
WARM-START STRATEGIES IN INTERIOR-POINT METHODS FORLINEAR PROGRAMMINGE. ALPER YILDIRIM� AND STEPHEN J. WRIGHTyTECHNICAL REPORT 1258, SCHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING,CORNELL UNIVERSITYPREPRINT MCS-P799-0300, MATHEMATICS AND COMPUTER SCIENCE DIVISION, ARGONNE NATIONALLABORATORYAbstract. We study the situation in which, having solved a linear program with an interior-point method, we are presented with a new problem instance whose data is slightly perturbed fromthe original. We describe strategies for recovering a \warm-start" point for the perturbed probleminstance from the iterates of the original problem instance. We obtain worst-case estimates of thenumber of iterations required to converge to a solution of the perturbed instance from the warm-startpoints, showing that these estimates depend on the size of the perturbation and on the conditioningand other properties of the problem instances.1. Introduction. This paper describes and analyzes warm-start strategies forinterior-point methods applied to linear programming (LP) problems. We considerthe situation in which one linear program, the \original instance," has been solvedby an interior-point method, and we are then presented with a new problem of thesame dimensions, the \perturbed instance," in which the data is slightly di�erent.Interior-point iterates for the original instance are used to obtain warm-start pointsfor the perturbed instance, so that when an interior-point method is started fromthis point, it �nds the solution in fewer iterations than if no prior information wereavailable. Although our results are theoretical, the strategies proposed here can beapplied to practical situations, an aspect that is the subject of ongoing study.The situation we have outlined arises, for instance, when linearization methodsare used to solve nonlinear problems, as in the sequential linear programming algo-rithm. (One extension of this work that we plan to investigate is to convex quadraticprograms, which would be relevant to solution of subproblems in many sequentialquadratic programming algorithms.) Our situation is di�erent from the one consid-ered by Gondzio [4], who deals with the case in which the number of unknowns inthe primal formulation is increased, and the constraint matrix and cost vector arecorrespondingly expanded. The latter situation arises in solving subproblems arisingfrom cutting-plane algorithms, for example.For our analysis, we use the tools developed by Nunez and Freund [5], whichin turn are based on the work of Renegar [6, 7, 8, 9] on the conditioning of linearprograms and the complexity of algorithms for solving them. We also use standardcomplexity analysis techniques from the interior-point literature for estimating thenumber of iterations required to solve a linear program to given accuracy.We start in Section 2 with an outline of notation and a restatement and slightgeneralization of the main result from Nunez and Freund [5]. Section 3 outlines thewarm-start strategies that we analyze in the paper and describes how our results canbe used to obtain reduced complexity estimates for interior-point methods that usethe warm starts. In Section 4 we consider a warm-start technique in which a least-squares change is applied to a feasible interior-point iterate for the original instance tomake it satisfy the constraints for the perturbed instance. We analyze this techniquefor central path neighborhoods based on both the Euclidean norm and the 1 norm,deriving in each case a worst-case estimate for the number of iterations required by�School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853,USA (yildirim@orie.cornell.edu).yMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,USA (wright@mcs.anl.gov). 1



2 E. ALPER YILDIRIM AND STEPHEN J. WRIGHTan interior-point method to converge to an approximate solution of the perturbedinstance. In Section 5 we study the technique of applying one iteration of Newton'smethod to a system of equations that is used to recover a strictly feasible point forthe perturbed instance from a feasible iterate for the original instance.2. Preliminaries: Conditioning of LPs, Central Path Neighborhoods,Bounds on Feasible Points. We consider the LP in the following standard form:minx cTx subject to Ax = b; x � 0; (P)where A 2 Rm�n, b 2 Rm, and c 2 Rn are given and x 2 Rn. The associated dualLP is given by the following:maxy;s bTy subject to AT y + s = c; s � 0; (D)where y 2 Rm and s 2 Rn. We borrow the notation of Nunez and Freund [5],denoting by d the data triplet (A; b; c) that de�nes the problems (P) and (D). Wede�ne the norm of d di�erently from Nunez and Freund, that is, as the maximum ofthe Euclidean norms of the three data components:kdk def= max(kAk2; kbk2; kck2):(2.1)(We will use the norm notation k�k on a vector or matrix to denote the Euclidean normand the operator norm it induces, respectively, unless explicitly indicated otherwise.)We use F to denote the space of strictly feasible data instances, that is,F = f(A; b; c) : 9 x; y; s with (x; s) > 0 such that Ax = b; ATy + s = cg:The complement of F , denoted by FC , consists of data instances d for which either(P) or (D) does not have any strictly feasible solutions. The (shared) boundary of Fand FC is given by B = cl(F) \ cl(FC);where cl(�) denotes the closure of a set. Since (0; 0; 0) 2 B, we have that B 6= ;. Thedata instances d 2 B will be called ill-posed data instances, since arbitrary perturba-tions in the data d can result in data instances in F as well as in FC . The distanceto ill-posedness is de�ned as�(d) = inffk�dk : d+�d 2 Bg;(2.2)where we use the norm (2.1) to de�ne k�dk. The condition number of a feasibleproblem instance d is de�ned asC(d) def= kdk�(d) ; (with C(d) def= 1 when �(d) = 0):(2.3)Since the perturbation �d = �d certainly has d+�d = 0 2 B, we have that �(d) � kdkand therefore C(d) � 1. Note, too, that C(d) is invariant under a nonzero multiplica-tive scaling of the data d, that is, C(�d) = C(d) for all � 6= 0.Robinson [10] and Ashmanov [1] showed that a data instance d 2 F satis�es�(d) > 0 (that is, d lies in the interior of F) if and only if A has full row rank. For



