
A Mathematical Tumor Model with ImmuneResistance and Drug Therapy: an OptimalControl ApproachL. G. de Pillis� and A. RadunskayayApril 18, 2000AbstractWe present a competition model of cancer tumor growth that includesboth the immune system response and drug therapy. This is a four-population model that includes tumor cells, host cells, immune cells, anddrug interaction. We analyze the stability of the drug-free equilibria withrespect to the immune response in order to look for target basins of at-traction. One of our goals was to simulate qualitatively the asynchronoustumor-drug interaction known as \Je�'s phenomenon." The model wedevelop is successful in generating this asynchronous response behavior.Our other goal was to identify treatment protocols that could improvestandard pulsed chemotherapy regimens. Using optimal control theorywith constraints and numerical simulations, we obtain new therapy pro-tocols that we then compare with traditional pulsed periodic treatment.The optimal control generated therapies produce larger oscillations in thetumor population over time. However, by the end of the treatment period,total tumor size is smaller than that achieved through traditional pulsedtherapy, and the normal cell population su�ers nearly no oscillations.Keywords: Cancer, Tumor, PopulationModels, CompetitionModels, Math-ematical Modeling, Immune System, Optimal Control1 Introduction and BackgroundThe growth of a cancerous tumor in vivo is a complicated process involvingmultiple biological interactions. The response of such tumors to active treat-ment such as chemotherapy and radiotherapy is also complex, but important tounderstand. Currently, there exists an array of mathematical models of cancerprogression and treatment, each of which tends to focus on simulating one or two�Harvey Mudd College, Claremont, CA 91711 depillis@math.hmc.edu, and Argonne Na-tional Laboratory, Argonne, IL 60439 depillis@mcs.anl.govyPomona College, Claremont, CA 91711 aradunskaya@pomona.edu1



important elements of the multifaceted process of tumor growth and responseto therapy. In a cooperative e�ort with clinicians and research oncologists, wehave been investigating mathematical models of tumor growth with the goal ofbetter understanding how the various aspects of growth and treatment interactwith one another. Our investigations led us to develop our own generalizedmathematical model of cancer growth, which incorporates several key elementsof the growth processes and the e�ect of their mutual interactions. Additionally,we employ numerical optimal control methods to search for treatment protocolsthat, in theory, are improvements to the standard protocols in use today.1.1 Modeling TumorsThe development of a cancerous tumor is complex and involves the interactionof many cell types. The tumor itself is not homogeneous; and normal tissue,lymphocytes, macrophages, and other types of cells either grow at the tumorsite or are recruited to the tumor through chemotaxis. Cell growth may bestemmed as cells compete for resources and space, but may also be stimulatedby the presence of certain cell populations. Through a biochemical process,immunogenic tumor cells and cytotoxic immune cells interact, �rst binding toform cell conjugates, and then splitting to produce lysed tumor cells, inactivatedimmune cells, undamaged tumor cells or undamaged immune cells, and debris;see (Kuznetsov et al. 1994) and (Owen and Sherratt 1998). When chemotherapyis administered, a toxic drug is introduced that in principle destroys all cell typesto some extent, modifying this interplay among cell populations. Many clinicallyobserved e�ects are still not well understood in terms of existing models. In thiswork, we investigate an approach to creating a mathematical model of tumorgrowth with chemotherapy in which multiple interactions are considered.As we have noted, much useful work has been done on simpli�ed yet fun-damental models involving the interaction between tumor cells and immunecells alone (see (Kuznetsov et al. 1994), (Owen and Sherratt 1998), and (Adam1993)), between tumor cells and normal cells alone (see (Knolle 1988), (Dibrov etal. 1985), and (Eisen 1979)), and between tumor cells and chemotherapy treat-ments alone (see (Shochat, Hart, and Agur 1999), (Adam and Panetta 1995),(Martin 1992), (Murray 1990), (Martin et al. 1990), (Swan 1987), (Coldmanand Goldie 1986), (Swan 1985), (Dibrov et al. 1985), and (Eisen 1979)).These models, while extremely useful in providing an understanding of tumorgrowth and treatment from various perspectives, have not been su�cient toreproduce certain qualitative aspects of interest to the clinicians with whomwe are working. To capture some of this elusive qualitative behavior, we havedeveloped a model that incorporates the interactions among tumor cells, normalcells, immune cells, and chemotherapy.Some work has also been done in the development of stochastic models; see(Castellanos Moreno 1996), (Bartoszy�nski, Jones, and Klein 1985), (Duc 1985),(Serio 1984), and (Bramson and Gri�eath 1980). A stochastic approach canbe useful, especially in the context of interactions among populations with lowdensities. In this work, however, we concentrate on continuous-time determin-2



