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line search, or trust region approaches that extend the radius of convergenceof basic Newton techniques. This article considers issues in the application ofsuch methods to a particular aerospace application, namely, a steady-state,fully implicit, three-dimensional compressible Euler model of 
ow over an M6wing. Our emphasis in this work is exploring the utility of automatic di�eren-tiation (AD) technology to provide derivative information required by thesetechniques, and understanding the bene�ts of using AD in conjunction withnumerical libraries that provide encapsulated expertise for parallel inexactNewton methods.We apply a Newton-Krylov-Schwarz technique with pseudo-transient continu-ation (	NKS) and adaptive advancement of the CFL number to a discretiza-tion within a legacy CFD code (the JULIANNE code of Whit�eld and Tay-lor [29]), which employs a C-H mesh with a second-order �nite volume dis-cretization.We use the nonlinear solvers within PETSc (the Portable, Extensi-ble Toolkit for Scienti�c computing) [1{3], which provide a robust and 
exiblesuite of data-structure-neutral numerical routines for Newton-like methods.These solvers generally require the action of a Jacobian matrix of derivatives,which can be approximated with �nite di�erences. However, the convergencerate and robustness are typically improved if the application programmer sup-plies code to compute the derivatives analytically. Unfortunately, such code isoften very complicated and di�cult to program correctly by hand, especiallyin parallel.We describe how automatic di�erentiation (AD) can be used within the PETScframework to automatically generate code for derivative computations. In par-ticular, we highlight how the use of high-level abstractions for mathematicalobjects and parallel communication enables us to decouple issues of paral-lelism from the local nonlinear function computations and thus simpli�es thetask of applying AD.Section 2 provides an overview of the Euler model, while Section 3 discusses thepseudo-transient Newton-Krylov-Schwarz algorithmic framework. Section 4introduces the primary software tools used in this work, namely, the numer-ical PDE software within PETSc and the automatic di�erentiation technol-ogy within ADIFOR [4]. Section 5 discusses the use of �nite di�erences andautomatic di�erentiation for computing derivatives within such simulations.Section 6 presents experimental results that demonstrate the suitability of ADand PETSc within this parallel transonic Euler 
ow model. We conclude inSection 7 with a synopsis of our results and a discussion of opportunities forfuture work in integrating PETSc and AD.2



2 Compressible Inviscid Flow ModelTo illustrate our approaches in parallel algorithms and software, we solvethe steady-state, three-dimensional compressible Euler equations on mapped,structured meshes using a second-order, Roe-type, �nite-volume discretiza-tion. The governing system of PDEs can be expressed in coordinate-invariantform by r � (�u) = 0; (1)r � (�uu + pI)= 0; (2)r � ((�e+ p)u) = 0; (3)where �, u, and e represent the density, three-dimensional velocity, and en-ergy density �elds, respectively, and the pressure �eld p is determined by analgebraic equation of state, e = p
�1 + 12�(u2 + v2 + w2); where 
 is the ratioof speci�c heats.As described in [29], this system and its discretization are standard and pro-duce a nonlinear system of the formf(u) = 0; (4)where u is a vector of unknowns representing the state of the system, and f(u)is a vector-valued function of residuals of the governing equations. The basisfor our implementation is a sequential Fortran 77 code fromD.Whit�eld calledJULIANNE, which includes a discrete Newton-relaxation pseudo-transient con-tinuation solver with explicit enforcement of boundary conditions. We reusedvaluable discretization modules within this sequential legacy code in the formof 
ux balance routines for computation of steady-state residuals and �nite-di�erence Jacobians. The function evaluations are undertaken to second order,while the Jacobian matrices (used only for preconditioning in this work) areevaluated to �rst order. We replaced the explicit characteristic boundary con-ditions with fully implicit characteristic variants; see [28] for the derivation ofthe explicit forms of the boundary conditions and [26,27,29] for the importanceof using an implicit form of these boundary conditions to maintain stabilityas timesteps are adaptively increased. We also added the di�erentiable VanAlbada limiter option to three existing limiters [12].3