WARM START STRATEGIES 3such d, another useful bound on �(d) is provided by the minimum singular value ofA. If we write the singular value decomposition of A asA = USV T = mXi=1 �i(A)uivTi ;where U and V are orthogonal and S = diag(�1(A); �2(A); : : : ; �m(A)) with �1(A) ��2 � : : : � �m(A) > 0 denoting the singular values of A, then the perturbation�A = ��m(A)umvTmis such that A + �A is singular, and moreover k�Ak = �m(A) due to the fact thatthe Euclidean norm of a rank-one matrix satis�es the propertyk�uvTk2 = j�j kuk2 kvk2:(2.4)We conclude that �(d) � �m(A):(2.5)It is well known that for such d 2 int(F), the system given byAx = b(2.6a) AT y + s = c(2.6b) XSe = �e(2.6c) (x; s) > 0(2.6d)has a unique solution for every � > 0, where e denotes the vector of ones in the appro-priate dimension and X and S are the diagonal matrices formed from the componentsof x and s, respectively. We denote the solutions of (2.6) by (x(�); y(�); s(�)) and useP to denote the central path traced out by these solutions for � > 0, that is,P def= f(x(�); y(�); s(�)) : � > 0g :(2.7)Throughout this paper, we assume that the original data instance d lies in Fand that �(d) > 0. In Sections 4 and 5, we assume further that the original datainstance d has been solved by a feasible path-following interior-point method. Such amethod generates a sequence of iterates (xk; yk; sk) that satisfy the relations (2.6a),(2.6b), and (2.6d) and for which the pairwise products xki ski , i = 1; 2; : : :; n, are nottoo di�erent from one another, in the sense of remaining within some well-de�ned\neighborhood" of the central path. The duality measure (xk)T sk is driven towardzero as k !1, and search directions are obtained by applying a modi�ed Newton'smethod to the nonlinear system formed by (2.6a), (2.6b), and (2.6c).We now give some notation for feasible sets and central path neighborhoods as-sociated with the particular problem instance d = (A; b; c). Let S and S0 denote theset of feasible and strictly feasible primal-dual points respectively, that is,S = f(x; y; s) : Ax = b; AT y + s = c; (x; s) � 0g;S0 = f(x; y; s) 2 S : (x; s) > 0g:



4 E. ALPER YILDIRIM AND STEPHEN J. WRIGHT(Note that d 2 F if and only if S0 6= ;.) The central path neighborhoods mostcommonly used in interior-point methods we refer to as the narrow and wide neigh-borhoods. The narrow neighborhood denoted by N2(�) is de�ned asN2(�) = f(x; y; s) 2 S0 : kXSe � (xT s=n)ek2 � �(xT s=n)g;(2.8)for � 2 [0; 1). The wide neighborhood, which is denoted by N�1(), is given byN�1() = f(x; y; s) 2 S0 : xisi � (xT s=n); 8 i = 1; 2; : : :; ng;(2.9)where ui denotes the ith component of the vector u and the parameter  lies in (0; 1].We typically use a bar to denote the corresponding quantities for the perturbedproblem instance d+�d. That is, we have�S = f(x; y; s) : (A+�A)x = (b+�b); (A +�A)Ty + s = (c+�c); (x; s) � 0g;�So = f(x; y; s) 2 �S : (x; s) > 0g;whereas �N2(�) = f(x; y; s) 2 �So : kXSe � (xT s=n)ek2 � �(xT s=n)g;(2.10a) �N�1() = f(x; y; s) 2 �So : xisi � (xT s=n); 8 i = 1; 2; : : : ; ng:(2.10b)We associate a value of � with each iterate (x; y; s) 2 S (or �S) by setting� = xT s=n:(2.11)We call this � the duality measure of the point (x; y; s). When (x; y; s) is feasible, itis easy to show that the duality gap cTx� bTy is equal to n�.Finally, we state a modi�ed version of Theorem 3.1 from Nunez and Freund [5],which uses our de�nition (2.1) of the norm of the data instance and takes note of thefact that the proof in [5] continues to hold when we consider strictly feasible pointsthat do not lie exactly on the central path P.Theorem 2.1. If d = (A; b; c) 2 F and �(d) > 0, then for any point (x; y; s)satisfying the conditionsAx = b; ATy + s = c; (x; s) > 0;(2.12)the following bounds are satis�ed:kxk � C(d) (C(d) + �n=kdk)(2.13a) kyk � C(d) (C(d) + �n=kdk)(2.13b) ksk � 2kdkC(d) (C(d) + �n=kdk) ;(2.13c)where we have de�ned � as in (2.11).The proof exactly follows the logic of the proof in [5, Theorem 3.1], but di�ersin many details because of our use of Euclidean norms on the matrices and vectors.For instance, where the original proof de�nes a perturbation �A = �beT=kxk1 toobtain an infeasible data instance, we use instead �A = �bxT=kxk22. We also use theobservation (2.4) repeatedly.



WARM START STRATEGIES 53. Warm Starts and Reduced Complexity. Before describing speci�c strate-gies for warm starts, we preview the nature of our later results and show how theycan be used to obtain improved estimates of the complexity of interior-point methodsthat use these warm starts.We start by recalling some elements of the complexity analysis of interior-pointmethods. These methods typically produce iterates (xk; yk; sk) that lie within a neigh-borhood such as (2.8) or (2.9) and for which the duality measure �k (de�ned as in(2.11) by �k = (xk)T sk=n) decreases monotonically with k, according to a bound ofthe following form: �k+1 � �1� �n� ��k;(3.1)where � and � are positive constants that depend on the algorithm. Typically, � is 0:5,1, or 2, while � depends on the parameters � or  that de�ne the neighborhood andvarious other algorithmic parameters. Given a starting point (x0; y0; s0) with dualitymeasure �0, the number of iterations required to satisfy the stopping criterion� � �kdk(3.2)(for some small positive �) is bounded bylog(�kdk)� log�0log (1� �=n� ) = O�n� log �0kdk�� :(3.3)It follows from this bound that, provided we have�0kdk = O(1=��)for some �xed � > 0|which can be guaranteed for small � when we apply a cold-startprocedure|the number of iterations required to achieve (3.2) isO(n� j log �j):(3.4)Our warm-start strategies aim to �nd a starting point for the perturbed instancethat lies inside one of the neighborhoods (2.10), and for which the initial dualitymeasure ��0 is not too large. By applying (3.3) to the perturbed instance, we see thatif ��0=kd+�dk is less than 1, the formal complexity of the method will be better thanthe general estimate (3.4).Both warm-start strategies that we describe in subsequent sections proceed bytaking a point (x; y; s) from a neighborhood such as (2.8), (2.9) for the original in-stance and calculating an adjustment (�x;�y;�s) based on the perturbation �d toobtain a starting point for the perturbed instance. The strategies are simple; theircomputational cost is no greater than the cost of one interior-point iteration. They donot succeed in producing a valid starting point unless the point (x; y; s) from the origi-nal problem has a large enough value of � = xT s=n. That is, we must \back up" alongthe central path neighborhood until the adjustment (�x;�y;�s) does not cause somecomponents of x or s to become negative. (Indeed, we require a stronger condition tohold: that the adjusted point (x+�x; y+�y; s+�s) belong to a neighborhood suchas those of (2.10).) Since larger perturbations �d generally lead to larger adjustments(�x;�y;�s), the amount by which we must \back up" increases with the size of �d.



