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2high-level programming language suh as Fortran, C, or C++. Think of f as thefuntion omputed by, say, a (parallel) omputational uid dynamis ode on-sisting of hundreds of thousands lines that simulates the ow around a omplexthree-dimensional geometry. Given suh a representation of the objetive fun-tion f(x) = �f1(x); f2(x); : : : ; fm(x)�T , omputational methods often demandthe evaluation of the Jaobian matrixJf (x) := 0B� ��x1 f1(x) : : : ��xn f1(x)... . . . ...��x1 fm(x) : : : ��xn fm(x)1CA 2 Rm�n (1)at some point of interest x 2 R n .Deriving an analyti expression for Jf (x) is often inadequate. Moreover, im-plementing suh an analyti expression by hand is hallenging, error-prone, andtime-onsuming. Hene, other approahes are typially preferred.A well-known and widely used approah for the approximation of the Ja-obian matrix is divided di�erenes (DD). For the sake of simpliity, we men-tion only �rst-order forward DD but stress that the following disussion appliesto DD as a tehnique of numerial di�erentiation in general. Using �rst-orderforward DD, one an approximate the ith olumn of the Jaobian matrix (1) byf(x+ hiei)� f(x)hi ; (2)where hi is a suitably-hosen step size and ei 2 R n is the ith Cartesian unitvetor. An advantage of the DD approah is that the funtion f need be evaluatedonly at some suitably hosen points. Roughly speaking, f is used as a blak boxevaluated at some points. The main disadvantage of DD is that the aurayof the approximation depends ruially on a suitable hoie of these points,spei�ally, of the step size hi. There is always the dilemma that the step sizeshould be small in order to derease the trunation error of (2) and that, onthe other hand, the step size should be large to avoid anellation errors using�nite-preision arithmeti when evaluating (2).Analyti and numerial di�erentiation methods are often onsidered to bethe only options for omputing derivatives. Another option, however, is symbolidi�erentiation by omputer algebra pakages suh as Masyma or Mathematia.Unfortunately, beause of the rapid growth of the underlying expliit expressionsfor the derivatives, traditional symboli di�erentiation is urrently ineÆient [9℄.Another tehnique for omputing derivatives of an objetive funtion is au-tomati di�erentiation (AD) [10, 16℄. Given a omputer ode for the objetivefuntion in virtually any high-level programming language suh as Fortran, C,or C++, automati di�erentiation tools suh as ADIFOR [4, 5℄, ADIC [6℄, orADOL-C [13℄ an by applied in a blak-box fashion. A survey of AD tools anbe found at http://www.ms.anl.gov/Projets/autodiff/AD Tools. Thesetools generate another omputer program, alled a derivative-enhaned program,that evaluates f(x) and Jf (x) simultaneously. The key onept behind AD is



3the fat that every omputation, no matter how ompliated, is exeuted on aomputer as a|potentially very long|sequene of a limited set of elementaryarithmeti operations suh as additions, multipliations, and intrinsi funtionssuh as sin() and os(). By applying the hain rule of di�erential alulusover and over again to the omposition of those elementary operations, f(x)and Jf (x) an be evaluated up to mahine preision. Besides the advantage ofauray, AD requires minimal human e�ort and has been proven more eÆientthan DD under a wide range of irumstanes [3, 5, 12℄.2 Computational Di�erentiation in Sienti� ToolkitsGiven the fat that automati di�erentiation tools need not know anything aboutthe underlying problem whose ode is being di�erentiated, the resulting eÆienyof the automatially generated ode is remarkable. However, it is possible notonly to apply AD tehnology in a blak-box fashion but also to ouple the appli-ation of AD with high-level knowledge about the underlying ode. We refer tothis ombination as omputational di�erentiation (CD). In some ases, CD anredue memory requirements, improve performane, and inrease auray. Forinstane, a CD strategy identifying a major omputational omponent, derivingits analytial expression, and oding the orresponding derivatives by hand islikely to perform better than the standard AD approah that an operate onlyon the level of simple arithmeti operations.In toolkits for sienti� omputations, algorithmi strutures an be automat-ially reognized when applying AD tools, provided standardized interfaes areavailable. Examples inlude standard (BLAS-like) linear algebra kernels, linearand nonlinear solvers, and integrators for