3 Algorithmic FrameworkPseudo-transient continuation methods are designed to solve discretized steady-state systems of nonlinear boundary value problems of the form given byequation (4). As discussed in [16], these methods solve a sequence of problemsderived from the model @u@t = �f(u), namely,g`(u) � 1�` (u� u`�1) + f(u) = 0; ` = 1; 2; : : : : (5)When the timestep �` is su�ciently small, the physical transient is followed sothat a feasible sequence of states results. In addition, the Jacobians associatedwith g`(u) = 0 are well conditioned when �` is small. The timestep �` is ad-vanced from �0 � 1 to �` !1 as `!1, so that the iterate u` approaches theroot of f(u) = 0. Details of our timestepping scheme, which employs modi�edSuccessive Evolution-Relaxation (SER) [19], are discussed in [12]. In particu-lar, after an initial frozen phase, the timestep grows in inverse proportion toresidual norm progress:�` = �`�1 � jjf(u`�2)jj=jjf(u`�1)jj; (6)within bounds relative to the current step.We use an inexact Newton method (see, e.g., [20]) to solve f(u) = 0 throughthe two-step sequence of (approximately) solving the Newton correction equa-tion f 0(u`�1) �u` = �f(u`�1); (7)in the sense that the linear residual norm jjf 0(u`�1) �u`+f(u`�1)jj is su�cientlysmall, and then updating the iterate viau` = u`�1 + � � �u`; (8)where � is a scalar such that 0 < � � 1. The right-hand side of the linearNewton correction equation, f(u`�1), is evaluated to full discretization order,so the inexactness arises from incomplete convergence or from the employmentof an inexact Jacobian. The Jacobian may be approximated at various levels:by evaluating it to a lower discretization order, by lagging it to a previousiteration, or by performing a �nite di�erence approximation of the di�erenti-ation. 4



To achieve e�cient performance on parallel architectures with multilevelmem-ory hierarchies, we use Newton-Krylov-Schwarz methods, in which the Newtoncorrection equation (7) is solved with a Krylov method that is preconditionedby a Schwarz technique. In other words, we increase the linear convergencerate at each nonlinear iteration by transforming the linear system (7) intothe equivalent form B�1f 0(u`�1) �u` = �B�1f(u`�1); through the action ofa preconditioner, B, whose inverse action approximates that of the Jacobian,but at smaller cost. Schwarz-type preconditioners (see, e.g., [25]) are appliedon a subdomain-by-subdomain basis through a local Jacobian approximation;these methods provide good data locality for parallel implementations overa range of parallel granularities. In particular, we use the restricted additiveSchwarz method (RASM) [9], which eliminates interprocess communicationduring the interpolation phase of conventional additive Schwarz, and for thisEuler model converges more rapidly than conventional additive Schwarz [12].Of particular interest in this Euler simulation are so-called matrix-freeNewton-Krylov methods (see, e.g., [8]), where the Jacobian matrix f 0(u) need not beformed explicitly, since only the action of the Jacobian on a vector, f 0(u) � v,is needed. The matrix-free approach enables cost-e�ective computation of up-to-date Jacobian-vector products at each nonlinear iteration. In contrast, thetime for explicitly forming and storing the Jacobian matrix at each nonlin-ear iteration is often prohibitively expensive, so that we typically lag thiscomputation. In other words, in practice we hold �xed for several nonlineariterations the explicitly computed Jacobian, which may be used to de�ne theNewton system and/or to precondition it. Within the context of fully implicitpseudo-transient Newton-Krylov methods with adaptively advancing CFL, thecost-e�ective matrix-free computation of up-to-date Jacobian-vector productsis critical for achieving nearly quadratic convergence. Section 6.1 provides abrief review of investigations (e.g., [26,12]) of these issues for this compressibleEuler model.4 Numerical Software ToolsThe high-performance computing community has explored a variety of ap-proaches for implementing parallel scienti�c applications, including parallellanguages, parallelizing compilers, automated source-to-source parallel trans-lators, and parallel libraries. For large-scale PDE-based simulations, we advo-cate for the use of parallel libraries, which o�er the encapsulation of expertisein forms that are directly usable as building blocks in large-scale applications.Libraries can of course be used in conjunction with these other approacheswhere appropriate. Moreover, when designed to exploit abstractions in mathe-matics and interprocess communication, parallel libraries o�er the added ben-e�t of facilitating the interface between numerical software and automatic5



di�erentiation tools for derivative computations. As shown in Section 6, suchcapabilities can be quite powerful in helping to achieve good overall perfor-mance for applications involving nonlinear PDEs. This section introduces thetools used in our investigations of transonic Euler 