istic models of tumor growth and treatment. This allows us to apply classicaloptimal control theory, through which we determine improved chemotherapyadministration schedules.1.2 Theory versus ObservationThe design of a mathematical model of a biological system is governed by theneed to distill the essential behavior of the system and the need to answerspeci�c questions about that system. In our case, our goal was to use themodel to design a protocol for chemotherapy that would produce an improvedoutcome by way of reducing �nal tumor size without causing large losses in thenormal cell population. We also wished to develop a model of tumor growth thatwould evidence certain clinically observed phenomena brought to our attentionby the research oncologists with whom we have been working. The model wehave developed, which is built from combining some of the most useful aspectsof previously existing models, does in fact exhibit the qualitative behavior wewished to reproduce, including \Je�'s phenomenon" and tumor dormancy.1.2.1 Je�'s Phenomenon\Je�'s phenomenon" is a clinically observed temporal oscillation in tumor sizewhich is apparently unsynchronized with the administration of chemotherapy.In some patients a tumor continues to grow after treatment, and then, sometime after treatment has ceased, begins to decrease in size. According to Thom-linson (1982), these asynchronous responses are not a result of drug resistance,as some may speculate. Therefore, to reect this asynchronous reaction tocytotoxic drugs, we chose to model the interaction between a drug and the var-ious cells as a continuous-time process rather than an instantaneous kill, as in(Panetta 1996). Thus, the e�ect of the drug is incorporated into the di�erentialequations themselves, rather than occurring as pulsed, instantaneously e�ectivetreatments. In our new model the drug a�ects normal and immune cells, aswell as tumor cells. This does, in fact, achieve the desired qualitative e�ect andcauses oscillations in tumor size whose phase and period change over time andare asynchronous with drug administration.1.2.2 Tumor DormancyAnother phenomenon of current interest to clinicians is tumor dormancy. Thereis clinical evidence that a tumor mass may disappear, or at least become nolonger detectable, and then for no apparent reason may reappear, growing tolethal size. The mechanisms and behavior of this phenomenon have been andcontinue to be studied from both clinical and mathematical modeling perspec-tives. Multiple clinical studies document the strong connection between thee�ects of the immune system and tumor dormancy. For example, Farrar et al.(1999) present the results of clinical studies on murine B cell lymphoma (BCL1)in mice vaccinated with BCL1 Ig. Farrar et al. extend previous work, which3



demonstrated that T cell-mediated immunity is an important component in theregulation of tumor dormancy, and demonstrate that CD8+ T cells in particularplay a decisive role in both inducing and maintaining a state of tumor dormancy.Again in the context of BCL1 in mice, the work of Morecki et al. (1996) indicatesthat cell-mediated antitumor immunity contributes to maintenance of the tumordormant state. In (Matsuzawa et al. 1991b) and (Matsuzawa et al. 1991a), itis shown that Lyt-2+, L3T4- T cells appear to mediate host antitumor immu-nity to B cell leukemia (DL811) in DDD mice to eradicate leukemic cells andmaintain a dormant state. Muller et al. (1998) did a study on tumor dormancyin bone marrow and lymph nodes. Their experiments show that bone marrowand lymph nodes are sites where potentially lethal tumor cells are controlled ina dormant state speci�cally by the immune system. Stewart (1996) reviewed�ndings of six case studies of non-small-cell lung cancer in patients randomizedto receive speci�c active immunotherapy in controlled clinical trials. Stewartconcluded that dormancy in these patients is the result of immune mechanisms.Also in this review, animal models of tumor dormancy were discussed; again, itwas stated that the evidence is clear that dormancy can be induced by manipu-lating immune mechanisms. Gray and Watkins, Jr. (1975) presented a generalreview of immunotherapy and stated that long-term tumor dormancy can beexplained only by host defense mechanisms.The e�ects of the immune system and how immune mechanisms could leadto oscillations in tumor size and to dormancy have also been modeled mathe-matically. In (de Boer and Hogeweg 1986), a mathematicalmodel of the cellularimmune response was used to investigate immune reactions to tumors. It wasfound that initially small doses of antigens do lead to tumor dormancy. Themathematical model of (Kirschner and Panetta 1998), which also focuses on thetumor-immune interaction, indicated that the dynamics between tumor cells,immune cells, and IL-2 can explain both short-term oscillations in tumor sizeas well as long-term tumor relapse. The mathematical model developed byKuznetsov (Kuznetsov and Makalkin 1992, Kuznetsov et al. 1994), in which thenonlinear dynamics of immunogenic tumors are examined, also exhibits oscilla-tory growth patterns in tumors, as well as dormancy and \creeping through":when the tumor stays very small for a relatively long period of time, and sub-sequently grows to be dangerously large. In these mathematical models, thecyclical behavior of the tumor is directly attributable to the interaction withthe immune response.In models such as those of Kuznetsov et al. (1994) and Kirschner and Panetta(1998), immune cells and tumor cells compete in what is known as a \predator-prey" interaction, in which the immune cells play the role of the predator andthe tumor cells play the role of the prey. This competition can give rise to cyclicgrowth and reduction in the cell populations in an intuitive way. The presence oftumor cells biochemically stimulates the production of immune cells. Simulta-neously, the growth of the tumor cells is retarded by the presence of the immunecells. As the tumor cells die o�, the immune cell population consequently de-creases. But a decreasing immune cell population will allow the tumor cells tobegin growth once again. Depending on the system parameters, the cycle could4