ordinary di�erential equations. Thesealgorithmi strutures are the key to exploiting high-level knowledge when CDis used to di�erentiate appliations written in toolkits suh as the Portable,Extensible Toolkit for Sienti� Computation (PETS) [1, 2℄.Consider the ase of di�erentiating a ode for the solution of sparse systemsof linear equations. PETS provides a uniform interfae to a variety of methodsfor solving these systems in parallel. Rather than applying an AD tool in ablak-box fashion to a partiular method as a sequene of elementary arithmetioperations, the ombination of CD and PETS allows us to generate a singlederivative-enhaned program for any linear solver. More preisely, assume thatwe are onerned with a ode for the solution ofA � x(s) = b(s) (3)where A 2 RN�N is the oeÆient matrix. For the sake of simpliity, it isassumed that only the solution x(s) 2 RN and the right-hand side b(s) 2 RN ,but not the oeÆient matrix, depend on a free parameter vetor s 2 R r . Theode for the solution of (3) impliitly de�nes a funtion x(s). Now, suppose thatone is interested in the Jaobian Jx(s) 2 RN�r of the solution x with respetto the free parameter vetor s. Di�erentiating (3) with respet to s yieldsA � Jx(s) = Jb(s); (4)where Jb(s) 2 RN�r denotes the Jaobian of the right-hand side b.



4 In parallel high-performane omputing, the oeÆient matrix A is oftenlarge and sparse. For instane, numerial simulations based on partial di�eren-tial equations typially lead to suh systems. Krylov subspae methods [17℄ areurrently onsidered to be among the most powerful tehniques for the solutionof sparse linear systems. These iterative methods generate a sequene of approx-imations to the exat solution x(s) of the system (3). Hene, an implementationof a Krylov subspae method does not ompute the funtion x(s) but only anapproximation to that funtion. Sine, in this ase, AD is applied to the approx-imation of a funtion rather than to the funtion itself, one may ask whetherand how AD-produed derivatives are reasonable approximations to the desiredderivatives of the funtion x(s). This sometimes undesired side-e�et is disussedin more detail in [8, 11℄ and an be minimized by the following CD approah.Reall that the standard AD approah would proess the given ode for apartiular linear solver for (3), say an implementation of the bionjugate gra-dient method, as a sequene of binary additions, multipliations, and the like.In ontrast, ombining the CD approah with PETS onsists of the followingsteps:1. Reognize from inspetion of PETS's interfae that the ode is meant tosolve a linear system of type (3) regardless of whih partiular iterativemethod is used.2. Exploit the knowledge that the Jaobian Jx(s) is given by the solution ofthe multiple linear systems (4) involving the same oeÆient matrix, but rdi�erent right-hand sides.The CD approah obviously eliminates the above mentioned problems with au-tomati di�erentiation of iterative shemes for the approximation of funtions.There is also the advantage that the CD approah abstrats from the parti-ular linear solver. Di�erentiation of odes involving any linear solver, not onlythose making use of the bionjugate gradient method, bene�ts from an eÆienttehnique to solve (4).3 Potential Gain of CD and Future Researh DiretionsA previous study [14℄ di�erentiating PETS with ADIC has shown that, foriterative linear solvers, CD-produed derivatives are to be preferred to derivativesobtained from AD or DD. More preisely, the �ndings from that study withrespet to di�erentiation of linear solvers are as follows. The derivatives produedby the CD and AD approahes are several orders of magnitude more auratethan those produed by DD. Compared with AD, the auray of CD is higher.In addition, the CD-produed derivatives are obtained in less exeution timethan those by AD, whih in turn is faster than DD. The di�erenes in exeutiontime between these three approahes inrease with inreasing the dimension, r,of the free parameter vetor s.While the CD approah turns out to be learly the best of the three disussedapproahes, its performane an be improved signi�antly. The linear systems (4)



