
On Combining Computational Di�erentiationand Toolkits for Parallel S
ienti�
 Computing?Christian H. Bis
hof1, H. Martin B�u
ker1, and Paul D. Hovland21 Institute for S
ienti�
 Computing, Aa
hen University of Te
hnology,52056 Aa
hen, Germany,fbis
hof,bue
kerg�s
.rwth-aa
hen.de,WWW home page: http://www.s
.rwth-aa
hen.de2 Mathemati
s and Computer S
ien
e Division, Argonne National Laboratory,9700 South Cass Ave, Argonne, IL 60439, USA,hovland�m
s.anl.gov,WWW home page: http://www.m
s.anl.govAbstra
t. Automati
 di�erentiation is a powerful te
hnique for evalu-ating derivatives of fun
tions given in the form of a high-level program-ming language su
h as Fortran, C, or C++. The program is treatedas a potentially very long sequen
e of elementary statements to whi
hthe
hain rule of di�erential
al
ulus is applied over and over again.Combining automati
 di�erentiation and the organizational stru
ture oftoolkits for parallel s
ienti�

omputing provides a me
hanism for eval-uating derivatives by exploiting mathemati
al insight on a higher level.In these toolkits, algorithmi
 stru
tures su
h as BLAS-like operations,linear and nonlinear solvers, or integrators for ordinary di�erential equa-tions
an be identi�ed by their standardized interfa
es and re
ognizedas high-level mathemati
al obje
ts rather than as a sequen
e of elemen-tary statements. In this note, the di�erentiation of a linear solver withrespe
t to some parameter ve
tor is taken as an example. Mathemati
alinsight is used to reformulate this problem into the solution of multiplelinear systems that share the same
oeÆ
ient matrix but di�er in theirright-hand sides. The experiments reported here use ADIC, a tool for theautomati
 di�erentiation of C programs, and PETS
, an obje
t-orientedtoolkit for the parallel solution of s
ienti�
 problems modeled by partialdi�erential equations.1 Numeri
al versus Automati
 Di�erentiationGradient methods for optimization problems and Newton's method for the so-lution of nonlinear systems are only two examples showing that
omputationalte
hniques require the evaluation of derivatives of some obje
tive fun
tion. Inlarge-s
ale s
ienti�
 appli
ations, the obje
tive fun
tion f : R n ! Rm is typi-
ally not available in analyti
 form but is given by a
omputer
ode written in a? This work was supported in part by the Mathemati
al, Information, and Computa-tional S
ien
es Division subprogram of the OÆ
e of Advan
ed S
ienti�
 ComputingResear
h, U.S. Department of Energy, under Contra
t W-31-109-Eng-38.

2high-level programming language su
h as Fortran, C, or C++. Think of f as thefun
tion
omputed by, say, a (parallel)
omputational
uid dynami
s
ode
on-sisting of hundreds of thousands lines that simulates the
ow around a
omplexthree-dimensional geometry. Given su
h a representation of the obje
tive fun
-tion f(x) = �f1(x); f2(x); : : : ; fm(x)�T ,
omputational methods often demandthe evaluation of the Ja
obian matrixJf (x) := 0B� ��x1 f1(x) : : : ��xn f1(x)...��x1 fm(x) : : : ��xn fm(x)1CA 2 Rm�n (1)at some point of interest x 2 R n .Deriving an analyti
 expression for Jf (x) is often inadequate. Moreover, im-plementing su
h an analyti
 expression by hand is
hallenging, error-prone, andtime-
onsuming. Hen
e, other approa
hes are typi
ally preferred.A well-known and widely used approa
h for the approximation of the Ja-
obian matrix is divided di�eren
es (DD). For the sake of simpli
ity, we men-tion only �rst-order forward DD but stress that the following dis
ussion appliesto DD as a te
hnique of numeri
al di�erentiation in general. Using �rst-orderforward DD, one
an approximate the ith
olumn of the Ja
obian matrix (1) byf(x+ hiei)� f(x)hi ; (2)where hi is a suitably-
hosen step size and ei 2 R n is the ith Cartesian unitve
tor. An advantage of the DD approa
h is that the fun
tion f need be evaluatedonly at some suitably
hosen points. Roughly speaking, f is used as a bla
k boxevaluated at some points. The main disadvantage of DD is that the a