ow, namely, the PETSclibrary and the ADIFOR automatic di�erentiation software.4.1 PETScOur strategy for parallelizing the legacy Euler model introduced in Section 2and investigating 	NKS algorithms is to use PETSc [1{3], a suite of datastructures and routines for the scalable solution of scienti�c applications mod-eled by PDEs. The library handles in a highly e�cient way, through a uniforminterface, the low-level details of the distributed-memory hierarchy. Examplesof such details include striking the right balance between bu�ering messagesand minimizing bu�er copies, overlapping communication and computation,organizing node code for strong cache locality, preallocating memory in siz-able chunks rather than incrementally, and separating tasks into one-time andevery-time subtasks using the inspector/executor paradigm. The bene�ts tobe gained from these and from other numerically neutral but architecturallyimportant techniques are so signi�cant that it is e�cient in both programmertime and execution time to express them in general-purpose code.The software integrates a hierarchy of components that range from low-leveldistributed data structures for meshes, vectors, and matrices to high-levellinear, nonlinear, and timestepping solvers. The algorithmic source code iswritten in high-level abstractions so that it can be easily understood andmodi�ed. This approach promotes code reuse and 
exibility and, in manycases, helps to decouple issues of parallelism from algorithm choices.Figure 1 illustrates the calling tree of a typical 	NKS application using thenonlinear solvers within PETSc. The top-level user routine performs I/O re-lated to initialization, restart, and postprocessing; it also calls PETSc sub-routines to create data structures for vectors and matrices and to initiate thenonlinear solver. Subroutines with the PETSc library call user routines forfunction evaluations f(u) and (approximate) Jacobian evaluations f 0(u) atgiven state vectors.Fig. 1. Schematic diagram of a 	NKS application, showing a user-provided driverand user-provided callback routines for evaluating the nonlinear residual vector andcorresponding Jacobian at PETSc-requested states.The Newton-based methods within PETSc are written in a data-structure-neutral form that uses abstractions for vectors, matrices, and linear solvers.The object-oriented techniques of encapsulation and polymorphism enable the6



support of various storage schemes and solvers through a single user interface.Such 
exibility is critical for enabling both library developers and applica-tion programmers to easily experiment with di�erent algorithmic and datastructure capabilities. For example, as mentioned in Section 3, of particu-lar interest in this Euler simulation are matrix-free Newton-Krylov methods,where only the action of the Jacobian on a vector, f 0(u) � v, is needed. Asdiscussed within Section 6, we have investigated a range of matrix-free andmatrix-explicit Newton-Krylov-Schwarz variants simply by specifying variousoptions at runtime; no changes in the application code or library were requiredfor these experiments.4.2 Automatic Di�erentiationWe advocate the use of automatic di�erentiation for computing the Jacobianf 0(u). Automatic di�erentiation (AD) is a technique that, given a programor subprogram to compute a function, produces a program or subprogram tocompute the derivatives of that function. It does so by augmenting the originalprogram with instructions for computing partial derivatives and for propagat-ing those derivatives according to the chain rule of di�erential calculus.Unlike traditional symbolic manipulation, the techniques of automatic dif-ferentiation are directly applicable to computer programs of arbitrary lengthcontaining branches, loops, and subroutines. AD enables derivatives to be up-dated easily whenever the original code is modi�ed. Unlike divided di�erences,there is no truncation error.The derivative augmentation can be implemented in one of two ways: trans-forming the source code using a precompiler or overloading the arithmetic op-erators and intrinsic functions. Each approach has its own merits [5]; we focuson the source transformation approach. Among the available source transfor-mation tools are ADIFOR [4], Odyssee [22], and TAMC [10] for Fortran 77and ADIC [7] for C/C++. We used ADIFOR for this project.5 Computing DerivativesAs discussed in Section 3, 	NKS algorithms require derivatives of the residual,f(u), either via explicit storage of a Jacobian matrix, f 0(u), or in the formof Jacobian-vector products, f 0(u) � v, both of which may be approximated.The derivatives can be computed analytically (a task that is typically time-consuming and error prone in terms of programmer time), approximated via�nite di�erences, or computed with automatic di�erentiation. Section 5.1 dis-7