5involving the same oeÆient matrix but r di�erent right-hand sides are solvedin [14℄ by running r times a typial Krylov subspae method for a linear systemwith a single right-hand side. In ontrast to these suessive runs, so-alled blokversions of Krylov subspae methods are suitable andidates for solving systemswith multiple right-hand sides; see [7, 15℄ and the referenes given there. Ineah blok iteration, blok Krylov methods generate r iterates simultaneously,eah of whih is designed to be an approximation to the exat solutions of asingle system. Note that diret methods suh as Gaussian elimination an betrivially adapted to multiple linear systems beause their omputational work isdominated by the fatorization of the oeÆient matrix. One the fatorizationis available, the solutions of multiple linear systems are given by a forward andbak substitution per right-hand side. However, beause of the exessive amountof �ll-in, diret methods are often inappropriate for large sparse systems.In this note, we extend the work reported in [14℄ by inorporating itera-tive blok methods into the CD approah. Based on the given senario of theombination of the ADIC tool and the PETS pakage, we onsider a paral-lel implementation of a blok version of the bionjugate gradient method [15℄.We fous here on some fundamental issues illustrating this approah; a rigorousnumerial treatment will be presented elsewhere. To demonstrate the potentialgain from using a blok method in ontrast to suessive runs of a typial iter-ative method, we take the number of matrix-vetor multipliations as a roughperformane measure. This is a legitimate hoie beause, usually, the matrix-vetor multipliations dominate the omputational work of an iterative methodfor large sparse systems.Figure 1 shows, on a log sale, the onvergene behavior of the blok bion-jugate gradient method applied to a system arising from a disretization of atwo-dimensional partial di�erential equation of order N = 1; 600 with r = 3right-hand sides. Throughout this note, we always onsider the relative residualnorm, that is, the Eulidean norm of the residual saled by the Eulidean normof the initial residual. In this example, the iterates for the r = 3 systems on-verge at the same step of the blok iteration. In general, however, these iteratesonverge at di�erent steps. Future work will therefore be onerned with howto detet and deate onverged systems. Suh deation tehniques are ruialto blok methods beause the algorithm would break down in the next blokiteration step; see the disussion in [7℄ for more details on deation. We furtherassume that blok iterates onverge at the same step and that deation is notneessary.Next, we onsider a �ner disretization of the same equation leading to alarger system of order N = 62; 500 with r = 7 right-hand sides to illustratethe potential gain of blok methods. Figure 2 ompares the onvergene his-tory of applying a blok method to obtain blok iterates for all r = 7 systemssimultaneously and running a typial iterative method for a single right-handside r = 7 times one after another. For all our experiments, we use the bionju-gate gradient method provided by the linear equation solver (SLES) omponentof PETS as a typial iterative method for a single right-hand side. For the plot
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Fig. 1. Convergene history of the blok method for the solution of r = 3 systemsinvolving the same oeÆient matrix of order N = 1; 600. The residual norm is shownfor eah of the systems individually.of the blok method we use the largest relative residual norm of all systems.In this example, the bionjugate gradient method for a single right-hand side(dotted urve) needs 8; 031 matrix-vetor multipliations to ahieve a toleraneof 10�7 in the relative residual norm. The blok method (solid urve), on theontrary, onverges in only 5; 089 matrix-vetor multipliations to ahieve thesame tolerane. Clearly, blok methods o�er a potential speedup in omparisonwith suessive runs of methods for a single right-hand side.The ratio of the number of matrix-vetor multipliations of the method for asingle right-hand side to the number of matrix-vetor multipliations of the blokmethod is 1:58 in the example above and is given in the orresponding olumnof Table 1. In addition to the ase where the number of right-hand sides is r = 7,this table ontains the results for the same oeÆient matrix, but for varyingnumbers of right-hand sides. It is not surprising that the number of matrix-vetormultipliations needed to onverge inreases with an inreasing number of right-hand sides r. Note, however, that the ratio also inreases with r. This behaviorshows that the larger the number of right-hand sides the more attrative the useof blok methods.Many interesting aspets remain to be investigated. Besides the above men-tioned deation tehnique, there is the question of determining a suitable pre-onditioner. Here, we ompletely omitted preonditioning in order to make theomparison between the blok method and its orrespondene for a single right-hand side more visible. Nevertheless, preonditioning is an important ingredientin any iterative tehnique for the solution of sparse linear systems for both single
