 1 > max�c2Mc((x�;0)) jj�cjj1 :Since from parts (i) and (ii), (1.2) satis�es MFCQ (1.10), (1.17) and (1.21) from thepreceding relation, it follows that from (1.22) applied to (1.2) that, for some r > 0,~� > 0 and, for any x 2 B((x�; 0); r),�(x; �) = f(x) + c� + (c+ 1)maxf0; g1(x)� �;g2(x) � �; : : : ; gm(x)� �;��g � f(x�) � ~�(jjx� x�jj2 + �2):(3.17)The conclusion of part iii follows after taking � = 0 in (3.17): For any x 2 B(x�),f(x) + (c+ 1)maxf0; g1(x); g2(x); : : : ; gm(x)g � f(x�) � ~� jjx� x�jj2 :The proof is complete. �4. Algorithms for Problems with UnboundedMultipliers. Although thisframework was developed for problems with inequality constraints, it can be eas-ily extended to accommodate equality constraints. Indeed if we have the nonlinearprogram minx f(x) subject to g(x) � 0; h(x) = 0;h : IRl ! IR, it can be transformed into an inequality constrained nonlinear programminx f(x) subject to g(x) � 0; h(x) � 0; �h(x) � 0:Even if the original problem satis�es at x� the variant of MFCQ (1.10) that includesequality constraints [22],rxhj(x�); j = 1; : : : ; l are linearly independent andrxhTj (x�)p = 0; j = 1; : : : ; l; rxgi(x�)Tp < 0; i 2 A(x�); for some p 2 IRn:the transformed problem does not satisfy MFCQ (1.10). However, since in this paperwe do not assume MFCQ (1.10), this does not create a di�culty. An important14



consequence of this fact is that we can accommodate even those cases for which thegradients of the equality constraints are linearly dependent.To unify notation, we put (1.2) in the same form as (1.1). We denote y = (x; �),and we obtain that (1.2) can be written asminx;� fc(y) = f(x) + c�subject to gc1(y) = g1(x)� � � 0;gc2(y) = g2(x)� � � 0;...gcm(y) = gm(x)� � � 0;gcm+1(y) = � � � 0:(4.1)As speci�ed in the beginning of this work, we assume that (1.1) has a nonemptyLagrange multiplier set M(x�), that it satis�es the quadratic growth condition (1.17),and that f; g are twice continuously di�erentiable. Under these assumptions, we canapply Theorem 3.4 to problem (1.1) to obtain that for c > c� we have the followingproperties.1. At y� = (x�; 0), the modi�ed problem (1.2) and its equivalent form (4.1)satisfy MFCQ (1.10). Therefore (1.2) and (4.1) have bounded multipliers.2. At y� = (x�; 0), (1.2) and (4.1) satisfy the quadratic growth condition (1.17).3. The data of the problem are twice continuously di�erentiable.4. From Lemma 2.2, if �c 2 Mc(x�; 0) is a Lagrange multiplier of (1.2) and(4.1), then jj�cjj1 = c.Therefore the convergence results from [1, 2] can be applied. However, we willassume that c� and thus c are already determined.The algorithm in [1] is based on the merit function of (1.2)�(y) = fc(y) + c�max�gc1(y); gc2(y); : : : gcm+1(y)	 ;(4.2)where P (x) is the L1 penalty function de�ned in (1.16). We choose c� = 1+c, which,from the outlined properties of (4.1), satis�esc� > max�c2Mc((x�;0)) jj�cjj1 = c:We use the following sequential quadratic programming (SQP) algorithm [1]:1. Start with k = 0, y = yk .2. Compute the direction (dk) the solution of the problemmind rxfc(y)T d+ 12dTdsubject to gci (y) +rxgci (y)T d � 0 i = 1; 2; : : : ;m+ 1:(4.3)3. Take yk+1 = yk + �kyk, where �k is a stepsize obtained by the Armijo rule[3, 4] applied to the merit function �(y).4. Take k = k + 1 and restart with step 1.Since, as outlined above, the nonlinear program (4.1) has bounded Lagrangemultipliers and satis�es the quadratic growth constraint, from [1] it follows that,when started su�ciently close to the point y� = (x�; 0), this algorithm induces Q-linear convergence of �(xk)! �(x�) and R-linear convergence of xk ! x�. Given thatthe algorithm does not use second-order information, it is expected that the order ofconvergence will be generally linear. Obviously the same algorithm can be applied15