6 E. ALPER YILDIRIM AND STEPHEN J. WRIGHTMost of the results in the following sections quantify this observation. They give alower bound on �=kdk|expressed in terms of the size of the components of �d, theconditioning C(d) of the original problem, and other quantities|such that the warm-start strategy applied from a point (x; y; s) satisfying � = xT s=n and a neighborhoodcondition yields a valid starting point for the perturbed problem.These results can be applied in a practical way when an interior-point approachis used to solve the original instance. Suppose that the iterates (xk; yk; sk) of thisalgorithm have been stored and that we restrict the amount by which �k is decreasedon each iteration so that�k+1 � ��k; for all k = 0; 1; 2; : : :;(3.5)for some � 2 (0; 1). Suppose that we denote the lower bound discussed in the precedingparagraph by ��=kdk. Then the best available point for the original instance fromwhich to calculate the warm start is the iterate (x`; y`; s`), where ` is the largest indexfor which �` � ��:Note that because of (3.5) and the choice of `, we have in fact that�� � �` � (1=�)��:(3.6)The warm-start point is then(�x0; �y0; �s0) = (x`; y`; s`) + (�x;�y;�s);(3.7)where (�x;�y;�s) is the adjustment computed from one of our warm-start strategies.The duality measure corresponding to this point is��0 = (�x0)T �s0=n = �` + (x`)T�s + (s`)T�x+�xT�s:By using the bounds on the components of (�x;�y;�s) that are obtained during theproofs of each major result in conjunction with the bounds (2.13), we �nd that ��0can be bounded above by some multiple of �� + �`. Because of (3.6), we can deducein each case that ��0 � ���;(3.8)for some � independent of the problem instance d and the perturbation �d. Weconclude by applying (3.3) to the perturbed instance that the number of iterationsrequired to satisfy the stopping criterion� � �kd+�dk(3.9)starting from (�x0; �y0; �s0), is bounded byO�n� log ��kd+�dk�� :(3.10)Since our assumptions on k�dk usually ensure thatk�dk � 0:5kdk;(3.11)



WARM START STRATEGIES 7we have that 1kd+�dk � 1kdk � k�dk � 2kdk ;so that (3.10) can be expressed more conveniently asO�n� log ��kdk�� :(3.12)After some of the results in subsequent sections, we will substitute for � and �� in(3.12), to express the bound on the number of iterations in terms of the conditioningC(d) of the original instance and the size of the perturbation �d.Our �rst warm-start strategy, a least-squares correction, is described in Section 4.The second strategy, a \Newton step correction," is based on a recent paper byY�ld�r�m and Todd [12] and is described in Section 5.4. Least-Squares Correction. For much of this section, we restrict our anal-ysis to the changes in b and c only; that is, we assume�d = (0;�b;�c):(4.1)Perturbations to A will be considered in Section 4.3.Given any primal-dual feasible point (x; y; s) for the instance d, the least-squarescorrection for the perturbation (4.1) is the vector (�x;�y;�s) obtained from thesolutions of the following subproblems:min k�xk s.t. A(x +�x) = b+�b;min k�sk s.t. AT (y +�y) + (s +�s) = c+�c:Because Ax = b and AT y + s = c, we can restate these problems asmin k�xk s.t. A�x = �b;min k�sk s.t. AT�y +�s = �c;which are independent of (x; y; s). Given the following QR factorization of AT ,AT = � Y Z � � R0 � = Y R;(4.2)where � Y Z � is orthogonal and R is upper triangular, we �nd by simple manip-ulation of the optimality conditions that the solutions can be written explicitly as�x = Y R�T�b;(4.3a) �y = R�1Y T�c;(4.3b) �s = (I � Y Y T )�c:(4.3c)Observe in particular that �xT�s = 0:(4.4)Our strategy is as follows: we calculate the correction (4.3) just once, then back-track along the path of iterates (xk; yk; sk) for the original problem until we �nd an



8 E. ALPER YILDIRIM AND STEPHEN J. WRIGHTindex k such that (xk+�x; sk+�s) > 0 and (xk+�x; yk+�y; sk+�s) lies withineither �N2(�) or �N�1(). We hope to be able to satisfy these requirements for someindex k for which the parameter �k is not too large. In this manner, we hope toobtain a starting point for the perturbed problem for which the initial value of � isnot large, so that we can solve the problem using a smaller number of interior-pointiterations than if we had started without the bene�t of the iterates from the originalproblem.Some bounds that we use throughout our analysis follow immediately from (4.3):k�sk � k�ck; k�xk � k�bk�m(A) � k�bk�(d) ;(4.5)where, as in (2.5), �m(A) is the minimum singular value of A. These bounds followfrom the fact that I � Y Y T is an orthogonal projection matrix onto the null space ofA and from the observation that R has the same singular values as A. By de�ning�b = k�bkkdk ; �c = k�ckkdk ;(4.6)we can rewrite (4.5) as k�sk � kdk�c; k�xk � C(d)�b:(4.7)We also de�ne the following quantity, which occurs frequently in the analysis:�bc = �c + 2C(d)�b:(4.8)In the remainder of the paper, we make the mild assumption that�b < 1; �c < 1:(4.9)4.1. Small Neighborhood. Suppose that we have iterates for the original prob-lem that satisfy the following property, for some �0 2 (0; 1):kXSe � �ek2 � �0�; where � = xT s=n:(4.10)That is, (x; y; s) 2 N2(�0). Iterates of a short-step path-following algorithm typi-cally satisfy a condition of this kind. Since (x; y; s) is a strictly feasible point, itscomponents satisfy the bounds (2.13). Note, too, that we havekXSe � �ek � �0� ) (1� �0)� � xisi � (1 + �0)�:(4.11)Our �rst proposition gives conditions on �bc and � that ensure that the least-squares correction yields a point in the neighborhood �N�1().Proposition 4.1. Let  2 (0; 1��0) be given, and let � 2 (0; 1���0). Assumethat �d satis�es �bc � 1� �0 �  � �(n+ 1)C(d) :(4.12)Let (x; y; s) 2 N2(�0), and suppose that (�x;�y;�s) is the least-squares correction(4.3). Then (x+�x; y +�y; s+�s) lies in �N�1() if� � kdk� 3C(d)2�bc def= ��1:(4.13)