ura
yof the approximation depends
ru
ially on a suitable
hoi
e of these points,spe
i�
ally, of the step size hi. There is always the dilemma that the step sizeshould be small in order to de
rease the trun
ation error of (2) and that, onthe other hand, the step size should be large to avoid
an
ellation errors using�nite-pre
ision arithmeti
 when evaluating (2).Analyti
 and numeri
al di�erentiation methods are often
onsidered to bethe only options for
omputing derivatives. Another option, however, is symboli
di�erentiation by
omputer algebra pa
kages su
h as Ma
syma or Mathemati
a.Unfortunately, be
ause of the rapid growth of the underlying expli
it expressionsfor the derivatives, traditional symboli
 di�erentiation is
urrently ineÆ
ient [9℄.Another te
hnique for
omputing derivatives of an obje
tive fun
tion is au-tomati
 di�erentiation (AD) [10, 16℄. Given a
omputer
ode for the obje
tivefun
tion in virtually any high-level programming language su
h as Fortran, C,or C++, automati
 di�erentiation tools su
h as ADIFOR [4, 5℄, ADIC [6℄, orADOL-C [13℄
an by applied in a bla
k-box fashion. A survey of AD tools
anbe found at http://www.m
s.anl.gov/Proje
ts/autodiff/AD Tools. Thesetools generate another
omputer program,
alled a derivative-enhan
ed program,that evaluates f(x) and Jf (x) simultaneously. The key
on
ept behind AD is

3the fa
t that every
omputation, no matter how
ompli
ated, is exe
uted on a
omputer as a|potentially very long|sequen
e of a limited set of elementaryarithmeti
 operations su
h as additions, multipli
ations, and intrinsi
 fun
tionssu
h as sin() and
os(). By applying the
hain rule of di�erential
al
ulusover and over again to the
omposition of those elementary operations, f(x)and Jf (x)
an be evaluated up to ma
hine pre
ision. Besides the advantage ofa

ura
y, AD requires minimal human e�ort and has been proven more eÆ
ientthan DD under a wide range of
ir
umstan
es [3, 5, 12℄.2 Computational Di�erentiation in S
ienti�
 ToolkitsGiven the fa
t that automati
 di�erentiation tools need not know anything aboutthe underlying problem whose
ode is being di�erentiated, the resulting eÆ
ien
yof the automati
ally generated
ode is remarkable. However, it is possible notonly to apply AD te
hnology in a bla
k-box fashion but also to
ouple the appli-
ation of AD with high-level knowledge about the underlying
ode. We refer tothis
ombination as
omputational di�erentiation (CD). In some
ases, CD
anredu
e memory requirements, improve performan
e, and in
rease a

ura
y. Forinstan
e, a CD strategy identifying a major
omputational
omponent, derivingits analyti
al expression, and
oding the
orresponding derivatives by hand islikely to perform better than the standard AD approa
h that
an operate onlyon the level of simple arithmeti
 operations.In toolkits for s
ienti�

omputations, algorithmi
 stru
tures
an be automat-i
ally re
ognized when applying AD tools, provided standardized interfa
es areavailable. Examples in
lude standard (BLAS-like) linear algebra kernels, linearand nonlinear solvers, and integrators for ordinary di�erential equations. Thesealgorithmi
 stru
tures are the key to exploiting high-level knowledge when CDis used to di�erentiate appli
ations written in toolkits su
h as the Portable,Extensible Toolkit for S
ienti�
 Computation (PETS
) [1, 2℄.Consider the
ase of di�erentiating a
ode for the solution of sparse systemsof linear equations. PETS
 provides a uniform interfa
e to a variety of methodsfor solving these systems in parallel. Rather than applying an AD tool in abla
k-box fashion to a parti
ular method as a sequen
e of elementary arithmeti
operations, the
ombination of CD and PETS
 allows us to generate a singlederivative-enhan
ed program for any linear solver. More pre
isely, assume thatwe are
on
erned with a
ode for the solution ofA � x(s) = b(s) (3)where A 2 RN�N is the
oeÆ
ient matrix. For the sake of simpli
ity, it isassumed that only the solution x(s) 2 RN and the right-hand side b(s) 2 RN ,but not the
oeÆ
ient matrix, depend on a free parameter ve
tor s 2 R r . The
ode for the solution of (3) impli
itly de�nes a fun
tion x(s). Now, suppose thatone is interested in the Ja
obian Jx(s) 2 RN�r of the solution x with respe
tto the free parameter ve
tor s. Di�erentiating (3) with respe
t to s yieldsA � Jx(s) = Jb(s); (4)where Jb(s) 2 RN�r denotes the Ja
obian of the right-hand side b.