directly to (1.1), by replacing y with x, fc with f , gc with g and m by m + 1 inthe de�nition of the algorithm. However, if we apply the algorithm directly for (1.1),we do not have an initial estimate of the size of the Lagrange multiplier set, whichis necessary to de�ne the merit function �(x) (1.20) with the appropriate c� (1.21).When applying this algorithm to (1.1) we use an updating procedure for c� that iscommon for the L1 penalty function [3, 4].To illustrate the di�culties that appear in the context of problems with un-bounded Lagrange multiplier sets, we consider an example on which we run the fol-lowing well-established algorithms for nonlinear programming:� LANCELOT [7], a Lagrange multiplier algorithm.� LOQO [29], an interior-point approach.� SNOPT [13], a sequential quadratic programming algorithm.� FilterSQP [11], a sequential quadratic programming algorithm with a specialmerit criterion.� LINF [1], the algorithm presented in the beginning of this section based onthe descent direction (4.3) with the merit function �(x) (1.20).Except for LINF, which was coded in Matlab, all other algorithms were used withAMPL input on the NEOS server [23]. All tolerance parameters were set to 10�16.The example we are considering is (2.20) [27], which has unbounded Lagrangemultipliers, which follows from (2.21). Since several algorithms for nonlinear pro-gramming are initiated at 0, and to avoid accidental convergence, we translate (2.20)by 1. We obtain minx f(x) = (x � 1)2subject to g1(x) = (x � 1)6 sin 1x�1 � 0:g2(x) = �(x� 1)6 sin 1x�1 � 0:(4.4)The solution of the problem is x = 1. From the form of the objective function it isimmediate that the nonlinear program (4.4) satis�es the quadratic growth condition(1.17). From (2.21) the Lagrange multiplier set is not empty, and the data of theproblem are at least twice continuously di�erentiable. Therefore, Theorem 3.4 applies.This example is important because it shows that problems with unbounded mul-tipliers do not generally have isolated stationary points. As outlined in [1], an accu-mulation of stationary points cannot occur at a local solution with bounded Lagrangemultipliers and where the quadratic growth condition is satis�ed.Indeed, the feasible set of (4.4) is made of the points where sin 1x�1 = 0, or 1+ 1k� ,for integer k, k 6= 0, which accumulate at the solution x = 1. Each such point is alocal minimum and a stationary point. Hence, it is likely that an algorithm startedclose to the solution x = 1 will, in fact stop at some of the other stationary pointsthat are close to x = 1.The results of all algorithms on (4.4) are summarized in Table 4.1. The algorithmLINF is started at 0. With the exception of LANCELOT, all algorithms converge to1 � 1� . LANCELOT converges to the solution of (4.4). LANCELOT enforces thenonlinear constraints by means of a penalty function, which may be responsible foravoiding the other local minima.We now transform the nonlinear program (4.4), based on the Theorem 3.4. Specif-ically, we relax the constraints and add a penalty term with c = 1 as indicated by16



Table 4.1Results for problem (4.4)Solver Type jx� x�j Iterations MessageLANCELOT 3.09e-12 60 Step got too smallLOQO 3.18e-01 149 Primal and/or dual infeasibleSNOPT 3.18e-01 1 Optimal solution foundFilterSQP 3.18e-01 13 Optimal solution foundLINF 3.18e-01 13 Step got too smallTable 4.2Results for the modi�ed problem (4.5)Solver Type jx� x�j Iterations MessageLANCELOT 2.18e-12 297 Step got too smallLOQO 2.9e-2 1000 Iteration limit (1000 iterations)SNOPT 5.6e-12 10 The current point cannot be improvedFilterSQP 7.45 e-13 42 Optimal solution foundLINF 0 39 Optimal solution found(1.2). We obtain the nonlinear programminx;� fc(y) = (x� 1)2 + �subject to gc1(y) = (x� 1)6 sin 1x�1 �� � 