WARM START STRATEGIES 9Proof. By using (4.11), (2.13), (4.7), and (4.8), we obtain a lower bound on(xi +�xi)(si +�si) as follows:(xi +�xi)(si +�si)= xisi + xi�si +�xisi +�xi�si� (1� �0)�� kxkk�sk � k�xkksk � k�xkk�sk� (1� �0)�� C(d) (C(d) + �n=kdk) kdk�c�2kdkC(d)2(C(d) + �n=kdk)�b � kdkC(d)�b�c� � (1� �0 � nC(d)�bc)� C(d)2kdk�bc � C(d)kdk�b�c� � (1� �0 � nC(d)�bc)� 2C(d)2kdk�bc:(4.14)Because of our assumption (4.12), the coe�cient of � in (4.14) is positive, so (4.14)represents a positive lower bound on (xi +�xi)(si +�si) for all � su�ciently large.For an upper bound on (x+�x)T (s+�s)=n, we have from (2.13), (4.7), and therelation (4.4) that(x+�x)T (s +�s)=n� � + k�xkksk=n+ kxkk�sk=n� � + 2C(d)2kdk�b(C(d) + �n=kdk)=n+ C(d)kdk�c(C(d) + �n=kdk)=n� �(1 + C(d)�bc) + C(d)2kdk�bc=n:(4.15)It follows from this bound and (4.14) that a su�cient condition for the conclusion ofthe proposition to hold is that�(1� �0 � nC(d)�bc) � 2C(d)2kdk�bc � �(1 + C(d)�bc) + C(d)2kdk�bc=n;which is equivalent to � � kdkC(d)2�bc(2 + =n)1� �0 �  � C(d)�bc(n+ ) ;(4.16)provided that the denominator is positive. Because of the condition (4.12), and using 2 (0; 1) and n � 1, the denominator is in fact bounded below by the positivequantity �, so the condition (4.16) is implied by (4.13).Finally, we show that our bounds ensure the positivity of x + �x and s + �s.It is easy to show that the right-hand side of (4.14) is also a lower bound on (xi +��xi)(si + ��si) for all � 2 [0; 1] and all i = 1; 2; : : :; n. Because � satis�es (4.16),we have (xi + ��xi)(si + ��si) > 0 for all � 2 [0; 1]. Since we know that (x; s) > 0,we conclude that xi+�xi > 0 and si+�si > 0 for all i as well, completing the proof.Next, we seek conditions on �bc and � that ensure that the corrected iterate liesin a narrow central path neighborhood for the perturbed problem.Proposition 4.2. Let � > �0 be given, and let � 2 (0; � � �0). Assume that theperturbation �d satis�es �bc � � � �0 � �(2n+ 1)C(d) :(4.17)



10 E. ALPER YILDIRIM AND STEPHEN J. WRIGHTSuppose that (x; y; s) 2 N2(�0) for the original problem and that (�x;�y;�s) is theleast-squares correction (4.3). Then, (x+�x; y +�y; s+�s) will lie in �N2(�) if� � kdk� 4C(d)2�bc def= ��2:(4.18)Proof. We start by �nding a bound on the norm of the vector[(xi +�xi)(si +�si)]i=1;2;:::;n � �(x+�x)T (s +�s)=n� e:(4.19)Given two vectors y and z in Rn, we have that[yizi]i=1;2;:::;n � kyk kzk; ��yT z�� � kyk kzk:(4.20)By using these elementary inequalities together with (4.4), (4.7), (4.8) and (2.13), wehave that the norm of (4.19) is bounded by[xisi]i=1;2;:::;n � �e + 2 [k�xk ksk+ kxk k�sk] + k�xk k�sk� �0�+ 2C(d)kdk�bc (C(d) + n�=kdk) + C(d)kdk�b�c� [�0 + 2nC(d)�bc]�+ 3kdkC(d)2�bc:Meanwhile, we obtain a lower bound on the duality measure after the correction byusing the same set of relations:(x+�x)T (s +�s)=n � � � [k�xk ksk+ kxk k�sk]=n� � � C(d)kdk�bc(C(d) + n�=kdk)=n� � [1� C(d)�bc]� C(d)2kdk�bc=n:(4.21)Therefore, a su�cient condition for(x+�x; y +�y; s+�s) 2 �N2(�)is that [�0 + 2nC(d)�bc]� + 3kdkC(d)2�bc � �� [1� C(d)�bc]� �C(d)2kdk�bc=n;which after rearrangement becomes� [� � �0 � 2nC(d)�bc � �C(d)�bc] � 3kdkC(d)2�bc + �kdkC(d)2�bc=n:(4.22)We have from (4.17) that the coe�cient of � on the left-hand side of this expressionis bounded below by �. By dividing both sides of (4.22) by this expression, and using� 2 (0; 1) and n � 1, we �nd that (4.18) is a su�cient condition for (4.22). A similarargument as in the proof of Proposition 4.1 together with the fact that ��2 > ��1ensures positivity of (x+�s; s+�s).We now specialize the discussion of Section 3 to show Propositions 4.1 and 4.2can be used to obtain lower complexity estimates for the interior-point warm-startstrategy.Considering �rst the case of Proposition 4.1, we have from the standard analysisof a long-step path-following algorithm that constrains its iterates to lie in �N�1()



WARM START STRATEGIES 11(see, for example, Wright [11, Chapter 5]) that the reduction in duality measure ateach iteration satis�es (3.1) with� = 1; � = 2 32  1� 1 +  minf�min(1� �min); �max(1� �max)g;and 0 < �min < �max < 1 are the lower and upper bounds on the centering parameter� at each iteration. Choosing one of the iterates of this algorithm (x`; y`; s`) in themanner of Section 3, and de�ning the starting point as in (3.7), we have from (4.15),(4.12), (4.13), and the conditions 0 < � < 1 and n � 1 that��0 = (�x0)T �s0=n� �`(1 + C(d)�bc) + 2C(d)2kdk�bc=n � �`(1 + 1=n) + ��1(�=n) � 2�` + ��1:Now from the property (3.6), it follows that��0 � (1 + 2=�)��1:It is easy to verify that (4.12) implies that k�dk � kdk=2, so that we can use theexpression (3.12) to estimate the number of iterations. By substituting � = 1 and�� = ��1 into (3.12), we obtainO�n log�1� C(d)2�bc�� iterations:(4.23)We conclude that if �bc is small in the sense that �bc � C(d)�2, the estimate (4.23) isan improvement on the cold-start complexity estimate (3.4), so it is advantageous touse the warm-start strategy.Taking now the case of a starting point in the smaller neighborhood of Propo-sition 4.2, we set � = 0:4 and the centering parameter � to the constant value1 � 0:4=n1=2. The standard analysis of the short-step path-following algorithm (see,for example, [11, Chapter 4]) then shows that (3.1) holds with� = 0:5; � = 0:4:By using the procedure outlined in Section 3 to derive the warm-start point, theargument of the preceding paragraph can be applied to obtain the following on thenumber of iterations: O�n1=2 log�1�C(d)2�bc�� :(4.24)We conclude as before that improved complexity over a cold start is available providedthat �bc � C(d)�2.4.2. Wide Neighborhood. We now consider the case in which the iterates forthe original problem lie in a wide neighborhood of the central path. To be speci�c, wesuppose that they satisfy xisi � 0� for some 0 2 (0; 1), that is, (x; y; s) 2 N�1(0).Note that in this case, we have the following bounds on the pairwise products:0� � xisi � (n � (n � 1)0)�:(4.25)