4 In parallel high-performan
e
omputing, the
oeÆ
ient matrix A is oftenlarge and sparse. For instan
e, numeri
al simulations based on partial di�eren-tial equations typi
ally lead to su
h systems. Krylov subspa
e methods [17℄ are
urrently
onsidered to be among the most powerful te
hniques for the solutionof sparse linear systems. These iterative methods generate a sequen
e of approx-imations to the exa
t solution x(s) of the system (3). Hen
e, an implementationof a Krylov subspa
e method does not
ompute the fun
tion x(s) but only anapproximation to that fun
tion. Sin
e, in this
ase, AD is applied to the approx-imation of a fun
tion rather than to the fun
tion itself, one may ask whetherand how AD-produ
ed derivatives are reasonable approximations to the desiredderivatives of the fun
tion x(s). This sometimes undesired side-e�e
t is dis
ussedin more detail in [8, 11℄ and
an be minimized by the following CD approa
h.Re
all that the standard AD approa
h would pro
ess the given
ode for aparti
ular linear solver for (3), say an implementation of the bi
onjugate gra-dient method, as a sequen
e of binary additions, multipli
ations, and the like.In
ontrast,
ombining the CD approa
h with PETS

onsists of the followingsteps:1. Re
ognize from inspe
tion of PETS
's interfa
e that the
ode is meant tosolve a linear system of type (3) regardless of whi
h parti
ular iterativemethod is used.2. Exploit the knowledge that the Ja
obian Jx(s) is given by the solution ofthe multiple linear systems (4) involving the same
oeÆ
ient matrix, but rdi�erent right-hand sides.The CD approa
h obviously eliminates the above mentioned problems with au-tomati
 di�erentiation of iterative s
hemes for the approximation of fun
tions.There is also the advantage that the CD approa
h abstra
ts from the parti
-ular linear solver. Di�erentiation of
odes involving any linear solver, not onlythose making use of the bi
onjugate gradient method, bene�ts from an eÆ
ientte
hnique to solve (4).3 Potential Gain of CD and Future Resear
h Dire
tionsA previous study [14℄ di�erentiating PETS
 with ADIC has shown that, foriterative linear solvers, CD-produ
ed derivatives are to be preferred to derivativesobtained from AD or DD. More pre
isely, the �ndings from that study withrespe
t to di�erentiation of linear solvers are as follows. The derivatives produ
edby the CD and AD approa
hes are several orders of magnitude more a

uratethan those produ
ed by DD. Compared with AD, the a

ura
y of CD is higher.In addition, the CD-produ
ed derivatives are obtained in less exe
ution timethan those by AD, whi
h in turn is faster than DD. The di�eren
es in exe
utiontime between these three approa
hes in
rease with in
reasing the dimension, r,of the free parameter ve
tor s.While the CD approa
h turns out to be
learly the best of the three dis
ussedapproa
hes, its performan
e
an be improved signi�
antly. The linear systems (4)

5involving the same
oeÆ
ient matrix but r di�erent right-hand sides are solvedin [14℄ by running r times a typi
al Krylov subspa
e method for a linear systemwith a single right-hand side. In
ontrast to these su