continue inde�nitely, or eventually spiral to a point of equilibrium.Because it is clear that the action of the immune cells signi�cantly impactsthe dynamics of tumor growth, we include the interaction of the immune andtumor cells in our model. In the model we develop, it is easily shown that if theimmune system is removed, cyclical behavior cannot arise. This is because theresulting competitive system has either one globally stable equilibrium (stablecompetition) or two stable equilibria and a saddle point (competitive exclusion).See, for example, (Borrelli and Coleman 1998, p. 282) for a discussion of stablecompetition and competitive exclusion.1.3 Optimal Control TheoryOnce an adequate model of interacting cell populations is constructed, we thenfocus on the design of an improved treatment protocol. To this end, we employthe tools of optimal control theory. This theory originated in economics, whereit was used to optimize returns on investments. It was subsequently applied toengineering problems and �nally to biologicalmodels. The goal of chemotherapyis to destroy the tumor cells, while maintaining adequate amounts of healthytissue. From a mathematical point of view, adequate destruction of tumor cellsmight mean forcing the system out of the basin of an unhealthy spiral node,or out of a limit cycle, and into the basin of attraction of a stable, tumor-freeequilibrium. Alternatively, if the therapy pushes the system into a limit cyclein which the size of the tumor is small for a long period of time (as long as thelife of the patient, for example), this could also be considered a \cure."Optimality in treatment might be de�ned in a variety of ways. Some studieshave been done in which the total amount of drug administered is minimized, orthe number of tumor cells is minimized (Swierniak, Polanski, and Kimmel 1996),(Swierniak and Polanski 1994), (Swierniak 1994). The general goal is to keepthe patient healthy while killing the tumor. Since our model takes into accountthe toxicity of the drug to all types of cells, we chose to minimize the tumorpopulation, while constraining the normal cells to stay above some minimumlevel. Therefore, the development of a chemotherapy protocol can be phrased asan optimal control problem with constraints: for a �xed time interval, �nd thepoints within that interval at which the drug should be administered so that thenumber of tumor cells has been minimized, while the number of healthy cellshas been kept above a prescribed threshold.1.4 Numerical MethodsWhile general optimal control problems can often be di�cult to solve analyti-cally, one can sometimes appeal to numerical methods for obtaining solutions.Numerical methods for constrained optimal control are very sensitive to pa-rameter adjustments, and do not always converge to realistic solutions, so inthis arena we must exercise caution as well. We have employed a numericalapproach to optimal control to determine a set of potentially optimal coursesof treatment. A numerical approach has been used in, for example, (Martin5