12 E. ALPER YILDIRIM AND STEPHEN J. WRIGHTSimilarly to the upper bounds (2.13) on kxk and ksk, we can derive lower bounds onxi and si by combining (2.13) with (4.25) and using xi � kxk and si � ksk:xi � 0�2kdkC(d)(C(d) + n�=kdk) ;(4.26a) si � 0�C(d)(C(d) + n�=kdk) :(4.26b)These lower bounds will be useful in the later analysis. The following propositiongives a su�cient condition for the least-squares corrected point to be a member of thewide neighborhood for the perturbed problem. The proof uses an argument identicalto the proof of Proposition 4.1, with 0 replacing (1� �0).Proposition 4.3. Given  and 0 such that 0 <  < 0 < 1, suppose that � is aparameter satisfying � 2 (0; 0 � ). Assume that �d satis�es�bc � 0 �  � �(n+ 1)C(d) :(4.27)Suppose that (x; y; s) 2 N�1(0) and denote by (�x;�y;�s) the least-squares cor-rection (4.3). Then a su�cient condition for(x+�x; y +�y; s+�s) 2 �N�1()(4.28)is that � � kdk� 3C(d)2�bc def= ��3:(4.29)An argument like the one leading to (4.23) can now be used to show that along-step path-following method requiresO�n log�1� C(d)2�bc�� iterations(4.30)to converge from the warm-start point to a point that satis�es (3.9).4.3. Perturbations in A. We now allow for perturbations in A as well as inb and c. By doing so, we introduce some complications in the analysis that can becircumvented by imposing an a priori upper bound on the value of � that we arewilling to consider. This upper bound is large enough to encompass all values of �of interest from the viewpoint of complexity, in the sense that when � exceeds thisbound, the warm-start strategy does not lead to an appreciably improved complexityestimate over the cold-start approach.For some constant � > 1, we assume that � satis�es the bound� � � � 1n kdkC(d) def= �up(4.31)so that, for a subexpression that recurs often in the preceding sections, we haveC(d) + n�=kdk � �C(d):For � 2 [0; �up], we can simplify a number of estimates in the preceding sections, toremove their explicit dependence on �. In particular, the bounds (2.13) on the strictlyfeasible point (x; y; s) with � = xT s=n becomekxk � �C(d)2; kyk � �C(d)2; ksk � 2�kdkC(d)2:(4.32)



WARM START STRATEGIES 13Given a perturbation �d = (�A;�b;�c) with k�dk < �(d), we know that A+�Ahas full rank. In particular, for the smallest eigenvalue, we have�m(A+�A) � �m(A) � k�Ak:(4.33)To complement the de�nitions (4.6), we introduce�A = k�Akkdk :(4.34)As before, we consider a warm-start strategy obtained by applying least-squarescorrections to a given point (x; y; s) that is strictly feasible for the unperturbed prob-lem. The correction �x is the solution of the following subproblem:mink�xk s.t. (A +�A)(x+�x) = b +�b;(4.35)which is given explicitly by�x = (A +�A)T �(A+�A)(A +�A)T ��1 (�b��Ax) :(4.36)By using the QR factorization of (A + �A)T as in (4.2) and (4.3), and noting thatAx = b, we �nd the following bound on k�xk:k�xk � k�bk+ k�Akkxk�m(A +�A) :(4.37)By using (4.33), (2.5), and the de�nitions (4.6), (4.34), and (2.3), we havek�xk � k�bk+ k�Akkxk�m(A)� k�Ak � k�bk+ k�Akkxk�(d)� k�Ak = �b + �Akxk1=C(d)� �A :In particular, when x is strictly feasible for the original problem, we have from (4.32)that k�xk � C(d)�b + �C(d)2�A1� �AC(d) ;while if we make the additional simple assumption that�A � 12C(d) ;(4.38)we have immediately that k�xk � 2C(d)�b + 2�C(d)3�A:(4.39)By using (4.38) again, together with (4.9) and the known bounds C(d) � 1 and � > 1,we obtain k�xk � 2C(d)�b + 2�C(d)3�A � 2C(d) + �C(d)2 � 3�C(d)2:(4.40)The dual perturbation is the solution of the problemmin k�sk s.t. (A+�A)T (y +�y) + (s+�s) = c +�c:(4.41)



14 E. ALPER YILDIRIM AND STEPHEN J. WRIGHTOnce again, the minimum norm solution is unique and given by�s = hI � (A+�A)T �(A+�A)(A +�A)T ��1 (A+�A)i (�c��ATy):(4.42)Therefore, we have the following upper bound:k�sk � k�ck+ k�Akkyk:(4.43)Using (4.32), we have for (x; y; s) strictly feasible for the original problem thatk�sk � k�ck+ k�Ak�C(d)2� kdk�c + �kdkC(d)2�A:(4.44)By using these inequalities, we can prove a result similar to Proposition 4.3.Proposition 4.4. Suppose we are given  and 0 such that 0 <  < 0 < 1,and a feasible primal-dual point (x; y; s) 2 N�1(0). Assume further that � = xT s=nsatis�es (4.31) and that the perturbation component �A satis�es (4.38). For theperturbation �d, suppose that (�x;�y;�s) is the least-squares correction obtainedfrom (4.35) and (4.41). We then have(x+�x; y +�y; s+�s) 2 �N�1()(4.45)provided that � satis�es the following lower bound:� � 19�C(d)2 kdk0 �  max��bc; �C(d)3�A� def= ��4:(4.46)Proof. By using the upper bounds (4.39) and (4.40) on k�xk, (4.44) on k�sk,and (4.32) on kxk and ksk, we have(xi +�xi)(si +�si)� 0�� (kxk+ k�xk)k�sk � kskk�xk� 0�� [4�C(d)2][kdk�c + �kdkC(d)2�A]�[2kdk�C(d)2][2C(d)�b + 2�C(d)3�A]� 0�� 4kdk�C(d)3�b � 4kdk�C(d)2�c � 8kdk�2C(d)5�A� 0�� 4kdk�C(d)2�bc � 8kdk�2C(d)5�A;where for the last inequality we have used the de�nition (4.8). By similar logic, andusing (4.4), we have for the updated duality measure that(x+�x)T (s +�s)=n� �+ k�xk ksk=n+ kxk k�sk=n� �+ [2C(d)�b + 2�C(d)3�A]2�kdkC(d)2=n+ �C(d)2[kdk�c + �kdkC(d)2�A]=n= �+ 4�C(d)3kdk�b=n+ �C(d)2kdk�c=n+ 5�2C(d)5kdk�A=n� �+ 2�C(d)2kdk�bc=n+ 5�2C(d)5kdk�A=n:By comparing these two inequalities in the usual way, and using  2 (0; 1) and n � 1,we have that a su�cient condition for the conclusion (4.45) to hold is that(0 � )� � 6kdk�C(d)2�bc + 13kdk�2C(d)5�A:(4.47)