cusses �nite di�erencing issues, while Sections 5.2 and Section 5.3 explain au-tomatic di�erentiation for computing explicit Jacobians and Jacobian-vectorproducts, respectively.5.1 Computing f 0(u) and f 0(u)v Using Finite Di�erencesMatrix-free Jacobian-vector products can be de�ned by directional di�erencingof the form f 0(u)v � f(u+ hv)� f(u)h ;where the di�erencing parameter h is chosen in an attempt to balance the rel-ative error in function evaluation with the magnitudes of the vectors u and v.Selection of an appropriate parameter is nontrivial, as values either too smallor too large will introduce rounding errors or truncation errors, respectively,that can lead to breakdowns. Investigators with relatively small, well-scaleddiscrete problems sometimes report satisfaction with a simple choice of h,approximately the square root of the \machine epsilon" for their machine's
oating-point system. A typical double-precision machine epsilon is approxi-mately 10�16, with a corresponding appropriate h of approximately 10�8. Moregenerally, adaptivity to the vectors u and v is desirable.We choose the di�erencing parameter dynamically using the technique pro-posed by Brown and Saad [8], namely,h = wjjvjj2max hjuTvj; ûT jvji sign(uTv); (9)where jvj = [jv1j; :::; jvnj]T , û = [jû1j; :::; jûnj]T for ûj > 0 being a user-suppliedtypical size of uj, and w � square root of relative error in function evaluations.Determining an appropriate estimation of the relative noise or error in functionevaluations is crucial for robust performance of matrix-free Newton-Krylovmethods. Assuming double-precision accuracy (or w � 10�8) is inappropri-ate for many large-scale applications. A more appropriate relative error esti-mate for the compressible 
ow problems considered in this work is w = 10�6,as determined by noise analysis techniques currently under investigation byMcInnes and Mor�e [17].In addition to evaluating the Jacobian-vector products with directional di�er-encing within Newton-Krylov methods, we can construct the preconditioner ina blackbox manner, without recourse to analytical formulae for the Jacobian8



elements, by directional di�erencing as described in [29] and as provided inthe JULIANNE code.5.2 Applying AD to the FunctionApplying AD to the user routine for evaluating f(u) to produce the requiredJacobian (or Jacobian-vector products) is challenging. In this application theuser code is a mixed-language subprogram that invokes PETSc communicationfunctions (which in turn invokeMPI [18] primitives).Although in principle it ispossible to apply AD to mixed-language, parallel programs [14,15], at presentthere is no implementation of AD for such codes. Furthermore, applying AD tothe entire PETSc toolkit in order to support the di�erentiation of the functionis overkill. We therefore propose an alternative approach that relies upon someinsight into the structure of the parallel function computation.We use a distributed-memory computational paradigm, in which the mesh andassociated data are partitioned at runtime across the participating processesso that each process \owns" a unique subset of the mesh and the correspondingunknowns of the problem. Discretization typically follows the basic philoso-phy of \owner-computes." For e�cient distributed memory computations, theprocess that stores mesh and associated data for a particular region of theglobal problem domain calculates most, though not necessarily all, of the cor-responding local part of the discretization. Typically, the computation of anonlinear residual, or function, based on the discretization of nonlinear PDEs(including the Euler code considered here) exhibits the structure diagrammedin Figure 2. First, generalized vector scatters distribute ghost data, or the bor-dering portions of the vector that are owned by neighboring processors. Thisphase is followed by a local function evaluation involving no communication.Finally, the distributed vector containing the discretized nonlinear function isassembled in parallel. (See [2] for a detailed discussion of these communicationissues, including message passing-oriented optimizations.)To di�erentiate such a function, we explicitly separate the local function eval-uation from the scattering and assembly phases. As illustrated in Figure 3,we apply AD to the local function evaluation subprogram to produce code forthe local Jacobian evaluation. The scattering and assembly phases need onlybe modi�ed slightly (at present, manually) to initialize the derivative valuesand assemble the distributed Jacobian matrix.Fig. 2. Schematic diagram of a 	NKS application, showing the various phases forparallel evaluation of the nonlinear residual vector and corresponding Jacobian.Fig. 3. Schematic diagram of the use of automatic di�erentiation tools to generatethe Jacobian routine for a nonlinear PDE computation.9