essive runs, so-
alled blo
kversions of Krylov subspa
e methods are suitable
andidates for solving systemswith multiple right-hand sides; see [7, 15℄ and the referen
es given there. Inea
h blo
k iteration, blo
k Krylov methods generate r iterates simultaneously,ea
h of whi
h is designed to be an approximation to the exa
t solutions of asingle system. Note that dire
t methods su
h as Gaussian elimination
an betrivially adapted to multiple linear systems be
ause their
omputational work isdominated by the fa
torization of the
oeÆ
ient matrix. On
e the fa
torizationis available, the solutions of multiple linear systems are given by a forward andba
k substitution per right-hand side. However, be
ause of the ex
essive amountof �ll-in, dire
t methods are often inappropriate for large sparse systems.In this note, we extend the work reported in [14℄ by in
orporating itera-tive blo
k methods into the CD approa
h. Based on the given s
enario of the
ombination of the ADIC tool and the PETS
 pa
kage, we
onsider a paral-lel implementation of a blo
k version of the bi
onjugate gradient method [15℄.We fo
us here on some fundamental issues illustrating this approa
h; a rigorousnumeri
al treatment will be presented elsewhere. To demonstrate the potentialgain from using a blo
k method in
ontrast to su

essive runs of a typi
al iter-ative method, we take the number of matrix-ve
tor multipli
ations as a roughperforman
e measure. This is a legitimate
hoi
e be
ause, usually, the matrix-ve
tor multipli
ations dominate the
omputational work of an iterative methodfor large sparse systems.Figure 1 shows, on a log s
ale, the
onvergen
e behavior of the blo
k bi
on-jugate gradient method applied to a system arising from a dis
retization of atwo-dimensional partial di�erential equation of order N = 1; 600 with r = 3right-hand sides. Throughout this note, we always
onsider the relative residualnorm, that is, the Eu
lidean norm of the residual s
aled by the Eu
lidean normof the initial residual. In this example, the iterates for the r = 3 systems
on-verge at the same step of the blo
k iteration. In general, however, these iterates
onverge at di�erent steps. Future work will therefore be
on
erned with howto dete
t and de
ate
onverged systems. Su
h de
ation te
hniques are
ru
ialto blo
k methods be
ause the algorithm would break down in the next blo
kiteration step; see the dis
ussion in [7℄ for more details on de
ation. We furtherassume that blo
k iterates
onverge at the same step and that de
ation is notne
essary.Next, we
onsider a �ner dis
retization of the same equation leading to alarger system of order N = 62; 500 with r = 7 right-hand sides to illustratethe potential gain of blo
k methods. Figure 2
ompares the
onvergen
e his-tory of applying a blo
k method to obtain blo
k iterates for all r = 7 systemssimultaneously and running a typi
al iterative method for a single right-handside r = 7 times one after another. For all our experiments, we use the bi
onju-gate gradient method provided by the linear equation solver (SLES)
omponentof PETS
 as a typi
al iterative method for a single right-hand side. For the plot

6

-7

-6

-5

-4

-3

-2

-1

0

1

0 50 100 150 200 250 300 350 400 450 500

lo
g_

10
 o

f
R

el
at

iv
e

R
es

id
ua

l N
or

m

Number of Matrix-Vector Multiplications

System 1
System 2
System 3

Fig. 1. Convergen
e history of the blo
k method for the solution of r = 3 systemsinvolving the same
oeÆ
ient matrix of order N = 1; 600. The residual norm is shownfor ea
h of the systems individually.of the blo
k method we use the largest relative residual norm of all systems.In this example, the bi
onjugate gradient method for a single right-hand side(dotted
urve) needs 8; 031 matrix-ve
tor multipli
ations to a
hieve a toleran
eof 10�7 in the relative residual norm. The blo
k method (solid
urve), on the
ontrary,
onverges in only 5; 089 matrix-ve
tor multipli
ations to a
hieve thesame toleran
e. Clearly, blo
k methods o�er a potential speedup in
omparisonwith su

essive runs of methods for a single right-hand side.The ratio of the number of matrix-ve
tor multipli
ations of the method for asingle right-hand side to the number of matrix-ve
tor multipli
ations of the blo
kmethod is 1:58 in the example above and is given in the
orresponding
olumnof Table 1. In addition to the
ase where the number of right-hand sides is r = 7,this table
ontains the results for the same
oeÆ
ient matrix, but for varyingnumbers of right-hand sides. It is not surprising that the number of matrix-ve
tormultipli
ations needed to
onverge in
reases with an in
reasing number of right-hand sides r. Note, however, that the ratio also in
reases with r. This behaviorshows that the larger the number of right-hand sides the more attra
tive the useof blo
k methods.Many interesting aspe
ts remain to be investigated. Besides the above men-tioned de
ation te
hnique, there is the question of determining a suitable pre-
onditioner. Here, we
ompletely omitted pre
onditioning in order to make the
omparison between the blo
k method and its
orresponden
e for a single right-hand side more visible. Nevertheless, pre
onditioning is an important ingredientin any iterative te
hnique for the solution of sparse linear systems for both single