1992), (Martin et al. 1990), (Knolle 1988), (Murray 1990), (Swan 1987) and(Swan 1985), for simpler models without interaction between di�erent cells. Wepresent numerical results based on our model, and compare these solutions to astandard, periodically pulsed therapy.2 The ModelIn this section we describe in detail the model we developed.2.1 The Model - OverviewCulling useful aspects of previously developed mathematicalmodels, we combinethe following features in this model:� Immune response: the model includes immune cells whose growth maybe stimulated by the presence of the tumor and that can destroy tumorcells through a kinetic process. We point out that the presence of a de-tectable tumor in a system does not necessarily imply that the tumor hascompletely escaped active immunosurveillance. It is entirely possible thatalthough a tumor is immunogenic, the immune system response is not suf-�cient on its own to completely combat the rapid growth of the tumor cellpopulation and the eventual development into a tumor. In fact, there iseven some speculation that all tumors are immunogenic; see, for example,(Prehn 1994).� Competition terms: normal cells and tumor cells compete for availableresources, while immune cells and tumor cells compete in a predator-preyfashion.� Optimal control theory for chemotherapy: a set of optimal drug therapiesis calculated that minimize the tumor population by the end of the treat-ment period, while keeping the normal cells above a required level; thesesolutions are then used to design a practical treatment protocol.We focus on tissue near the tumor site, and we assume a homogeneous tu-mor. We choose to model the reaction of the immune cells with the tumorcells in the same manner as that described in (Kuznetsov, Makalkin, Taylorand Perelson 1994). For the growth law terms, we considered several possiblemodels, including exponential growth, Gompertz growth, and logistic growth.The exponential growth law in the context of a tumor cell population assumesthat the rate of increase in the population at a certain point in time is directlyproportional to the size of the tumor population at that time; the exponentialcurve is unbounded as time increases. The pattern of growth to which the Gom-pertz law gives rise is similar to that of exponential growth in the early stages,but plateaus as tumor size increases; the Gompertz growth curve is sigmoid.The logistic growth law is again similar to the exponential growth law, withthe exception that it includes an intrinsic population carrying capacity beyond6



which the population size cannot grow. In cases in which speci�c biological dataare available, the choice of growth law term and the parameters involved can beimportant. In (Vaidya and Alexandro, Jr. 1982), the derivation and behaviorsof all three of the above growth laws, in addition to a fourth law, Bertalan�ygrowth, are described in detail. Each of these laws was evaluated against clini-cal data on untreated primary carcinoma of the human lung, as well as inducedsarcoma in mice. The authors found that Bertalan�y growth gave the best re-sults in the cases of mouse sarcoma, but that logistic growth most accuratelydescribed the progression of human lung carcinoma. In a more recent study(Hart, Shochat, and Agur 1998) the Gompertz, logistic, exponential, and powergrowth laws were compared. The power growth law is a direct generalizationof exponential growth and is fully described in the study. In this case, modeloutcomes were compared to clinical data for primary breast cancer growth. Forthese particular breast cancer studies, the power growth law with an exponentof about 0:5 gave the best �t to the data.Since the model we are developing is intended to be qualitative and doesnot focus on a particular tumor type, it is not immediately apparent how tomeasure which growth law is superior in this context. It turns out, however,that the growth law terms we compared allow for similar growth behavior up toa certain point in tumor size. Since we assume an initially small tumor mass,that is, a tumor size that is close to zero relative to carrying capacity, the choiceof growth law does not signi�cantly a�ect the qualitative behavior of the model.We compared the results of the evolution of our system using the various growthlaw terms and in each case found qualitative results to be similar. The solutionspresented here, therefore, are those that have arisen using logistic growth. InSections 5 and 6, we present analytic and numerical results of this new model,as well as open questions and future directions for re�ning the model.Preliminary numerical results have already suggested that standard treat-ment protocols may not be optimal and that better outcomes may be achievedby administering medication in ways that have not been previously employedclinically but have been suggested by the mathematics. As this new model isdeveloped and re�ned, these theories can be more thoroughly tested. Althoughthere is still much to be done to test the new theories, every new result hasthe potential to be an advance towards improving the quality of treatment forcancer su�erers.2.2 The Model - EquationsWe let I(t) denote the number of immune cells at time t, T (t) the number oftumor cells at time t, and N (t) the number of normal, or host, cells at time t.The source of the immune cells is considered to be outside of the system,so it is reasonable to assume a constant inux rate, s. Furthermore, in theabsence of any tumor, the cells will die o� at a per capita rate d1, resulting ina long-term population size of s=d1 cells. Thus, immune cell proliferation willnever su�er from immune upon immune crowding.7