0gc2(y) = �(x� 1)6 sin 1x�1 �� � 0gc3(y) = �� � 0;(4.5)where y = (x; �), as outlined in the generic modi�ed nonlinear program (4.1). Theresults of applying the algorithms to the modi�ed nonlinear program (4.5) (whosesolution is (1; 0), from Theorem 3.4) are illustrated in Table 4.2. The algorithm LINFis started at (0; 0), which is the analogue of starting LINF at 0 for (4.4). We monitoronly the accuracy in determining the �rst variable, x�, since this indicates how closewe are both to the solution of (4.4), which is the problem we are trying to solve, and(4.5), the modi�ed problem. For the algorithms on NEOS [23] no modi�cation (suchas a speci�c initial point) was attempted. One conclusion from Table 4.2 is that themodi�cation (1.2) is bene�cial for all algorithms, which now all converge to the globalsolution of the original problem (4.4) (with the exception of LOQO, which terminatesearly, though increased accuracy can be observed for that case as well).The fact that (2.22) has bounded Lagrange multipliers results in the fact thaty� is an isolated stationary point [1]. This enables all algorithms considered in ourexperiment to converge to the solution. The Q-linear convergence of the merit function�(y) is demonstrated in Table 4.3.From Theorem 3.4, we can also obtain superlinear convergence for (1.2) at acost of computing the second-order derivatives for f and g and solving more compli-cated subproblems with quadratic constraints. We use the sequential quadraticallyconstrained quadratic programming (SQCQP) algorithm from [2] on (4.1):1. Choose a starting point y0, k = 0.17



Table 4.3Q-linear convergence of �(y)Iteration �(yk)��(y�)�(yk+1)��(y�)5 3.7910 7.8815 8.9920 1.1825 8.9930 9.0035 9.0039 9.002. Let y = xk, and determine dk, a stationary point ofmind rxfc(y)T d+ 12dTr2xxfc(y)dsubject to gci (y) +rxgci (y)T d+ 12dTr2xxgci (y)d � 0;i = 1; 2; : : :;mdTd � 2:(4.6)3. Take yk+1 = yk + dk and k = k + 1 and restart.The quantity  de�nes a trust region constraint. Since, from Theorem 3.4, (1.2)satis�es MFCQ (1.10) and the quadratic growth condition, it follows that if thealgorithm is started su�ciently close to (x�; 0) for a su�ciently small , then [2]1. The trust region constraint will be inactive.2. The sequence (yk) is superlinearly convergent to (x�; 0):limk!1 ����yk+1 � (x�; 0)����jjyk � (x�; 0)jj = 0:Undoubtedly, the subproblems of SQCQP are not easy to solve, since both the ob-jective function and the constraints are nonconvex and nonlinear. However, recentapproaches have shown that an e�cient solution of the subproblems can be obtainedby semide�nite relaxation [18].For both algorithms, the main issue is how to determine an appropriate value of cthat satis�es the conclusions of Theorem 3.4. This problem is typical of penalty func-tions approaches [3, 4, 20, 24], which are the justi�cation for the modi�ed nonlinearprogram (1.2). One could, of course, pick a c by a trial-and-error procedure. But a toolarge c would distort the nonlinear program (1.2) by overemphasizing the importanceof the constraints and possibly slowing progress of optimization algorithms.For the traditional constraint quali�cation, it is shown that a simple update pro-cedure based on the multipliers obtained at every step of a sequential quadratic pro-gramming algorithm will identify a valid value of c [4]. For that case (1.2) and (1.1)are equivalent in the sense that the sets of Lagrange multipliers corresponding tothe �rst m constraints are identical for su�ciently large c (as can also be seen fromLemma 2.2). In the case discussed in this work, however, this does not occur, sincethe Lagrange multiplier setM(x�) of (1.1) may be unbounded, whereas the multiplierset Mc((x�; 0)) of (1.2) is bounded.5. Conclusions. We construct nonlinear programming algorithms that are lo-cally linearly convergent, using only �rst-order information, and superlinearly con-18