WARM START STRATEGIES 15Since from (4.46), we have 619(0 � )� � 6kdk�C(d)2�bc;1319(0 � )� � 13kdk�2C(d)5�A;then (4.47) holds, and the proof is complete.By using an argument like the ones leading to (4.23) and (4.30), we deduce thata long-step path-following algorithm that uses the warm start prescribed in Proposi-tion 4.4 requiresO�n �log�1� C(d)2�bc�+ log�1� C(d)5�A��� iterations(4.48)to converge to a point that satis�es (3.9).5. Newton Step Correction. In a recent study, Y�ld�r�m and Todd [12] an-alyzed the perturbations in b and c in linear and semide�nite programming usinginterior-point methods. For such perturbations they stated a su�cient condition onthe norm of the perturbation, which depends on the current iterate, so that an adjust-ment to the current point based on applying an iteration of Newton's method to thesystem (2.6a), (2.6b), (2.6c) yields a feasible iterate for the perturbed problem with alower duality gap than that of the original iterate. In this section, we augment someof the analysis of [12] with other results, like those of Section 4, to �nd conditions onthe duality gap � = xT s=n and the perturbation size under which the Newton stepyields a warm-start point that yields signi�cantly better complexity than a cold start.Each iteration of a primal-dual interior-point method involves solving a Newton-like system of linear equations whose coe�cient matrix is the Jacobian of the system(2.6a), (2.6b), (2.6c). The general form of these equations isA�x = rpAT�y + �s = rdS�x + X�s = rxs;(5.1)where typically rp = b�Ax and rd = c�AT y�s. The choice of rxs typically dependson the particular method being applied, but usually represents a Newton or higher-order step toward some \target point" (x0; y0; s0), which often lies on the central pathP de�ned in (2.7).In the approach used in Y�ld�r�m and Todd [12] and in this section, this Newton-like system is used to correct for perturbations in the data (A; b; c) rather than toadvance to a new primal-dual iterate. The right-hand side quantities are chosenso that that adjustment (�x;�y;�s) yields a point that is strictly feasible for theperturbed problem, and whose duality gap is no larger than that of the current point(x; y; s).In Section 5.1, we consider the case of perturbations in b and c but not in A. InSection 5.2 we allow perturbations in A as well.5.1. Pertubations in b and c. In our strategy, we assume that� the current point (x; y; s) is strictly primal-dual feasible for the original prob-lem;� the target point (x0; y0; s0) used to de�ne rxs is a point that is strictly feasiblefor the perturbed problem for which x0is0i = xisi for all i = 1; 2; : : : ; n;



16 E. ALPER YILDIRIM AND STEPHEN J. WRIGHT� the step is a pure Newton step toward (x0; y0; s0); that is, rp = �b, rd = �c,and rxs = X 0S0e �XSe = 0.Note that, in general, the second assumption is not satis�ed for an arbitrary currentpoint (x; y; s) because such a feasible point for the perturbed problem need not exist.However, the Newton's method is still well de�ned with the above choices of rp, rd,and rxs and that assumption is merely stated for the sake of a complete descriptionof our strategy.Since A has full row rank by our assumption of �(d) > 0, we have by substitutingour right-hand side in (5.1) and performing block elimination that the solution isgiven explicitly by �y = (AD2AT )�1(�b+ AD2�c)(5.2a) �s = �c� AT�y;(5.2b) �x = �S�1X�s;(5.2c)where D2 def= S�1X:(5.3)Since A has full row rank and D is positive diagonal, AD2AT is invertible.The following is an extension of the results in Y�ld�r�m and Todd [12] to the caseof simultaneous perturbations in b and c. Note in particular that the Newton stepyields a decrease in the duality gap xT s.Proposition 5.1. Assume that (x; y; s) is a strictly feasible point for d. Let�d = (0;�b;�c). Consider a Newton step (�x;�y;�s) taken from (x; y; s) targetingthe point (x0; y0; s0) that is strictly feasible for the perturbed problem and satis�esX 0S0e = XSe, and let (~x; ~y; ~s) def= (x; y; s) + (�x;�y;�s):(5.4)Then if � �c�b �1(5.5) � �S�1 �I �AT (AD2AT )�1AD2� � S�1AT (AD2AT )�1��11 ;(~x; ~y; ~s) is feasible for the perturbed problem and satis�es~xT ~s � xT s:(5.6)Proof. By rearranging the equation (5.2c) and writing it componentwise, we havesi�xi + xi�si = 0() �xixi + �sisi = 0; i = 1; 2; : : : ; n:(5.7)The next iterate will be feasible if and only if�xixi � �1; �sisi � �1; i = 1; 2; : : : ; n:



WARM START STRATEGIES 17By combining these inequalities with (5.7), we �nd that feasibility requires that�����xixi ���� � 1; �����sisi ���� � 1; i = 1; 2; : : : ; n;or, equivalently, S�1�s1 = X�1�x1 � 1:(5.8)By using (5.2a) and (5.2c), we haveS�1�s1= S�1[�c� AT�y]1= S�1 ��c� AT (AD2AT )�1AD2�c� AT (AD2AT )�1�b�1(5.9)� �S�1 �I � AT (AD2AT )�1AD2� � S�1AT (AD2AT )�1�1 � �c�b �1 :Hence, (5.5) is su�cient to ensure that kS�1�sk1 � 1.If we multiply (5.2c) by eT from the right, we obtain xT�s+sT�x = 0. Moreover,if follows from (5.7) that �xi and �si have opposite signs for each i = 1; 2; : : : ; n, sothat �xT�s � 0. Therefore(x+�x)T (s +�s) = xT s + xT�s+ sT�x+�xT�s = xTs +�xT�s � xT s;proving (5.6).Proposition 5.1 does not provide any insight about the behavior of the expressionon the right-hand side of (5.5) as a function of �. To justify our strategy of consid-ering the iterates of the original problem in reverse order, we need to show that theexpression in question increases as � corresponding to (x; y; s) increases, so that wecan handle larger perturbations by considering iterates with larger values of �. Inthe next theorem, we will show that there exists an increasing function f(�) withf(0) = 0 that is a lower bound to the corresponding expression in (5.5) for all valuesof �. The key to our result is the following bound:�(H) def= sup�2D+ �HT (H�HT )�11 <1;(5.10)where D+ denotes the set of diagonal matrices in Rn�n with strictly positive diagonalelements (i.e., positive de�nite diagonal matrices) and k � k1 is the `1 matrix normde�ned as the maximum of the sums of the absolute values of the entries in each row.This result, by now well known, was apparently �rst proved by Dikin [2]. For a surveyof the background and applications of this and related results, see Forsgren [3].Theorem 5.2. Consider points (x; y; s) in the neighborhood N�1(0) for theoriginal problem, with 0 2 (0; 1) and � = xTs=n as de�ned in (2.11). Then thereexists an increasing function f(�) with f(0) = 0 such that the expression on the right-hand side of (5.5) is bounded below by f(�) for all (x; y; s) in this neighborhood.Proof. Let (x; y; s) be a strictly feasible pair of points for the original problem,which lies in N�1(0) for some 0 2 (0; 1). From (4.26) and (5.10), we haveS�1AT (AD2AT )�11 = S�1D�2D2AT (AD2AT )�11� X�11 D2AT (AD2AT )�11� 1� 2kdkC(d)0 (C(d) + n�=kdk)�(A):(5.11)



