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Abstract an adaptive, general-purpose, multiresolution data suplag
technique.

We compare three remote visualization strategies usechfor i To determine the most cost-effective strategy for paricays-
teractive exploration of large data sets: image-based esnd tem or problem configurations, we examine the performance
ing, parallel visualization servers, and subsampling. ¥gew  characteristics of each by developing theoretical perémoe
each strategy and provide details for an adaptive multiheso models. These models estimate the costs of computation and
tion subsampling technique that we have developed. To-detecommunication when parameters such as network bandwidth,
mine the problem regimes for which each approach is most cogproblem size, and visualization demands change. We describ
effective, we develop performance models to analyze tite costhe models in Section 3 and analyze them in Section 4 for a
of computation and communication associated with the comvariety of problem scenarios.

mon visualization task of isosurface generation. Usingé¢he

models, we investigate a number of hardware system configlFor the subsampling approaches, we develop two theoretical
rations and task complexity scenarios when parametersasich models: one for uniform grids and one for multiresolution
problem size, visualization demands, and network bantwidt grids. Uniform grids are advantageous for two reasons: (1)
change. For one particular strategy, subsampling, we ferth  they can be represented with a comparatively small amount of
investigate the tradeoffs between multiresolution andouni ~ data, and (2) visualization algorithms on uniform grids -gen
grid methods in terms of performance and approximation er-€rally outperform their nonuniform grid counterparts. Tée
rors. fore, a larger number of grid points can be used with uniform
grid subsampling than with multiresolution techniqueswHo
ever, multiresolution techniques are designed to minirttize
approximation error associated with subsampling by ptacin
more points where the data is changing rapidly. To examiae th
tradeoffs betweenthese two subsampling methods, we cempar
the results for several different application data sets.

Keywords: Remote Visualization, Interactive Visualization,
Large Data Set Exploration, Performance Models

1 Introduction

Tera- and petabyte size data sets are becoming more commeh Reémote Data Exploration Strategies

as scientists gain access to ever increasing computatienal

sources. Interactively exploring these data sets is ar ety

challenging task, particularly for scientists whose priynac- For each of the three strategies considered for remote gata e
cess to visualization resources is a desktop graphics weerks ploration, we briefly describe the fundamental concepts and
tion. To address this problem, researchers are exploringra n ~ give an overview of the method’s advantages and disadvan-
ber of approachesthat provide interactive navigation aptbe ~ tages. We then describe a particular data reduction syrateg
ration of very large data sets. The approaches combine eemothat we have developed for multiresolution subsamplinggisi
computational or visualization resources with high-speed @ parallel octree data structure.

works to deliver the images or reduced geometries to the loca

graphics workstation.

In this paper, we consider three commonly used strategies fop 1  Qvyerview

performing interactive, remote data exploration: imagsedu

rendering, parallel visualization servers, and subsamgpdif

the original data set. Each approach has inherent advantagémage-based rendering techniques use two or more reference
and disadvantages, and we give an overview of these seategi images from multiple viewpoints to reconstruct either tlee g

in Section 2. We also describe our approach, which is based oometry in a scene or new images of the scene as the user’s



viewpoint change$.In this paper, we consider image warping The primary advantage of subsampling or clustering ap-

techniques that use reference images containing colothdep proaches is that they are useful for fast, local exploratibn

and surface normal information to “warp” or change the in- the reduced data set. The computation and transmissios cost

put images to the desired output image (see, for exampleare fixed regardless of the number of visualization taske Th

[22, 19, 7, 18, 2]). Typically, several reference images areprimary disadvantage is that the maximum resolution of ¢ae r

needed to reconstruct the scene for arbitrary viewpoihstly duced data set is limited by the memory size and speed of the

a few reference viewpoints are available, the reconstriiote local graphics workstation. Thus, as the original problére s

age is more likely to contain approximation errors or holes-g  increases, a smaller percentage of points can be used ia-the r

erated by surfaces not represented in the original images. duced data set, resulting in higher approximation errotsis T
disadvantage can be somewhat mitigated, at the cost of more

The primary advantage of this technique for remote datacexpl communication, by an adaptive approach such as the one de-

ration is that the amount of data transmitted and manipdlate scribed in the next section.