5.3 Computing Jacobian-Vector Products using ADTo this point, our discussion has assumed that we are interested in computinga dense Jacobian. This is not the case. For this problem, f 0(u) is very sparseand if a matrix-free method is used, we need only Jacobian-vector products.Fortunately, AD (or, more precisely, the forward mode of AD [11]) providesthe ability to compute not just the Jacobian matrix f 0(u) but also the productf 0(u)�S where S is an arbitrary matrix, often called the seed matrix. Further-more, the cost of computing f 0(u)�S is roughly proportional to p+1, where pis the number of columns in S. Thus, the cost of computing a Jacobian-vectorproduct f 0(u)v is very low relative to the cost of computing the full Jacobian.The cost of computing f 0(u)�S using the forward mode of AD can be boundedas 3p + 1 times the cost of computing f(u). The \+1" term comes from thefact that we must recompute f(u), because intermediate values are used incomputing derivatives. The multiplier 3 comes from the fact that computingthe derivatives of highly nonlinear functions can be somewhat more expensivethan computing the functions themselves. In practice, this multiplier is usuallyabout 1, with an observed range of about 0.5 to 3. Thus, a good estimate ofthe cost of computing f 0(u)v is about 2 function evaluations. This is twicethe cost of approximating f 0(u)v using �nite di�erences, which requires only asingle evaluation of the function f(u+ hv) (the value of f(u) can be reused).As discussed earlier, in this application we precondition with a lagged Jacobiancomputed using a lower-order discretization with some terms neglected. It is,however, possible to compute the full, sparse Jacobian using an appropriateseed matrixS based on coloring [6]. This reduces the cost of computing f 0(u) toappromately k+1 times the cost of computing f(u), where k is the chromaticnumber for f 0(u).6 Experimental ResultsThe following experiments with the Euler simulation modeled transonic 
owover an ONERA M6 wing, a standard three-dimensional test case for whichextensive experimental data is given in [24]. A frequently studied parametercombination combines a freestream Mach number of 0.84 with an angle ofattack of 3:06�. This transonic case gives rise to a characteristic �-shock, asdepicted in Fig. 4.Fig. 4. Mach number contours (the local tangential velocity magnitude divided bythe local sound speed) of the converged 
ow�eld on the upper wing surface for amesh with 224,264 nodes. 10



6.1 Review of Previous WorkIn previous work [12] we compared the convergence of various matrix-explicitand matrix-free pseudo-transient inexact Newton approaches: explicit bound-ary conditions (limiting CFL to 7.5), implicit boundary conditions with thesame CFL, implicit boundary conditions with advancing CFL (using the strat-egy presented in Section 3), and implicit boundary conditions with advanc-ing CFL and matrix-free application of the Jacobian. In all cases the non-linear function was evaluated to second-order accuracy. Whenever required,the explicit Jacobian was computed to �rst-order accuracy in space via �-nite di�erences, refreshed once every ten pseudo-timesteps, and stored witha compressed sparse block scheme that handles �ve degrees of freedom pernode (three-dimensional momentum, internal energy, and density). This ap-proximate Jacobian served as the left-hand-side matrix of the Newton sys-tems for the matrix-explicit methods or as the preconditioner for the matrix-free method. The frequency of Jacobian recomputation provides a reasonabletrade-o� in terms of convergence rate and the computational cost of matrixevaluation.The key observation from this previous work was that the combination ofimplicit boundary conditions coupled with the higher-order Jacobian-vectorproduct discretization enabled by the matrix-free technique solves the non-linear problem to machine precision several times faster than do the othermethods. The impact of using this combination increases with problem sizeand is consistent across various processor con�gurations. Neither the use ofimplicit boundary conditions alone nor the use of increasing CFL with a low-order Jacobian allows the approach of quadratic convergence. Consequently,all numerical experiments in this article employ matrix-free techniques withan adaptively advancing CFL number.6.2 Matrix-Free Experiments Using Finite Di�erencing and Automatic Dif-ferentiationAll of the following numerical experiments used the pseudo-transient matrix-free Newton-Krylov-Schwarz algorithm, as discussed in Section 3. The lin-earized Newton correction equations were solved by using restarted GMRES [23]preconditioned with RASM. All experimental results presented here were runon an IBM SP with 120 MHz P2SC nodes with two 128 MB memory cardseach and a TB3 switch; in addition, we have observed analogous qualitativebehavior on a range of other current parallel architectures.Figure 5 shows the convergence behavior for the matrix-free Newton method11



