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t. Automati
 di�erentiation is a powerful te
hnique for evalu-ating derivatives of fun
tions given in the form of a high-level program-ming language su
h as Fortran, C, or C++. The program is treatedas a potentially very long sequen
e of elementary statements to whi
hthe 
hain rule of di�erential 
al
ulus is applied over and over again.Combining automati
 di�erentiation and the organizational stru
ture oftoolkits for parallel s
ienti�
 
omputing provides a me
hanism for eval-uating derivatives by exploiting mathemati
al insight on a higher level.In these toolkits, algorithmi
 stru
tures su
h as BLAS-like operations,linear and nonlinear solvers, or integrators for ordinary di�erential equa-tions 
an be identi�ed by their standardized interfa
es and re
ognizedas high-level mathemati
al obje
ts rather than as a sequen
e of elemen-tary statements. In this note, the di�erentiation of a linear solver withrespe
t to some parameter ve
tor is taken as an example. Mathemati
alinsight is used to reformulate this problem into the solution of multiplelinear systems that share the same 
oeÆ
ient matrix but di�er in theirright-hand sides. The experiments reported here use ADIC, a tool for theautomati
 di�erentiation of C programs, and PETS
, an obje
t-orientedtoolkit for the parallel solution of s
ienti�
 problems modeled by partialdi�erential equations.1 Numeri
al versus Automati
 Di�erentiationGradient methods for optimization problems and Newton's method for the so-lution of nonlinear systems are only two examples showing that 
omputationalte
hniques require the evaluation of derivatives of some obje
tive fun
tion. Inlarge-s
ale s
ienti�
 appli
ations, the obje
tive fun
tion f : R n ! Rm is typi-
ally not available in analyti
 form but is given by a 
omputer 
ode written in a? This work was supported in part by the Mathemati
al, Information, and Computa-tional S
ien
es Division subprogram of the OÆ
e of Advan
ed S
ienti�
 ComputingResear
h, U.S. Department of Energy, under Contra
t W-31-109-Eng-38.



2high-level programming language su
h as Fortran, C, or C++. Think of f as thefun
tion 
omputed by, say, a (parallel) 
omputational 
uid dynami
s 
ode 
on-sisting of hundreds of thousands lines that simulates the 
ow around a 
omplexthree-dimensional geometry. Given su
h a representation of the obje
tive fun
-tion f(x) = �f1(x); f2(x); : : : ; fm(x)�T , 
omputational methods often demandthe evaluation of the Ja
obian matrixJf (x) := 0B� ��x1 f1(x) : : : ��xn f1(x)... . . . ...��x1 fm(x) : : : ��xn fm(x)1CA 2 Rm�n (1)at some point of interest x 2 R n .Deriving an analyti
 expression for Jf (x) is often inadequate. Moreover, im-plementing su
h an analyti
 expression by hand is 
hallenging, error-prone, andtime-
onsuming. Hen
e, other approa
hes are typi
ally preferred.A well-known and widely used approa
h for the approximation of the Ja-
obian matrix is divided di�eren
es (DD). For the sake of simpli
ity, we men-tion only �rst-order forward DD but stress that the following dis
ussion appliesto DD as a te
hnique of numeri
al di�erentiation in general. Using �rst-orderforward DD, one 
an approximate the ith 
olumn of the Ja
obian matrix (1) byf(x+ hiei)� f(x)hi ; (2)where hi is a suitably-
hosen step size and ei 2 R n is the ith Cartesian unitve
tor. An advantage of the DD approa
h is that the fun
tion f need be evaluatedonly at some suitably 
hosen points. Roughly speaking, f is used as a bla
k boxevaluated at some points. The main disadvantage of DD is that the a