locally is independent of the complexity of the scene orierig

nal data set. Thus the costs are fixed as data set sizes iacreas

In addition, if remote resources are used to generate tiveder ) ) ) )

visualization entities using the full data set, no appraation 2.2 Adaptive Multiresolution Subsampling

errors are associated with the reference images. Howeser, a Using a Parallel Octree

the user rotates the scene or otherwise changes the view per-

spective, errors associated with the reconstruction gocan

misrepresent the original data set. In addition, thesenigcies

are still moderately expensive, and even fairly sophitgidai-

erarchical techniques can require 1.5 seconds/frame fming

reference images [2]. Finally, the addition of a temporal di

mension, although not significant for the results of thisgrap

remains an open area of research.

Our approach to interactive remote data exploration is ® us
a parallel octree infrastructure to create a general-mapaol
for adaptive, multiresolution subsampling of the origidala
set. Currently, our system allows file-based scalar fieldiinp
and inserts each data point into the appropriate leaf actéuait
leaf is then evaluated according to a specified criterionrand
fined if necessary with its associated data points reassigne
Parallel visualization server sutilize remote computationalre- the néw leaf octants. Our subsampling code is general perpos
sources to visualize full-resolution data sets either astim- _an(Ij (rje(zuwest on_%spatlal coorglrjtat_e ]Lnforrrl[gtlon from tg[g;)

. ) p inal data set, with no connectivity information necess
putation proceeds (e.g., [8, 26]) or as a post-processeyy St|_have successfully used our approach with unstructureshietr

(e.g., [3, 4, 16, 9]). The geometries of the derived visual ; :
ization entities, rather than images, are extracted and- Comdral and hexahedral, block adaptive, and uniform meshes. We

municated to the graphics workstation for display. Typical Provide default routines to support reductions that meet-us
lower-dimensional entities such as isosurfaces or stieaml SPecified bounds in standard or maximum deviation, or to-auto

are targeted for use with these systems because their isansm Matically determine the error bound on these quantitiesrga/

sion and memory requirements are much smaller than the fullPerformance constraint specified by a maximum target number
dimensional data set. of leaf octants. Additionally, we provide stubs to allow €us

tom, user-defined insertion criteria to ensure wide appliita

The primary advantage of these techniques is that the deriveOf our software.
visualization entities have no subsampling or other apprax
tion errors. In addition, once the geometry is loaded in® th
local graphics workstation, it may be freely rotated or mani
ulated without reconstruction errors. The primary disadva
tage is that the geometries transmitted to the local graphic
workstation are functions of the overall problem size. Tlass
the problem size increases, the demands on computational r
sources, both remotely and locally, and on network bandsidt
also increase.

To provide an indication of the error associated with the re-
duced data set, for each leaf octant we compute and store sta-
tistical values such as the standard deviatigorand maximum
deviation from the mearg. These values are normalized by
the mean to yield,, ande,,, respectively. One or both of these
yalues are included as additional scalar fields to be vizedli

so that the user has an indication of the fidelity of the reduce
data set to the original data set. These measures of ermr als
serve to highlight potential regions of interest; the celith a

Subsampling and clustering techniques create smaller, full- large deviation from the average value are likely to have-fine
dimensional data sets by sampling the original data at pdci Scale structure that was not adequately captured by the+edu
locations or by averaging clusters of points from the oagjin tion process. The cgmputed scala_r fields are either storad to
data set. The simplest approach to subsampling is to create fje for later processing or communicated directly to thepgra
uniform grid representation of the original data set, ariglih ~ ICS workstation for visualization.

common in practice. Alternatively, a hierarchical, meto-
lution representation of the data can be constructed ufing,
example, quadtrees or octrees [15, 11, 14], progressivheses
[13, 12], wavelets [23], or other clustering approaches?H).
The level of detail in each region is controlled through detgr

of mechanisms, such as error tolerance bounds that control f
delity to the original model, or user input, such as field @i