The presence of tumor cells stimulates the immune response, represented bythe positive nonlinear growth term for the immune cells�I(t)T (t)�+ T (t) ;where � and � are positive constants. This type of response term is of the sameform as the terms used in the respective models of Kuznetsov et al. (1994) andKirschnere and Panetta (1998). It is also similar to the one used by Owen andSherratt (1998) once their system is reduced to the pseudo-steady state. Inother words, as a function of T , it is positive, increasing, and concave.Furthermore, the reaction of immune cells and tumor cells can result in eitherthe death of tumor cells or the inactivation of the immune cells, resulting in thetwo competition termsdIdt = �c1I(t)T (t) and dTdt = �c2I(t)T (t):As discussed in Section 2.1, the tumor cells as well as the normal cells aremodeled by a logistic growth law, with parameters ri and bi representing theper capita growth rates and reciprocal carrying capacities of the two types ofcells: i = 1 identi�es the parameters associated with the tumor, and i = 2identi�es those associated with the normal tissue. In addition, there are twoterms representing the competition between tumor and host cells.Putting all the terms together gives the following system of ordinary di�er-ential equations: _I = s+ �IT�+ T � c1IT � d1I_T = r1T (1� b1T )� c2IT � c3TN_N = r2N (1� b2N )� c4TN (1)The behavior of this system without drug interactions will be analyzed in Sec-tion 3.We now add the e�ect of the drug on the system. We denote by u(t) theamount of drug at the tumor site at time t. We assume that the drug kills alltypes of cells, but that the kill rate di�ers for each type of cell, with the responsecurve in all cases given by an exponentialF (u) = a(1� e�ku);where F (u) is the fraction cell kill for a given amount of drug, u, at the tumorsite. Since the details of the pharmacokinetics are unknown, we let k = 1in these preliminary studies. We denote by a1; a2; and a3 the three di�erentresponse coe�cients. We add these terms to the system of di�erential equationsabove as well as an equation for u(t), the amount of drug at the tumor site.This is determined by the dose given, v(t), and a per capita decay rate of thedrug once it is injected. The system with drug interaction is then given by8



_I = s+ �IT�+ T � c1IT � d1I � a1(1� e�u)I_T = r1T (1� b1T )� c2IT � c3TN � a2(1� e�u)T_N = r2N (1� b2N )� c4TN � a3(1 � e�u)N_u = v(t) � d2u (2)Our control problem consists of determining the function v(t) that will min-imize the number of tumor cells at some speci�ed time, tf , with the constraintthat we do not kill too many normal cells. If the units of cells are normalized, sothat the carrying capacity of normal cells is 1 (i.e., b2 = 1), we then require thatthe number of normal cells stay above three-fourths of the carrying capacity, orN (t) � :75 for all t. Therefore, in the language of optimal control theory, ourobjective function (the function we wish to minimize) and our constraint aregiven by Objective Function: J(tf ) = T (tf )Constraint: N (t) � :75 0 � t � tf (3)In Section 4 we look more closely at the optimal control problem and discusssome possible modi�cations to the objective function.3 Drug-Free EquilibriaTo better understand the dynamics of the system, we �rst analyze the systemwithout any drug input (u(t) = 0 for all t). Recall from Section 2 that the unitsof cells are normalized so that b2 = 1. In order to consider the patient \cured,"the system must be either in the basin of a stable tumor-free equilibrium or inthe basin of a stable equilibrium at which only a harmlessly small amount oftumor is present.The three sets of null-surfaces of the drug-free system given by (1) are de-scribed by the following:� N1 : _I = 0) I = s(� + T )(c1T + d1)(�+ T ) � �Tas long as �T 6= (c1T + d1)(�+ T ).N1 is a curved cylindrical surface parallel to the N -axis. Letting f(T ) bea function of the tumor population T , we let f(T ) describe N1 by de�ningf(T ) � s(�+ T )c1T (� + T ) + d1(�+ T )� �T (4)9