ura
yof the approximation depends 
ru
ially on a suitable 
hoi
e of these points,spe
i�
ally, of the step size hi. There is always the dilemma that the step sizeshould be small in order to de
rease the trun
ation error of (2) and that, onthe other hand, the step size should be large to avoid 
an
ellation errors using�nite-pre
ision arithmeti
 when evaluating (2).Analyti
 and numeri
al di�erentiation methods are often 
onsidered to bethe only options for 
omputing derivatives. Another option, however, is symboli
di�erentiation by 
omputer algebra pa
kages su
h as Ma
syma or Mathemati
a.Unfortunately, be
ause of the rapid growth of the underlying expli
it expressionsfor the derivatives, traditional symboli
 di�erentiation is 
urrently ineÆ
ient [9℄.Another te
hnique for 
omputing derivatives of an obje
tive fun
tion is au-tomati
 di�erentiation (AD) [10, 16℄. Given a 
omputer 
ode for the obje
tivefun
tion in virtually any high-level programming language su
h as Fortran, C,or C++, automati
 di�erentiation tools su
h as ADIFOR [4, 5℄, ADIC [6℄, orADOL-C [13℄ 
an by applied in a bla
k-box fashion. A survey of AD tools 
anbe found at http://www.m
s.anl.gov/Proje
ts/autodiff/AD Tools. Thesetools generate another 
omputer program, 
alled a derivative-enhan
ed program,that evaluates f(x) and Jf (x) simultaneously. The key 
on
ept behind AD is



3the fa
t that every 
omputation, no matter how 
ompli
ated, is exe
uted on a
omputer as a|potentially very long|sequen
e of a limited set of elementaryarithmeti
 operations su
h as additions, multipli
ations, and intrinsi
 fun
tionssu
h as sin() and 
os(). By applying the 
hain rule of di�erential 
al
ulusover and over again to the 
omposition of those elementary operations, f(x)and Jf (x) 
an be evaluated up to ma
hine pre
ision. Besides the advantage ofa

ura
y, AD requires minimal human e�ort and has been proven more eÆ
ientthan DD under a wide range of 
ir
umstan
es [3, 5, 12℄.2 Computational Di�erentiation in S
ienti�
 ToolkitsGiven the fa
t that automati
 di�erentiation tools need not know anything aboutthe underlying problem whose 
ode is being di�erentiated, the resulting eÆ
ien
yof the automati
ally generated 
ode is remarkable. However, it is possible notonly to apply AD te
hnology in a bla
k-box fashion but also to 
ouple the appli-
ation of AD with high-level knowledge about the underlying 
ode. We refer tothis 
ombination as 
omputational di�erentiation (CD). In some 
ases, CD 
anredu
e memory requirements, improve performan
e, and in
rease a

ura
y. Forinstan
e, a CD strategy identifying a major 
omputational 
omponent, derivingits analyti
al expression, and 
oding the 
orresponding derivatives by hand islikely to perform better than the standard AD approa
h that 
an operate onlyon the level of simple arithmeti
 operations.In toolkits for s
ienti�
 
omputations, algorithmi
 stru
tures 
an be automat-i
ally re
ognized when applying AD tools, provided standardized interfa
es areavailable. Examples in
lude standard (BLAS-like) linear algebra kernels, linearand nonlinear solvers, and integrators for ordinary di�erential equations. Thesealgorithmi
 stru
tures are the key to exploiting high-level knowledge when CDis used to di�erentiate appli
ations written in toolkits su
h as the Portable,Extensible Toolkit for S
ienti�
 Computation (PETS
) [1, 2℄.Consider the 
ase of di�erentiating a 
ode for the solution of sparse systemsof linear equations. PETS
 provides a uniform interfa
e to a variety of methodsfor solving these systems in parallel. Rather than applying an AD tool in abla
k-box fashion to a parti
ular method as a sequen
e of elementary arithmeti
operations, the 
ombination of CD and PETS
 allows us to generate a singlederivative-enhan
ed program for any linear solver. More pre
isely, assume thatwe are 
on
erned with a 
ode for the solution ofA � x(s) = b(s) (3)where A 2 RN�N is the 
oeÆ
ient matrix. For the sake of simpli
ity, it isassumed that only the solution x(s) 2 RN and the right-hand side b(s) 2 RN ,but not the 
oeÆ
ient matrix, depend on a free parameter ve
tor s 2 R r . The
ode for the solution of (3) impli
itly de�nes a fun
tion x(s). Now, suppose thatone is interested in the Ja
obian Jx(s) 2 RN�r of the solution x with respe
tto the free parameter ve
tor s. Di�erentiating (3) with respe
t to s yieldsA � Jx(s) = Jb(s); (4)where Jb(s) 2 RN�r denotes the Ja
obian of the right-hand side b.