vergent under only the assumptions of quadratic growth and a nonempty but notnecessarily bounded Lagrange multiplier set. An important class of problems thatdo not generally have bounded Lagrange multiplier sets are the mathematical pro-grams with equilibrium constraints [19, 25]. The results are achieved by relaxing theconstraints and adding a linear penalty term with a su�ciently large parameter c tothe objective function. The e�ect of the penalty term is to retain from the Lagrangemultipliers of the original problem only those whose 1 norm is less than or equal toc. An important achievement of our approach compared with [20] is that the newformulation involves only di�erentiable functions which makes it substantially easierto solve.The modi�ed problem has the same solution as the original one (in the �rst nvariables) and satis�es the quadratic growth condition as well. In addition, however,the modi�ed problem has a nonempy and bounded Lagrange multiplier set. Fornonlinear programs that satisfy these conditions, we can use the algorithms from[1, 2] to obtain linear and superlinear convergence to the solution of the modi�edproblem.We ran some well-established algorithms, as well as the algorithm from [1], onan example whose solution, because of the unboundedness of the Lagrange multiplierset, is not an isolated stationary point. We demonstrate that most of the algorithmsstop at one of the neighboring stationary points. Applying these algorithms to themodi�ed nonlinear program, however, results in convergence to the solution of theproblem. This is a highly desired outcome for any nonlinear programming problem.One of the issues related to this approach, as for any other method originatingfrom a penalty method, is that the appropriate c (and  for SQCQP) has to beestimated in practice. This question is fundamentally connected to inducing globalconvergence to a local minimum of (1.1), which will be approached in a future work.Acknowledgments. Thanks to Sven Ley�er and Danny Ralph for valuablepointers concerning MPEC and the quadratic growth condition. Thanks to SteveWright for the countless discussions regarding degenerate nonlinear programming.REFERENCES[1] M. Anitescu, Degenerate nonlinear programming with a quadratic growth condition. SIAMJournal on Optimization, 10:4 (2000), pp. 1116-1135.[2] M. Anitescu, A superlinearly convergent sequential quadratically constrained quadratic pro-gramming algorithm for degenerate nonlinear programming, preprint.[3] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, AcademicPress, New York, 1982.[4] D. P. Bertsekas, Nonlinear Programming, Athena Scienti�c, Belmont, Massachusets, 1995.[5] J. F. Bonnans, Local analysis of Newton-type methods for variational inequalities and nonlin-ear programming, Applied Mathematics and Optimization, 29 (1994), pp. 161{186.[6] J. F. Bonnans and A. Ioffe, Second-order su�ciency and quadratic growth for nonisolatedminima, Mathematics of Operations Research , 20:4 (1995), pp. 801{819.[7] A. R. Conn, N. I. M. Gould and Ph. L. Toint, LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization, Springer Verlag, Berlin, 1992.[8] A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming,Academic Press, New York, 1983.[9] A. Fischer, Modi�ed Wilson's method for nonlinear programs with nonunique multipliers,Mathematics of Operations Research 24:3 (1999), pp. 699{727.[10] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, Chichester, 1987.[11] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, NumericalAnalysis Report, NA/171, Department of Mathematics, University of Dundee, UK.19
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