Fig. 5. Comparison of convergence using pseudo-transient continuation of a ma-trix-free Newton method with �nite di�erencing (FD) and automatic di�erentiation(AD); iterations (left) and time (right).Table 1Comparison of times for matrix-free 	NKS using �nite di�erences and automaticdi�erentiation. We consider a mesh of dimension 98�18�18 and one approximatelyeight times as large, with a dimension of 194� 34� 34.using Jacobian-vector products computed via �nite di�erences and automaticdi�erentiation. The �nite di�erence derivatives were computed using a varietyof step sizes according to equation (9), with estimates for the relative error wranging from 10�7 to 10�5. As the iteration history illustrates, the choice ofw is critical to achieving the proper balance between roundo� and truncationerror.These experiments, as well as those whose results are summarized in Figures 6through 8, employ a mesh of dimension 98 � 18� 18, which corresponds to atotal system size of 158,760 unknowns (where there are �ve degrees of freedomper node: density, internal energy, and three-dimensional momentum). Thismesh is su�ciently �ne to resolve 
ow features and enable algorithmic analysis.All experiments presented here for this mesh used a four-processor distributionand a single degree of overlap for the RASM preconditioner.If the value used for w is too small (10�7), roundo� error (under
ow) in thederivative approximation leads to stagnation of the algorithm, and conver-gence is never achieved. On the other hand, if the value used for w is toolarge (10�5), truncation error in the derivative approximation slows the con-vergence. With an intermediate choice for w (10�6), a good approximation tothe derivatives is achieved, and the algorithm converges rapidly. Convergenceis even more rapid when the analytic derivatives provided by AD are used.While AD exhibits rapid convergence in terms of number of iterations, it isobvious from the time history that it does not fare so well in terms of time tosolution. As discussed in Section 5.3, the cost of computing a Jacobian-vectorproduct using AD is usually about twice the cost of computing it using �nitedi�erences. For this particular problem, independent of mesh size or numberof processors, we observe a ratio of about 2.4 (see Table 1). This is somewhatamortized by the overhead of the linear solve (including preconditioning) andthe update of the Newton iterate, so the time per pseudo-transient Newtoniteration is about 70% longer for the AD case.Figure 5 also reveals that accurate derivatives are important only toward theend of the solution process. The �nite di�erence approximations based on astep size that is too large or too small converge at essentially the same rate asthe analytic derivatives until the residual norm is reduced by about 104. This12



Fig. 6. Comparison of convergence using matrix-free 	NKS with �nite di�erencing(FD), automatic di�erentiation (AD), and hybrid variants (FD/AD) with variousswitching parameters, s; iterations (left) and time (right).Table 2Comparison of total solution time using matrix-free 	NKS with �nite di�erenc-ing (FD), automatic di�erentiation (AD), and hybrid variants (FD/AD) using aswitching parameter s = :005 with various di�erencing parameters, w. The columnsheaded \Ratio" represent the ratio to the best method.observation, coupled with the fact that the AD derivatives provide excellentconvergence in terms of iterations but poorer performance in terms of time,led us to consider a hybrid strategy, in which �nite di�erences are used for theearly iterations and AD is used for the later iterations.Many possible mechanisms exist for deciding when to switch from �nite dif-ference approximations to the analytic derivatives of AD. For this study, weselected a simple strategy based on relative reduction in the residual norm. Fi-nite di�erences are used until the relative reductions drops below some thresh-old s, after which AD is used. As Figure 6 illustrates, this strategy is e�ectivein achieving rapid convergence in terms of both time and iterations. As ex-pected, the larger the value of s (thus, the sooner one