4 In parallel high-performan
e 
omputing, the 
oeÆ
ient matrix A is oftenlarge and sparse. For instan
e, numeri
al simulations based on partial di�eren-tial equations typi
ally lead to su
h systems. Krylov subspa
e methods [17℄ are
urrently 
onsidered to be among the most powerful te
hniques for the solutionof sparse linear systems. These iterative methods generate a sequen
e of approx-imations to the exa
t solution x(s) of the system (3). Hen
e, an implementationof a Krylov subspa
e method does not 
ompute the fun
tion x(s) but only anapproximation to that fun
tion. Sin
e, in this 
ase, AD is applied to the approx-imation of a fun
tion rather than to the fun
tion itself, one may ask whetherand how AD-produ
ed derivatives are reasonable approximations to the desiredderivatives of the fun
tion x(s). This sometimes undesired side-e�e
t is dis
ussedin more detail in [8, 11℄ and 
an be minimized by the following CD approa
h.Re
all that the standard AD approa
h would pro
ess the given 
ode for aparti
ular linear solver for (3), say an implementation of the bi
onjugate gra-dient method, as a sequen
e of binary additions, multipli
ations, and the like.In 
ontrast, 
ombining the CD approa
h with PETS
 
onsists of the followingsteps:1. Re
ognize from inspe
tion of PETS
's interfa
e that the 
ode is meant tosolve a linear system of type (3) regardless of whi
h parti
ular iterativemethod is used.2. Exploit the knowledge that the Ja
obian Jx(s) is given by the solution ofthe multiple linear systems (4) involving the same 
oeÆ
ient matrix, but rdi�erent right-hand sides.The CD approa
h obviously eliminates the above mentioned problems with au-tomati
 di�erentiation of iterative s
hemes for the approximation of fun
tions.There is also the advantage that the CD approa
h abstra
ts from the parti
-ular linear solver. Di�erentiation of 
odes involving any linear solver, not onlythose making use of the bi
onjugate gradient method, bene�ts from an eÆ
ientte
hnique to solve (4).3 Potential Gain of CD and Future Resear
h Dire
tionsA previous study [14℄ di�erentiating PETS
 with ADIC has shown that, foriterative linear solvers, CD-produ
ed derivatives are to be preferred to derivativesobtained from AD or DD. More pre
isely, the �ndings from that study withrespe
t to di�erentiation of linear solvers are as follows. The derivatives produ
edby the CD and AD approa
hes are several orders of magnitude more a

uratethan those produ
ed by DD. Compared with AD, the a

ura
y of CD is higher.In addition, the CD-produ
ed derivatives are obtained in less exe
ution timethan those by AD, whi
h in turn is faster than DD. The di�eren
es in exe
utiontime between these three approa
hes in
rease with in
reasing the dimension, r,of the free parameter ve
tor s.While the CD approa
h turns out to be 
learly the best of the three dis
ussedapproa
hes, its performan
e 
an be improved signi�
antly. The linear systems (4)