The graphics application we have developed uses JAVA Swing
components [5] to provide a GUI to vtk classes [24]. The user
interface supports adaptive level-of-detail request$ieoar-
allel octree code so that the user may interactively chamge t
eaf criterion and thereby the resolution of the reduceddat
he new criterion may be applied either globally or in a spec-
ified region of interest. In this way, the user can “zoom in”
1We note that simply sending each image as the object is manipuwith high-resolution views in local subregions without sfic-
lated from the remote resources requires more network batiithan ~ ing graphics performance. Communication between the ectre
is generally available. code and the desktop graphics application is performedyusin




the ALICE Memory Snooper (AMS) [1] from Argonne Na- Cgr, andCr, give the total serial cost of subsampling for uni-
tional Laboratory, which uses a client/server model based o form and multiresolution grids, respectively. The paraaret
TCP/IP and Unix sockets. Cr, andCy, give the cost per element of isosurface generation
on uniform and multiresolution grids, respectively. A diets

Additional details about the parallel octree algorithms, soft- analysis of these costs will be given in Section 4.
ware architecture, and results obtained on large dataaetse
found in [6].

Table 1: Variables and parameters used in the cost models

[ Symbol || Definition |

3 Performance Models P Number of Remote Processors
R Network Bandwidth (Mbs)
L Network Latency (s)
For each of the remote data exploration strategies disduisse N Number of Elements
Section 2, we now develop a theoretical performance model I Number of Isosurfaces
describing the computation and communication costs. The vi X Pixels/Image
sualization task used in these models is isosurface gemrat Nr Number of Subsampled Elements
which we chose for three reasons: System-Dependent Computational Costs
Cr, Uniform Grid Subsampling Cost
Cr,, Multiresolution Subsampling Cost
1. Isosurfaces are one of the most commonly used visualiza- Cr, Uniform Grid Isosurface Cost/Element
tion techniques for exploring scientific data sets. Cr,, Multiresolution Isosurface Cost/Element
2. Much research in the visualization community has tar-
geted efficient isosurface generation for both uniform and
multi-resolution data sets and for both serial and parallel
computers. 3.1 Model 1: Image-based Rendering

3. The fact that isosurfaces are lower-dimensional esgtitie

; . . For image-based rendering techniques, we assume thabthe is
ensures that all three strategies are fairly considered. g 9 ques,

surfaces are computed in parallel and that six depth images a
used for reconstruction on the local graphics workstat&#j.|

To determine the number of bits that must be transmitted for
each pixel in the depth image, we use the best-case scemario i
formation given in [17] for a postrendering warping techréq

In particular, we assume 24 bits for color, 16 bits for deptid

8 bits for surface orientation information, for a total of digs

The costs included in our models include the time to computeP®" Pixel. We assume that a new set of reference depth images
a specified number of isosurfaces, the time to transmit-infor iS required for each new isosurface generdtdde total cost
mation over a wide area network to the local graphics worksta ©f the image-based rendering technique is

tion, and, for the subsampling techniques, the time to caenpu NC T 486 X T

the reduced data setsBecause the data sets of interest are M = Im = 4 i +2L1. 1)
large, we assume that the scientist has access to a remete par P 10 R

allel computer and that any remote isosurface or subsagplinTpe first term gives the time required to compute the isosur-
computations are done scalably in parallel. We assume thagces in parallel on the original data set. The second tevesgi
the original data is preloaded and distributed across thessF e transmission time required to send the depth images asso
sors of the remote parallel computer, because this is COMMORj51eq with each isosurface. The final term gives the network
to each approach and does not differentiate the models. FQgiency for new isosurface requests. We assume that thefcost
all models, we assume that the original computational mgsh I generating the six depth images is negligible and the voloime
nonuniform. information to request new isosurfaces is minimal.

Other commonly used visualization techniques such asgutti
planes, streamlines, vector glyphs, and volume visu&inat
could be easily modeled by replacing the isosurface-specifi
information.