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Fig. 2. Comparison of the blok method for the solution of r = 7 systems involving thesame oeÆient matrix of order N = 62; 500 and r suessive runs of a typial iterativemethod for a single right-hand side.and multiple right-hand sides. Notie that, in their method, Freund and Mal-hotra [7℄ report a dependene of the hoie of an appropriate preonditioner onthe parameter r.Blok methods are also of interest beause they o�er the potential for bet-ter performane. At the single-proessor level, performing several matrix-vetorproduts simultaneously provides inreased temporal loality for the matrix,thus mitigating the e�ets of the memory bandwidth bottlenek. The availabil-ity of several vetors at the same time also provides opportunities for inreasedparallel performane, as inreased data loality redues the ratio of ommuni-Table 1. Comparison of matrix-vetor multipliations needed to require a dereaseof seven orders of magnitude in the relative residual norm for di�erent dimensions, r,of the free parameter vetor. The rows show the number of matrix-vetor multiplia-tions for r suessive runs of a typial iterative method for a single right-hand side, aorresponding blok version, and their ratio, respetively. (The order of the matrix isN = 62; 500.)r 1 2 3 4 5 6 7 8 9 10typial 1,047 2,157 3,299 4,463 5,641 6,831 8,031 9,237 10,451 11,669blok 971 1,770 2,361 3,060 3,815 4,554 5,089 5,624 6,219 6,550ratio 1.08 1.22 1.40 1.46 1.48 1.50 1.58 1.64 1.68 1.78



8ation to omputation. Even for the single right-hand side ase, blok methodsare attrative beause of their potential for exploiting loality, a key issue inimplementing tehniques for high-performane omputers.4 Conluding RemarksAutomati di�erentiation applied to toolkits for parallel sienti� omputingsuh as PETS inreases their funtionality signi�antly. While automati dif-ferentiation is more aurate and, under a wide range of irumstanes, fasterthan approximating derivatives numerially, its performane an be improvedeven further by exploiting high-level mathematial knowledge. The organiza-tional struture of toolkits provides this information in a natural way by relyingon standardized interfaes for high-level algorithmi strutures. The reason whyimprovements over the traditional form of automati di�erentiation are possibleis that, in the traditional approah, any program is treated as a sequene of ele-mentary statements. Though powerful, automati di�erentiation operates on thelevel of statements. In ontrast, omputational di�erentiation, the ombinationof mehanially applying tehniques of automati di�erentiation and human-guided mathematial insight, allows the analysis of objets on higher levels thanon the level of elementary statements. These issues are demonstrated by takingthe di�erentiation of an iterative solver for the solution of large sparse systemsof linear equations as an example. Here, mathematial insight onsists in refor-mulating the di�erentiation of a linear solver into a solution of multiple linearsystems involving the same oeÆient matrix, but whose right-hand sides dif-fer. The reformulation enables the integration of appropriate tehniques for theproblem of solving multiple linear systems, leading to a signi�ant performaneimprovement when di�erentiating ode for any linear solver.AknowledgmentsThis work was ompleted while the seond author was visiting the Mathemat-is and Computer Siene Division, Argonne National Laboratory. He was sup-ported by the Mathematial, Information, and Computational Sienes Divisionsubprogram of the OÆe of Advaned Sienti� Computing Researh, U.S. De-partment of Energy, under Contrat W-31-109-Eng-38. Gail Pieper proofread adraft of this manusript and gave several helpful omments.Referenes[1℄ Satish Balay, William D. Gropp, Lois Curfman MInnes, and Barry F. Smith.PETS 2.0 users manual. Tehnial Report ANL-95/11 - Revision 2.0.24, ArgonneNational Laboratory, 1999.[2℄ Satish Balay, William D. Gropp, Lois Curfman MInnes, and Barry F. Smith.PETS home page. http://www.ms.anl.gov/pets, 1999.
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