18 E. ALPER YILDIRIM AND STEPHEN J. WRIGHTThe �rst inequality is simply the matrix norm inequality. Since D2 = XS�1, and xand s are strictly feasible, D2 is a positive de�nite diagonal matrix, so the bound in(5.10) applies.Similarly, consider the following:S�1 �I �AT (AD2AT )�1AD2�1(5.12) = S�1D�1 �I �DAT (AD2AT )�1AD�D1 :Note that (I�DAT (AD2AT )�1AD) is a projection matrix onto the nullspace of AD,therefore, its `2-norm is bounded by 1. Using the elementary matrix norm inequalitykPk1 � n1=2kPk2 for any P 2 Rn�n, we obtain the following sequence of inequalities:S�1 �I �AT (AD2AT )�1AD2�1= S�1D�1(I �DAT (AD2AT )�1AD)D1� X�1=2S�1=21 I �DAT (AD2AT )�1AD1 X1=2S�1=21� maxi=1;2;:::;n 1pxisi n1=2 maxi=1;2;:::;nrxisi� n1=2 1p0� maxi=1;2;:::;n xipxisi� 1� n1=2C(d)0 (C(d) + n�=kdk) ;(5.13)where we used D2 = XS�1, xisi � 0� and (2.13).If we consider the reciprocal of the right-hand side of the expression (5.5), weobtain �S�1 �I � AT (AD2AT )�1AD2� � S�1AT (AD2AT )�1�1� S�1 �I � AT (AD2AT )�1AD2�1 + S�1AT (AD2AT )�11� 1� 2kdkC(d)0 (C(d) + n�=kdk)�(A) + 1� n1=2C(d)0 (C(d) + n�=kdk) ;(5.14)which follows from (5.11) and (5.13). Therefore, (5.14) implies1k[S�1 (I � AT (AD2AT )�1AD2) � S�1AT (AD2AT )�1]k1 �f(�) def= 0�C(d) �n1=2 + 2kdk�(A)� [C(d) + n�=kdk] :(5.15)It is easy to verify our claims that f is monotone increasing in � and that f(0) = 0.Note that Proposition 5.1 guarantees only that the point (~x; ~y; ~s) is feasible forthe perturbed problem. To initiate a feasible path-following interior-point method,we need to impose additional conditions to obtain a strictly feasible point for theperturbed problem that lies in some neighborhood of the central path. For example,in the proof, we imposed only the condition (~x; ~s) � 0. Strict positivity of ~x and ~scould be ensured by imposing the following condition, for some � 2 (0; 1):xi +�xi � �xi; si +�si � �si; 8 i = 1; 2; : : : ; n:(5.16)



WARM START STRATEGIES 19Equivalently, we can replace the necessary and su�cient condition kS�1�sk1 � 1 in(5.8) by the condition (� � 1)e � S�1�s � (1� �)e, that is,kS�1�sk1 � 1� �;in the proof of Proposition 5.1. With this requirement, we obtain the followingbounds:�xi � ~xi � (2 � �)xi; �si � ~si � (2� �)si:(5.17)Note that if (�x;�y;�s) is the Newton step given by (5.2), then �xi�si � 0 for alli = 1; 2; : : :; n. First, consider the case �xi � 0, which implies ~xi � xi. We have from(5.17) that ~xi~si � xi~si � �xisi:(5.18)A similar set of inequalities holds for the case �si � 0. Thus, if we de�ne ~� = ~xT ~s=n,we obtain ~� � ��:(5.19)Note that by (5.6), we already have ~� � �. With this observation, we can relatethe neighborhood in which the original iterate (x; y; s) lies to the one in which theadjusted point (~x; ~y; ~s) lies.Proposition 5.3. Let (x; y; s) be a strictly feasible point for d, and suppose that�d = (0;�b;�c) and � 2 (0; 1) are given. Consider the Newton step of Proposition 5.1and the adjusted point (~x; ~y; ~s) of (5.4). If� �c�b �1(5.20) � 1� �k[S�1(I �AT (AD2AT )�1AD2) � S�1AT (AD2AT )�1]k1 ;with D de�ned in (5.3), then (~x; ~y; ~s) is strictly feasible for d + �d with ~� � �.Moreover, if (x; y; s) 2 N�1(0) for the original problem with 0 2 (0; 1), then (~x; ~y; ~s)satis�es (~x; ~y; ~s) 2 �N�1(�0).Proof. It su�ces to prove the �nal statement of the theorem. If we assume that(x; y; s) 2 N�1(0), then using (5.18) and (5.6), we have~xi~si � �xisi � �0� � �0~�;(5.21)which implies that (~x; ~y; ~s) 2 �N�1(�0), as required.We now have all the tools to be able to prove results like those of Section 4.Suppose that the iterates of the original problem lie in a wide neighborhood withparameter 0. For convenience we de�nek�dk1 def= � �b�c �1 = max(k�bk1; k�ck1) :(5.22)We also de�ne the relative perturbation measure �d as follows:�d def= k�dk1kdk :(5.23)