The parameters and cost variables used in our models are de-

fined in Table 1. To define the hardware characteristics of our ] o

remote visualization system, we uBeto define the numberof 3.2 Model 2: Parallel Visualization Servers

remote processors available for parallel computation/aadd

L 1o define the network bandwidth and latency in Mbs and sec-rhe parallel visualization server also computes the idasas
onds, respectively. The data set SINe,,and_the number of IS0~ iy parallel, so the first term of this model is identical to fhiet
surfaces to be computed and rendefedgfine the complexity e in Equation 1. The transmission costs for each isoserfa

of our visualization task. The parametéfsandNr define the ¢ three spatial coordinates for each data point as wellieas t
size of the images in pixels and the reduced data sets foreimag

based rendering and subsampling, respectively. The pégesne 3We note that if multiple isosurfaces are generated duri ea-
quest, the number of reference depth images does not nebessa

20ur models do not address the costs associated with loadihg a crease, which has the potential to increase the attraetbgenf this
processing the resulting data sets on the local graphidsstadion. approach.




connectivity information for each triangle. If we assumatth 4 Results

each isosurface contaimé3 triangles, the total cost of the re-

mote visualization server is . . . .
To determine the regimes for which the models developed in

NCr I 32.6 N3 J Section 3 are most cost effective, we first determine typical
My = —Fr— + —e g t2L 1 (2)  values for the paramete€s;, , C1,,, Cr,, andCg,, . We then
analyze the performance models for various valued/ofP,
In this model we assume 32 bit information for all scalar and/, and R and determine the breakeven points between them.
integer values and use the fact that the numbers of vertiogs a Finally, we compare the uniform grid and multiresolutiorbsu
elements in a triangular mesh are approximately equal. sampling techniques in terms of performance and approxima-
tion error for several different application problems. éXper-
iments were performed on one or more processors of an SGI
Origin with 250 MHz R10000 chips, and all timings were per-
formed using the Unix subroutirget t i meof day/() .

3.3 Model 3: Uniform Subsampling

For uniform grid subsampling, we assume that the originel da Network bandwidth and latency estimations are based on the

is partitioned such that the reduction operations may be pervBNS and ESnet networks. Each of these networks consists

formed with minimal communication and will scale linearly a of OC3 lines for a maximum throughput of 155 Mbs, although

a functionP. The transmission costs for a uniform grid include expected performance is often far less [21]. Latency measur

the cost of sending the origin, grid spacing, and problemisiz  ments listed on the vBNS net traffic web page [20] range from

each of the three dimensions, and the scalar data and efror a8 to 40 ms depending on the destination/origination combina

sociated with each element. No additional spatial or coat#i  tion. For the purposes of this paper we consider bandwidth

information is required. rates ranging fromR=.5 Mbs to 100 Mbs and use a latency
value of L = 20 ms.

The total cost of uniform subsampling is

_CRU
P

Thefirst two terms are the computanon_al costs associated wi We first determine the cost per element of isosurface genera-
data reduction and isosurface generation on the reduced unj; o 0"\ ieo oo D4 iresolution grids};, andC;, , re-
form grid, respectively. The third and fourth terms are thas- spectively. We used vtk'st kCont our Mar CILI,‘" ngFi Il"”f ’er
mission and latency costs for a single request for a subsampl which uses a fast marching cubes algorithm for uniform struc

grid, respectively. tured point sets and a general algorithm for all other mesh
types, including our unstructured octree representat@di. [
We tested the algorithms on the same uniform data set, chang-
3.4 Model 4: Multiresolution Subsampling ing only the way it was represented in vtk data structures. In
particular, we usedt kSt ruct ur edPoi nt s to determine
Cr, andvt kUnstruct uredGri d to determineC;, . We
Rresentthe timing results for computing the isosurfacecrsa
per element basis for five different problem sizes in Table 2.

~(9—|—2NR)

32 -
My +NrCr, I + O R +2L. (3) 4.1 Determining Cost Parameter Values

The model for multiresolution subsampling is similar to Beu
tion 3. Because we are using an octree data representatio
the spatial coordinates and connectivity information far te-
duced mesh must be transmitted in addition to the scalar-info
mation. Given a number of octant leaves, the number of asso-

ciated vertices cannot be determirgedriori. An upper bound Table 2: Isosurface Generation Costs (ms)