7

-7

-6

-5

-4

-3

-2

-1

0

1

0 1000 2000 3000 4000 5000 6000 7000 8000

lo
g_

10
 o

f
R

el
at

iv
e

R
es

id
ua

l N
or

m

Number of Matrix-Vector Multiplications

typical
block

Fig. 2. Comparison of the blo
k method for the solution of r = 7 systems involving thesame
oeÆ
ient matrix of order N = 62; 500 and r su

essive runs of a typi
al iterativemethod for a single right-hand side.and multiple right-hand sides. Noti
e that, in their method, Freund and Mal-hotra [7℄ report a dependen
e of the
hoi
e of an appropriate pre
onditioner onthe parameter r.Blo
k methods are also of interest be
ause they o�er the potential for bet-ter performan
e. At the single-pro
essor level, performing several matrix-ve
torprodu
ts simultaneously provides in
reased temporal lo
ality for the matrix,thus mitigating the e�e
ts of the memory bandwidth bottlene
k. The availabil-ity of several ve
tors at the same time also provides opportunities for in
reasedparallel performan
e, as in
reased data lo
ality redu
es the ratio of
ommuni-Table 1. Comparison of matrix-ve
tor multipli
ations needed to require a de
reaseof seven orders of magnitude in the relative residual norm for di�erent dimensions, r,of the free parameter ve
tor. The rows show the number of matrix-ve
tor multipli
a-tions for r su

essive runs of a typi
al iterative method for a single right-hand side, a
orresponding blo
k version, and their ratio, respe
tively. (The order of the matrix isN = 62; 500.)r 1 2 3 4 5 6 7 8 9 10typi
al 1,047 2,157 3,299 4,463 5,641 6,831 8,031 9,237 10,451 11,669blo
k 971 1,770 2,361 3,060 3,815 4,554 5,089 5,624 6,219 6,550ratio 1.08 1.22 1.40 1.46 1.48 1.50 1.58 1.64 1.68 1.78

8
ation to
omputation. Even for the single right-hand side
ase, blo
k methodsare attra
tive be
ause of their potential for exploiting lo
ality, a key issue inimplementing te
hniques for high-performan
e
omputers.4 Con
luding RemarksAutomati
 di�erentiation applied to toolkits for parallel s
ienti�

omputingsu
h as PETS
 in
reases their fun
tionality signi�
antly. While automati
 dif-ferentiation is more a

urate and, under a wide range of
ir
umstan
es, fasterthan approximating derivatives numeri
ally, its performan
e
an be improvedeven further by exploiting high-level mathemati
al knowledge. The organiza-tional stru
ture of toolkits provides this information in a natural way by relyingon standardized interfa
es for high-level algorithmi
 stru
tures. The reason whyimprovements over the traditional form of automati
 di�erentiation are possibleis that, in the traditional approa
h, any program is treated as a sequen
e of ele-mentary statements. Though powerful, automati
 di�erentiation operates on thelevel of statements. In
ontrast,
omputational di�erentiation, the
ombinationof me
hani
ally applying te
hniques of automati
 di�erentiation and human-guided mathemati
al insight, allows the analysis of obje
ts on higher levels thanon the level of elementary statements. These issues are demonstrated by takingthe di�erentiation of an iterative solver for the solution of large sparse systemsof linear equations as an example. Here, mathemati
al insight
onsists in refor-mulating the di�erentiation of a linear solver into a solution of multiple linearsystems involving the same
oeÆ
ient matrix, but whose right-hand sides dif-fer. The reformulation enables the integration of appropriate te
hniques for theproblem of solving multiple linear systems, leading to a signi�
ant performan
eimprovement when di�erentiating
ode for any linear solver.A
knowledgmentsThis work was
ompleted while the se
ond author was visiting the Mathemat-i
s and Computer S
ien
e Division, Argonne National Laboratory. He was sup-ported by the Mathemati
al, Information, and Computational S
ien
es Divisionsubprogram of the OÆ
e of Advan
ed S
ienti�
 Computing Resear
h, U.S. De-partment of Energy, under Contra
t W-31-109-Eng-38. Gail Pieper proofread adraft of this manus
ript and gave several helpful
omments.Referen
es[1℄ Satish Balay, William D. Gropp, Lois Curfman M
Innes, and Barry F. Smith.PETS
 2.0 users manual. Te
hni
al Report ANL-95/11 - Revision 2.0.24, ArgonneNational Laboratory, 1999.[2℄ Satish Balay, William D. Gropp, Lois Curfman M
Innes, and Barry F. Smith.PETS
 home page. http://www.m
s.anl.gov/pets
, 1999.