switches from �nitedi�erences to analytic derivatives), the faster the convergence in terms of it-erations. However, regardless of the value used for s, there is little di�erencein terms of time to solution.A hybrid scheme is particularly attractive because of its resilience to an im-perfect choice for w. Table 2 demonstrates that the hybrid strategy providesperformance within 20% of the best �nite di�erence scheme, for a variety ofw. In contrast, straight �nite di�erence schemes with the same values for wmay take up to 40% longer, or fail to converge altogether.Figure 7 shows the history of CFL advancement, which is computed accordingto equation (6). The CFL number exhibits the desirable trait of increasingmonotonically from its starting point of 7.5 through its maximum of 10,000for the AD and hybrid FD/AD approaches. In contrast, for all of the FD casesthe CFL number encounters segments of decrease, which corresponds to anincrease of the residual norm.Fig. 7. Adaptively advancing CFL number for matrix-free 	NKS with �nite di�er-encing (FD), automatic di�erentiation (AD), and a hybrid approach (FD/AD).Figure 8 shows virtually identical convergence of various 
ow features as afunction of pseudo-timestep number for the various matrix-free approaches.The left-hand graph illustrates the evolution of the shock structure (char-acterized by the number of supersonic mesh points on the upper surface ofthe airfoil). The right-hand graph illustrates convergence of the dimensionless13



Fig. 8. Number of supersonic mesh points (left); coe�cients of lift and drag (right)for matrix-free 	NKS with �nite di�erencing (FD), automatic di�erentiation (AD),and a hybrid approach (FD/AD).Fig. 9. Convergence history of matrix-free 	NKS with hybrid FD/AD across 8, 16,32, and 64 processors; iterations (left) and time (right) for a mesh of dimension194� 34� 34:Fig. 10. Scalability of matrix-free 	NKS with hybrid FD/AD across 8, 16, 32, and64 processors. Time (solid line) scales nearly linearly (dotted line) for a mesh ofdimension 194� 34� 34. The number of nonlinear iterations (dashed line) shows amodest increase as the number of processors increases.aerodynamic functionals for lift and drag coe�cients.The graphs in Figures 9 and 10 show the scaling of the complete nonlinearsimulation for a mesh of dimension 194� 34� 34 (corresponding to 1,121,320unknowns) using restarted GMRES on 8, 16, 32, and 64 processors. The re-stricted additive Schwarz preconditioner is used with one level of overlap forthe 8-processor case and with two levels of overlap for the 16-, 32-, and 64-processor cases. Extensive experiments in [12] determined that these degreesof overlap are optimal for these processor con�gurations. The data indicatea modest decrease in nonlinear convergence rate as the number of processorsgrows; overall solution times scale reasonably well.7 Summary and Future WorkWe described a methodology for using PETSc and automatic di�erentiation toimplement a parallel Newton-Krylov-Schwarz technique with pseudo-transientcontinuation. We examined the advantages and disadvantages of using ADrelative to �nite di�erence approximations, and we introduced a hybrid schemethat marries the e�ciency of �nite di�erences with the robustness of AD. Wepresented experimental results from the application of these techniques to atransonsic Euler 
ow model.Three opportunities for future work are apparent: improving the performanceof AD relative to �nite di�erences, exploring new hybrid schemes, and au-tomating much of the work that was performed manually for this application.Performance can be improved by using Krylov methods that require multi-ple matrix-vector products. Such methods are receiving increased attentionbecause of their potential for overcoming the memory bandwidth limitationsof modern computer architectures [13]. Performance can also be improved byeliminating in the AD-generated code statements used for computing f(u) butnot f 0(u); this task could be automated through the use of tools for program14
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Table 1: 98 � 18 � 18 Mesh 194 � 34 � 34 Mesh4 Processors 32 ProcessorsAD FD AD FDTime per f evaluation (sec) .219 .218 .259 .259Time per f 0(u)v evaluation (sec) .531 .230 .614 .271Ratio of time for f 0(u)v to f 2.42 1.06 2.37 1.05Time per nonlinear iteration (sec) 6.84 4.07 7.81 4.65Total nonlinear iterations 67 73 208 209Total time (sec) 458 297 1624 971Table 2: Nonlinear Iterations Time to SolutionMethod w Number Ratio Time (sec) RatioFD 1.e-5 89 1.33 408 1.38FD 1.e-6 73 1.09 296 1.00FD 1.e-7 { 1 { 1FD/AD 1.e-5 69 1.03 341 1.15FD/AD 1.e-6 67 1.00 315 1.06FD/AD 1.e-7 71 1.06 356 1.20AD 67 1.00 457 1.54
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