5involving the same 
oeÆ
ient matrix but r di�erent right-hand sides are solvedin [14℄ by running r times a typi
al Krylov subspa
e method for a linear systemwith a single right-hand side. In 
ontrast to these su

essive runs, so-
alled blo
kversions of Krylov subspa
e methods are suitable 
andidates for solving systemswith multiple right-hand sides; see [7, 15℄ and the referen
es given there. Inea
h blo
k iteration, blo
k Krylov methods generate r iterates simultaneously,ea
h of whi
h is designed to be an approximation to the exa
t solutions of asingle system. Note that dire
t methods su
h as Gaussian elimination 
an betrivially adapted to multiple linear systems be
ause their 
omputational work isdominated by the fa
torization of the 
oeÆ
ient matrix. On
e the fa
torizationis available, the solutions of multiple linear systems are given by a forward andba
k substitution per right-hand side. However, be
ause of the ex
essive amountof �ll-in, dire
t methods are often inappropriate for large sparse systems.In this note, we extend the work reported in [14℄ by in
orporating itera-tive blo
k methods into the CD approa
h. Based on the given s
enario of the
ombination of the ADIC tool and the PETS
 pa
kage, we 
onsider a paral-lel implementation of a blo
k version of the bi
onjugate gradient method [15℄.We fo
us here on some fundamental issues illustrating this approa
h; a rigorousnumeri
al treatment will be presented elsewhere. To demonstrate the potentialgain from using a blo
k method in 
ontrast to su

essive runs of a typi
al iter-ative method, we take the number of matrix-ve
tor multipli
ations as a roughperforman
e measure. This is a legitimate 
hoi
e be
ause, usually, the matrix-ve
tor multipli
ations dominate the 
omputational work of an iterative methodfor large sparse systems.Figure 1 shows, on a log s
ale, the 
onvergen
e behavior of the blo
k bi
on-jugate gradient method applied to a system arising from a dis
retization of atwo-dimensional partial di�erential equation of order N = 1; 600 with r = 3right-hand sides. Throughout this note, we always 
onsider the relative residualnorm, that is, the Eu
lidean norm of the residual s
aled by the Eu
lidean normof the initial residual. In this example, the iterates for the r = 3 systems 
on-verge at the same step of the blo
k iteration. In general, however, these iterates
onverge at di�erent steps. Future work will therefore be 
on
erned with howto dete
t and de
ate 
onverged systems. Su
h de
ation te
hniques are 
ru
ialto blo
k methods be
ause the algorithm would break down in the next blo
kiteration step; see the dis
ussion in [7℄ for more details on de
ation. We furtherassume that blo
k iterates 
onverge at the same step and that de
ation is notne
essary.Next, we 
onsider a �ner dis
retization of the same equation leading to alarger system of order N = 62; 500 with r = 7 right-hand sides to illustratethe potential gain of blo
k methods. Figure 2 
ompares the 
onvergen
e his-tory of applying a blo
k method to obtain blo
k iterates for all r = 7 systemssimultaneously and running a typi
al iterative method for a single right-handside r = 7 times one after another. For all our experiments, we use the bi
onju-gate gradient method provided by the linear equation solver (SLES) 
omponentof PETS
 as a typi
al iterative method for a single right-hand side. For the plot
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Fig. 1. Convergen
e history of the blo
k method for the solution of r = 3 systemsinvolving the same 
oeÆ
ient matrix of order N = 1; 600. The residual norm is shownfor ea
h of the systems individually.of the blo
k method we use the largest relative residual norm of all systems.In this example, the bi
onjugate gradient method for a single right-hand side(dotted 
urve) needs 8; 031 matrix-ve
tor multipli
ations to a
hieve a toleran
eof 10�7 in the relative residual norm. The blo
k method (solid 
urve), on the
ontrary, 
onverges in only 5; 089 matrix-ve
tor multipli
ations to a
hieve thesame toleran
e. Clearly, blo
k methods o�er a potential speedup in 
omparisonwith su