20 E. ALPER YILDIRIM AND STEPHEN J. WRIGHTNote from (4.6) and (4.8) that�d = max�k�bk1kdk ; k�ck1kdk � � max(�b; �c) � �bc:Hence, it is easy to compare results such as Proposition 5.4 below, which obtain alower bound on � in terms of �d, to similar results in preceding sections.Note that Theorem 5.2 provides a lower bound f(�) on the term on the right-hand side of (5.5). Therefore, combining this result with Proposition 5.3, we concludethat a su�cient condition for the perturbation �d to satisfy (5.20) is that k�dk1 isbounded above by the lower bound (5.15) multiplied by (1� �), that is,k�dk1 � (1� �)0�C(d) �n1=2 + 2kdk�(A)� (C(d) + n�=kdk) ;which by rearrangement yields� � C(d)2k�dk1(n1=2 + 2kdk�(A))(1� �)0 � nC(d)k�dk1(n1=2 + 2kdk�(A))=kdk;(5.24)provided that the denominator of this expression is positive. To ensure the lattercondition, we impose the following bound on �d:�d = k�dk1kdk < (1� �)0nC(d)(n1=2 + 2kdk�(A)) :(5.25)Indeed, when this bound is not satis�ed, the perturbation may be so large that theadjusted point (~x; ~y; ~s) may not be feasible for d+�d no matter how large we choose� for the original iterate (x; y; s).We now state and prove a result like Proposition 4.3 that gives a su�cient condi-tion on k�dk1 and � that ensure that the adjusted point (~x; ~y; ~s) lies within a wideneighborhood of the central path for the perturbed problem.Proposition 5.4. Let  and 0 be given with 0 <  < 0 < 1, and suppose that� satis�es � 2 (0; 0 � ). Assume that �d satis�es�d � 0 �  � �nC(d)(n1=2 + 2kdk�(A)) :(5.26)Suppose that (x; y; s) 2 N�1(0) for the original problem, and let (~x; ~y; ~s) be as de�nedin (5.4). Then if � � kdk� C(d)2�d �n1=2 + 2kdk�(A)� ;(5.27)we have (~x; ~y; ~s) 2 �N�1().Proof. Setting � = =0, we note that (5.26) satis�es the condition (5.25), and sothe Newton step adjustment yields a strictly feasible point for the perturbed problem.By the argument preceding the proposition, (5.24) gives a su�cient condition for theresulting iterate to lie in �N�1() by Proposition 5.3 since  = �0 by the hypothesis.However, (5.26) implies that the denominator of (5.24) is bounded below by �; hence,(5.24) is implied by (5.27), as required.The usual argument can now be used to show that a long-step path-followingmethod requiresO�n log�1�C(d)2�d �n1=2 + kdk�(A)��� iterations(5.28)to converge from the warm-start point to a point that satis�es (3.9).



WARM START STRATEGIES 215.2. Perturbations in A. In this section, we also allow perturbations in A (i.e.,we let �d = (�A;�b;�c)) and propose a Newton step correction strategy to recoverwarm-start points for the perturbed problem from the iterates of the original problem.The underlying idea is the same as in Section 5.1. Given a strictly feasible iterate(x; y; s) 2 N�1(0) for the original problem, we apply the Newton's method to recovera feasible point for the perturbed problem by keeping the pairwise products xisi �xed.As in Section 4.3, we impose an upper bound on � that excludes values of � that arenot likely to yield an adjusted starting point with signi�cantly better complexity thana cold-start strategy. In particular, we assume that � satis�es (4.31) for some � > 1.Let �A def= A+�A:(5.29)Given a feasible iterate (x; y; s) for the original problem, the Newton step correctionthen is given by the solution to�A�x = �b��Ax�AT�y + �s = �c��AT yS�x + X�s = 0:(5.30)Under the assumption that �A has full row rank, the solution to (5.30) is then givenby �y = ( �AD2 �AT )�1( �AD2(�c��ATy) + �b��Ax)(5.31a) �s = �c��ATy � �AT�y;(5.31b) �x = �S�1X�s;(5.31c)where D2 = S�1X as in (5.3).By a similar argument, a necessary and su�cient condition to have strictly feasibleiterates for the perturbed problem iskS�1�sk1 � 1� �; for some � 2 (0; 1):(5.32)By Proposition 5.3, the duality gap of the resulting iterate will also be smaller thanthat of the original iterate. We will modify the analysis in Section 5 to incorporatethe perturbation in A and will refer to the previous analysis without repeating thepropositions.Using (5.31), we getS�1�s = S�1(I � �AT ( �AD2 �AT )�1 �AD2)(�c��ATy)�S�1 �AT ( �AD2 �AT )�1(�b��Ax):Therefore, kS�1�sk1 is bounded above by[S�1(I � �AT ( �AD2 �AT )�1 �AD2) � S�1 �AT ( �AD2 �AT )�1]1 � �c��AT y�b��Ax �1 :By Theorem 5.2, the �rst term in this expression is bounded above by 1= �f(�), where�f (�) is obtained from f(�) in (5.15) by replacing �(A) by �( �A). For the second term,we extend the de�nition (5.22) to account for the perturbations in A as follows:k�dk1 def= max�k�bk1; k�ck1; k�Ak1; k�ATk1� ;(5.33)



22 E. ALPER YILDIRIM AND STEPHEN J. WRIGHTand continue to de�ne �d as in (5.23). We obtain that� �c��AT y�b��Ax �1� maxfk�ck1 + k�ATk1kyk1; k�bk1 + k�Ak1kxk1g;� maxfk�dk1(1 + kyk1); k�dk1(1 + kxk1)g;� k�dk1(1 + �C(d)2);� 2k�dk1�C(d)2;(5.34)where we used (5.33), (4.32), � > 1 and C(d) � 1 to derive the inequalities. Bycombining the two upper bounds we obtainkS�1�sk1 � 1� 10 2�C(d)3 �n1=2 + 2kdk�( �A)� (C(d) + n�=kdk) k�dk1:(5.35)Therefore, a su�cient condition to ensure (5.32) is obtained by requiring the upperbound in (5.35) to be less than 1 � �. Rearranging the resulting inequality yields alower bound on �:� � 2�C(d)4 �n1=2 + 2kdk�( �A)� k�dk10(1� �) � 2�nC(d)3 �n1=2 + 2kdk�( �A)� k�dk1=kdk ;(5.36)provided that the denominator is positive, which is ensured by the condition�d = k�dk1kdk < 0(1 � �)2�nC(d)3 �n1=2 + 2kdk�( �A)� :(5.37)The proof of the following result is similar to that of Proposition 5.4.Proposition 5.5. Let  and 0 be given with 0 <  < 0 < 1, and suppose that� satis�es � 2 (0; 0 � ). Assume that �d satis�es�d � 0 �  � �2�nC(d)3 �n1=2 + 2kdk�( �A)� :(5.38)Suppose that (x; y; s) 2 N�1(0) and that (~x; ~y; ~s) is the adjusted point de�ned in(5.4). Then we have (~x; ~y; ~s) 2 �N�1() provided that� � kdk� 2�C(d)4�d �n1=2 + 2kdk�( �A)� :(5.39)The usual argument can be used again to show that a long-step path-followingmethod requiresO�n log�1�C(d)4�d �n1=2 + kdk�( �A)��� iterations(5.40)to converge from the warm-start point to a point that satis�es (3.9).
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