for the number of vertices i8N g, which is the case when no ‘ N H Cr, ‘ cr, ‘ e ‘
vertex is shared between octants. A lower bound for the num- Lo
ber of vertices isVg, which is the case when the vertices are 203 0036 | .0243 | 6.75
maximally shared by octants, that is, when the leaf octams f 30° || .0026 | .0246 | 9.46
a uniform mesh. For the purposes of our model, we assume an 40° || .0022 | .0240 | 10.91
average case of Nz. Thus, the total amount of information 50° || .0018 | .0240 | 13.33
that must be transmitted #x 4 N for the spatial coordinates 60° || .0016 | .0239 | 14.93

plus 10Nx for the connectivity, scalar, and error data. With
these assumptions, our cost model for multiresolution aunss

pling is
The cost paramete€’;, decreases as the problem size in-
creases, reflecting the fact that the cost of processingdte d
Cr,. 32 x (22Ng) structure is far less than the cost of processing cells im'r]gi
My = 35 + NrCr,, I + R +2L. (4) contour values. Thus, as the percentage of cells contadoing

tour data decreases, the average cost per cell decreastiagP|

the results folC';, shows that the parameter is asymptotically
Note the use of the nonuniform grid costs for datareductimh a approaching a value of approximate@015 ms/cell asiV in-
isosurface generatiod;r,, andCy, , in the first two terms of  creases, and this is the value used in our model. In contrast,
the model. the cost of using general data structures in vtk, along whigh t



Table 3: Data reduction costs for uniform subsampling (s)

| N [ Ne=1[] Ne=5" | Nr=10" | Nx=20" || Add.Cost |
50 .108 111 142 618 6.57 - 10 ° N
75° .368 371 403 .885 6.66-107°Ng
100° .873 874 .908 1.41 6.94-107°Np

Table 4: Data reduction costs for multiresolution subsamay()
[ N [ Ne=1] Nr[Time ]| Nrg | Time] Add Cost |
50 3.76 512 | 4.61 || 32768 6.38 || 4.34-107°Ng

75° 12.67 512 | 15.55 || 23696 | 18.85 || 11.0-107°Ng
100° 31.74 512 | 41.05|| 18404 | 43.60| 26.2-107°Ng

associated virtual function calls, results in the paraméte, for isosurface generation are identical; the models afferdif
remaining fixed at approximatelg24 ms/cell, a factor of 16 entiated only by the amount of data transmitted. By equating
greater tharC';,. We note that this factor should be signifi- M; andMy, we can easily derive the breakeven function that
cantly less for routines specific to octree data types anldis a relatesX and/V:
implementation dependent. X = zN% )

3

To determineC'r,,, we subsampled a tetrahedral mesh onto a
uniform grid of different sizes and monitored the time reqdi

to collect the reduced data set averages and compute the n
malized standard deviations for each subsampled grid poin
We also computed the average and maximum deviation over th
entire reduced data set. Timing results in seconds are @iven
Table 3forN = 50°, 75°, and100® andforNg = 1, 5%, 10°,
and20®. Linear least squares analysis fdfz = 1 yields

a base cost for visiting every point in the original data det o
8.75 - 107" N. To obtain the additional cost of data reduction
per point asVr increases, we performed a least squares anal
ysis on each row of Table 3. The results are given in the las
column and show that the total data reduction costs grow as
function of bothN and Nr. Linear least squares analysis on
the coefficient of Nz given in the last column of Table 3 de-
termines the dependence éh Our final expression fof'r,,

is

For pixels sizes less thaf, M; < My . Note that this expres-
oilon is independent of both the number of isosurfaces and the
etwork bandwidth and latency. A few representative daita pa

re(N, X) = (128°,104%), (256%,209%), (512°,418%) and
1024°%,836%). Thus, if the resolution of the images used is
fixed, image-based rendering becomes increasingly ateact
as the data set sizes increase.