9[3℄ Martin Berz, Christian Bis
hof, George Corliss, and Andreas Griewank. Computa-tional Di�erentiation: Te
hniques, Appli
ations, and Tools. SIAM, Philadelphia,1996.[4℄ Christian Bis
hof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hov-land. ADIFOR: Generating derivative
odes from Fortran programs. S
ienti�
Programming, 1(1):11{29, 1992.[5℄ Christian Bis
hof, Alan Carle, Peyvand Khademi, and Andrew Mauer. ADI-FOR 2.0: Automati
 di�erentiation of Fortran 77 programs. IEEE ComputationalS
ien
e & Engineering, 3(3):18{32, 1996.[6℄ Christian Bis
hof, Lu
as Roh, and Andrew Mauer. ADIC | An extensibleautomati
 di�erentiation tool for ANSI-C. Software{Pra
ti
e and Experien
e,27(12):1427{1456, 1997.[7℄ Roland W. Freund and Manish Malhotra. A blo
k QMR algorithm for non-Hermitian linear systems with multiple right-hand sides. Linear Algebra and ItsAppli
ations, 254:119{157, 1997.[8℄ Jean-Charles Gilbert. Automati
 di�erentiation and iterative pro
esses. Opti-mization Methods and Software, 1(1):13{22, 1992.[9℄ Andreas Griewank. On automati
 di�erentiation. In Mathemati
al Programming:Re
ent Developments and Appli
ations, pages 83{108, Amsterdam, 1989. KluwerA
ademi
 Publishers.[10℄ Andreas Griewank. Evaluating Derivatives: Prin
iples and Te
hniques of Algo-rithmi
 Di�erentiation. SIAM, Philadelphia, 2000.[11℄ Andreas Griewank, Christian Bis
hof, George Corliss, Alan Carle, and KarenWilliamson. Derivative
onvergen
e of iterative equation solvers. OptimizationMethods and Software, 2:321{355, 1993.[12℄ Andreas Griewank and George Corliss. Automati
 Di�erentiation of Algorithms.SIAM, Philadelphia, 1991.[13℄ Andreas Griewank, David Juedes, and Jean Utke. ADOL-C, a pa
kage for theautomati
 di�erentiation of algorithms written in C/C++. ACM Transa
tions onMathemati
al Software, 22(2):131{167, 1996.[14℄ Paul Hovland, Boyana Norris, Lu
as Roh, and Barry Smith. Developinga derivative-enhan
ed obje
t-oriented toolkit for s
ienti�

omputations. InMi
hael E. Henderson, Christopher R. Anderson, and Stephen L. Lyons, editors,Obje
t Oriented Methods for Interoperable S
ienti�
 and Engineering Comput-ing: Pro
eedings of the 1998 SIAM Workshop, pages 129{137, Philadelphia, 1999.SIAM.[15℄ Dianne P. O'Leary. The blo
k
onjugated gradient algorithm and related methods.Linear Algebra and Its Appli
ations, 29:293{322, 1980.[16℄ Louis B. Rall. Automati
 Di�erentiation: Te
hniques and Appli
ations, volume120 of Le
ture Notes in Computer S
ien
e. Springer Verlag, Berlin, 1981.[17℄ Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS PublishingCompany, Boston, 1996.