essive runs of methods for a single right-hand side.The ratio of the number of matrix-ve
tor multipli
ations of the method for asingle right-hand side to the number of matrix-ve
tor multipli
ations of the blo
kmethod is 1:58 in the example above and is given in the 
orresponding 
olumnof Table 1. In addition to the 
ase where the number of right-hand sides is r = 7,this table 
ontains the results for the same 
oeÆ
ient matrix, but for varyingnumbers of right-hand sides. It is not surprising that the number of matrix-ve
tormultipli
ations needed to 
onverge in
reases with an in
reasing number of right-hand sides r. Note, however, that the ratio also in
reases with r. This behaviorshows that the larger the number of right-hand sides the more attra
tive the useof blo
k methods.Many interesting aspe
ts remain to be investigated. Besides the above men-tioned de
ation te
hnique, there is the question of determining a suitable pre-
onditioner. Here, we 
ompletely omitted pre
onditioning in order to make the
omparison between the blo
k method and its 
orresponden
e for a single right-hand side more visible. Nevertheless, pre
onditioning is an important ingredientin any iterative te
hnique for the solution of sparse linear systems for both single
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Fig. 2. Comparison of the blo
k method for the solution of r = 7 systems involving thesame 
oeÆ
ient matrix of order N = 62; 500 and r su

essive runs of a typi
al iterativemethod for a single right-hand side.and multiple right-hand sides. Noti
e that, in their method, Freund and Mal-hotra [7℄ report a dependen
e of the 
hoi
e of an appropriate pre
onditioner onthe parameter r.Blo
k methods are also of interest be
ause they o�er the potential for bet-ter performan
e. At the single-pro
essor level, performing several matrix-ve
torprodu
ts simultaneously provides in
reased temporal lo
ality for the matrix,thus mitigating the e�e
ts of the memory bandwidth bottlene
k. The availabil-ity of several ve
tors at the same time also provides opportunities for in
reasedparallel performan
e, as in
reased data lo
ality redu
es the ratio of 
ommuni-Table 1. Comparison of matrix-ve
tor multipli
ations needed to require a de
reaseof seven orders of magnitude in the relative residual norm for di�erent dimensions, r,of the free parameter ve
tor. The rows show the number of matrix-ve
tor multipli
a-tions for r su

essive runs of a typi
al iterative method for a single right-hand side, a
orresponding blo
k version, and their ratio, respe
tively. (The order of the matrix isN = 62; 500.)r 1 2 3 4 5 6 7 8 9 10typi
al 1,047 2,157 3,299 4,463 5,641 6,831 8,031 9,237 10,451 11,669blo
k 971 1,770 2,361 3,060 3,815 4,554 5,089 5,624 6,219 6,550ratio 1.08 1.22 1.40 1.46 1.48 1.50 1.58 1.64 1.68 1.78



8
ation to 
omputation. Even for the single right-hand side 
ase, blo
k methodsare attra
tive be
ause of their potential for exploiting lo
ality, a key issue inimplementing te
hniques for high-performan
e 
omputers.4 Con
luding RemarksAutomati
 di�erentiation applied to toolkits for parallel s
ienti�
 
omputingsu
h as PETS
 in
reases their fun
tionality signi�
antly. While automati
 dif-ferentiation is more a

urate and, under a wide range of 
ir
umstan
es, fasterthan approximating derivatives numeri
ally, its performan
e 
an be improvedeven further by exploiting high-level mathemati
al knowledge. The organiza-tional stru
ture of toolkits provides this information in a natural way by relyingon standardized interfa
es for high-level algorithmi
 stru
tures. The reason whyimprovements over the traditional form of automati
 di�erentiation are possibleis that, in the traditional approa
h, any program is treated as a sequen
e of ele-mentary statements. Though powerful, automati
 di�erentiation operates on thelevel of statements. In 
ontrast, 
omputational di�erentiation, the 
ombinationof me
hani
ally applying te
hniques of automati
 di�erentiation and human-guided mathemati
al insight, allows the analysis of obje
ts on higher levels thanon the level of elementary statements. These issues are demonstrated by takingthe di�erentiation of an iterative solver for the solution of large sparse systemsof linear equations as an example. Here, mathemati
al insight 
onsists in refor-mulating the di�erentiation of a linear solver into a solution of multiple linearsystems involving the same 
oeÆ
ient matrix, but whose right-hand sides dif-fer. The reformulation enables the integration of appropriate te
hniques for theproblem of solving multiple linear systems, leading to a signi�
ant performan
eimprovement when di�erentiating 
ode for any linear solver.A
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