For the subsampling techniques, the costs will far exceed th
costs of image-based rendering or parallel visualizatiaess
asNgr — N. Therefore, we determine the breakeven points
or these models by finding a value dfz such that the costs
8f the subsampling model are equal to the smaller of either
Model 1 or Model 2 costs. We consider a large number of sce-
narios, and in Figure 1 we show the breakeven percentages,
Py = NTR - 100, for both uniform and multiresolution sub-
sampling. We choose a representative set of base parameters
Cr, =875-107"N + (6.50-107° 4+ 4.31 - 107> N)Ng. and varyN, P, R, and/ to examine the effect o®y. We

choose base values &if= 10 and/ = 64 for all cases; the top

two figures show uniform and multiresolution cases for base
To determine’’x, ,, we performed a similar analysis using the parametersv = 128° andP = 8, and the bottom two figures
octree data reduction technique described in Section 2. Thehow a larger problem whose base parametersvare 256°
timing results in seconds for various valuesiéfand N are andP = 16. Percentage value®,, below the curves indicate
given in Table 4. Linear least squares analysis forthe= 1 the regimes for which subsampling is more cost effectiva tha
caseyields a base costbf1-10~° N. Again, the costs of data either parallel visualization servers or image-basedegnd at
reduction increase as a function of bathand Nz. A linear aresolution ofY = 5122,
least squares analysis on the coefficients from the lastroolu

of Table 4 yields our final formula fof'z,, : For both problem sizes, a given case that employs uniforch gri
subsampling can use a higher percentage of grid points than
Cr,, =3.21-107°N 4 (.87-107° +2.5-107'* N)Ng. can be used with multiresolution grid subsampling. For the

smaller problem size, a full-resolution view resampled tma

form grid is often the most cost effective of all strategiesc
sidered. In contrast, the multiresolution subsamplingt ef-
fective for subsampling percentages less than 12 in thelemal
problem size, and less than 5 for the larger problem size. In
To determine the regimes for which each model is the most cosall cases, asV increasesPy decreases as a result of the in-
effective, we first consider the image-based rendering hed t creased cost of creating the reduced data sets. SimilarFy, a
parallel visualization servers models. The computationats  increasesPy decreases because the parallel isosurface com-

4.2 Performance Model Comparisons
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Figure 1: The breakeven graphs for uniform and multiregmusubsampling; the base parameters for the first row aréaze
128%, P = 8, R = 10 Mbs, I = 64; the base parameters for the second rowére: 256*, P = 16, R = 10 Mbs, ] = 64

putation costs in Models 1 and 2 decrease. Network bandwidtiThus, the multiresolution technique will outperform the-un

has very little effect orPx, except for small values, showing
that transmission costs are not the limiting factor for afithe
models. Finally, as expected, as the number of isosurfaares g
erated,, increasesPy also increases.

4.3 Uniform and Multiresolution Subsampling

form grid method only if the subsampling approximation esro
are reduced by the same amount or more using significantly
fewer grid points. To explore these tradeoffs, we subsample
three different application data sets of varying size, disien-
ality, and mesh type. The first two data sets are from Raydeigh
Taylor (R-T) simulations in both two and three dimensiond an
containN = 5.3 -10* andN = 3.7 - 10° data points, respec-
tively. These data sets are characterized by a contactrdisco
tinuity between two fluids of different density and repretsen

For a given set of parameters, the graphs in Figure 1 clearlyoroad class of applications whose primary features arepshar
show that uniform grid resampling is significantly more cost discontinuities which are typically local, lower-dimeasal

effective than multiresolution subsampling. To deternrizia-
tive performance benefits, we plot the ratios of the uniford a
multiresolution subsampling breakeven percentages inr€ig

phenomena. The third data set is from a three-dimensiamal si
ulation of hairpin vortices developing in flow around a hemi-
sphere and contain¥ = 2.05 - 10° data points. This problem

2. We see that the uniform grid is about 12 and 22 times betteis representative of a class of applications in which thdasca

than the multiresolution grid for the smaller and largertyieon
sizes, respectively. We note that the primary differend¢e/éen
the two methods is the large differenc&in, andCr,, . In fact,
if we consider a case in whiafi;,, is 5.0 - 10~ or about four

field of interest describes fully three-dimensional feasur

For each problem, we create reduced data sets of approyymate
5, 10, 25, and 50 percent in the uniform grid case and approxi-

times slower tharC;,,, the corresponding performance ratios mately 1.5, 3, 6, 12, and 25 percent in the multiresolutisseca

are4 and17, respectively.

For multiresolution subsamplindyr was specified, and the



Ratio of Uniform Performace to Multiresolution Performance (N=128°, P=16, 1=64, R=10) Ratio of Uniform Performace to Multiresolution Performance (N=256", P=16, I=64, R=10)
1001 1001
—— N=32°-1024° —— N=32°-1024°
+ P=2-64 + P=2-64
90~ * 1s0=4-128 90 * 1s0=4-128
—0~ Rate=.5 Mbs-100 Mbs —0~ Rate=.5 Mbs-100 Mbs

80 80

Ratio of Uniform to
Ratio of Uniform to

I I I I I ,
1 15 2 25 3 35 4 4.5 5 55 6 1 15 2 25 3 35 4 4.5 5 55 6
Case Number Case Number

Figure 2: The relative outperformance of the uniform gridgsampling compared to multiresolution subsampling for edixalue
of Nz and the base parameters used in Figure 1.

code automatically determined the best decompositionte mi set for vorticity indicator of -.28. The left figure shows forim
imize one of the two different error criteria defined in Seeti  grid subsampling using 34798 grid points which results in an
2: the standard deviation,,, in the leaf octants, and the maxi- average error of 3.18. The right figure shows multiresofutio
mum deviatione,,, in the leaf octants. In Table 5, we report the subsampling with 34725 grid points which results in an aver-
the average,, and maximune,, over all octants for each case. age error of 1.46.

The first value gives a measure of the overall fidelity of the re

duced data set to the original data set; the latter valuesgive

worst-case measure of fidelity.

In all cases, we achieve the same average and maximum errors
using far fewer multiresolution grid points than uniformdyr
points. The number of cells required to achieve similarltesu
depends on both the insertion criterion used and the ertor va
ues used to make the comparison. For example, for the 2D
Rayleigh-Taylor problem, if we use average standard dieviat

as our insertion criterion, the same average error is aetliby
approximately a factor of five fewer grid points, but the max-
imum error is approximately doubled. Similarly, if we use an
insertion criterion based on the maximum deviation, theesam
maximum error can be achieved in approximately a factor of
30 fewer grid points, but the average standard deviation-is i
creased by about a factor of six. For the 3D Rayleigh-Taylor
problem, the corresponding results are decreases by a facto
of two and ten for the average and maximum error insertion
criteria, with corresponding increases of about 10 peraedt
double for the error measure not targeted. For the hairpin vo
tex data set, the scalar field is interesting in that only eslu
less than negative one are of interest; all other valuesisire-d
garded as noise. These noise values can vary dramatically ou
side the regime of interest, rendering the maximum deviatio
error measure ineffective. By comparing the results acdev
with the average error measure, we find that we can obtain the
same errors with roughly a factor of ten fewer grid points.

Figure 3: The left figure shows the results of uniform sub-
sampling using 15616 grid points for the two-dimensional
gayleigh-Taylor; the right figure shows the results of nmedt
oOlution subsampling using 4102 grid points

In the left image in Figure 3, we show the two-dimensional
Rayleigh-Taylor data set subsampled using a uniform gnd co
taining 15616 data points. On the right, we show the same dat
set subsampled with the multiresolution technique usin@41
data points. The average errors are .0347 and .0339, respec-
tively. In Figure 4, we show isosurfaces from the hairpinteer



Figure 4: The left figure shows the results of uniform subdargusing 34798 grid points for the hairpin vortex applioas; the
right figure shows the results of multiresolution subsangplor 34725 grid points

5 Conclusions

Much useful information can be obtained by studying perfor-

[4]

mance cost estimates for a variety of techniques that accom-
plish the same goal. From our analysis of the computation and[5]

communication costs associated with three differentesgias

for remote, interactive exploration of large data sets, wd fi
that each has regimes for which is it is the most cost effe
tive approach. Our results show that using a full-resofutio
view resampled to a uniform grid is often the most cost ef-
fective approach. However, many computations are perfdrme
on nonuniform, adaptive grids which implies that a uniform
grid resampling will have more error in regions containing a
large number of grid points which are typically the areas-con

taining features of interest. Multiresolution approaciddress

.. [6]

[7]

this difficulty; large numbers of resampled points may be-con [8]

centrated in the same regions as the original computation. |

addition, our tests showed that they can also be the most cost

effective approach when the metric used is the cost to aehiev

a given error level.
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