� N2 : _T = 0)8><>:T = 0orT = 1=b1 � (c2=r1b1)I � (c3=r1b1)NN2 is a plane.� N3 : _N = 0)8><>:N = 0orN = 1� (c4=r2)TN3 is also a plane, parallel to the I-axis. Letting g(T ) be a functiondescribing N3 in terms of the tumor population, we de�neg(T ) � 1� (c4=r2)T (5)The null-surfaces for the particular set of parameter values used in our ex-periments are pictured in Figure 1. See Section 5.1 for a list of parameter values.The types of equilibrium points that could occur at the intersections of thesesurfaces can be classi�ed as follows:� Tumor-free: In this category, the tumor cell population is zero but thenormal cells survive. The equilibrium point has the form(s=d1; 0; 1)� Dead: We classify an equilibrium point as \dead" if the normal cell popu-lation is zero. There are, therefore, two possible types of \dead" equilibria:{ Type-1: (s=d1; 0; 0) in which both the normal and tumor cell popu-lations have died o�, and{ Type-2: (f(a); a; 0) where the normal cells alone have died o� andthe tumor cells have survived. Here, a is a nonnegative solution toa+ (c2=r1b1)f(a) � 1=b1 = 0� Coexisting: Here, both normal and tumor cells coexist with nonzero pop-ulations. The equilibrium point would be given by(f(b); b; g(b))where b is a nonnegative solution ofb+ (c2=r1b1)f(b) + (c3=r1b1)g(b)� 1=b1 = 0Depending on the values of these parameters, there could be zero, one, two,or three of these equilibria. The two equilibrium states that the system shouldideally approach, in the context of developing treatment therapy, are the tumor-free equilibrium and any coexisting equilibrium for which b is small and g(b) isclose to 1, since in these states the normal cell population survives.10



3.1 Tumor-Free EquilibriumIn principle, we would like the tumor-free equilibrium to be stable so that thepossibility exists of moving the state of the system toward the tumor-free point.In this section we discuss for which parameter ranges the tumor-free equilibriumis locally stable. Linearization around this equilibrium gives the system24 _I_T_N 35 = 2664 �d1 �sd1� � c1sd1 00 r1 � c2sd1 � c3 00 c4 �r2 3775 [I; T;N ] (6)with eigenvalues �1 = �d1 < 0�2 = r1 � c2sd1 � c3�3 = �r2 < 0Thus the tumor-free equilibrium is stable as long as �2 < 0 orr1 < c2sd1 + c3This relates the per-capita growth rate of the tumor cells, r1, to the \resis-tance coe�cient," c2s=d1, which measures how e�ciently the immune systemcompetes with the tumor cells. If this tumor-free equilibrium is unstable, thenaccording to this model, no amount of chemotherapy will be able to completelyeradicate the tumor. This is in fact the case in the model of (Owen and Sherratt1998) for all parameter values.3.2 Dead EquilibriaThe same type of analysis as above shows that the type-1 dead equilibrium at(s=d1; 0; 0) is always unstable. The type-2 dead equilibrium at (f(a); a; 0) canbe either stable or unstable, depending on the parameters of the system. Forany particular set of parameter values, one could apply the Routh test (see, forexample, (Borrelli and Coleman 1998, p. 415)) to the characteristic polynomialof the Jacobian. For the parameter set used in our optimal control experiments,the type-2 dead equilibrium is located at (2:85; 0:05; 0:0) and is unstable.3.3 Coexisting EquilibriaAlso of interest are the existence and stability of equilibria where a small tumormass might coexist with a large number of normal cells. These equilibria occurat the intersection of the components of the three null-surfaces that do notcorrespond to coordinate planes. Figure 1 shows these surfaces, with the curvedimmune surface, N1, depicted in the top graph, and the planar tumor and11



normal surfaces, N2 and N3, drawn on the same axes in the bottom graph. Thethree surfaces intersect at the coexisting equilibrium, which is marked in red onthe graphs.Depending on the parameter values, there can be zero, one, two, or threeof these equilibria. The null-surfaces divide the positive octant into at mosttwelve regions. The goal of chemotherapy is to get the system into a region ofstability of one of the \harmless" equilibria: either the tumor-free equilibrium at(s=d1; 0; 1) or an equilibrium at which only a small amount of tumor is present.Figure 2 shows the existence and stability of these equilibria as a functionof the immune response rate, �, and the immune source rate, s. All otherparameter values are set to be equal to those used in our later experiments. Forour parameter values with � = 2:0 and s = 0:1, there is only one coexistingequilibrium, and it is stable. That is, our experimental parameter values placeus in Region 3.In the three graphs of Figure 3, the equilibrium values of the cell populationsare plotted as a function of �, with s �xed at s = 0:05. In these plots, we seethe transition from Region 2 (one unstable equilibrium) through Region 7 (twostable, one unstable equilibrium) and Region 6 (one stable, two unstable) and�nally to Region 3 (one stable equilibrium point).Note that the behavior of the system is very sensitive to the values of �, thetumor response rate, and to s, the steady source rate of immune cells.4 Optimal Therapy ProtocolsIn this section we add the e�ect of chemotherapy treatments to our system, andwe use optimal control theory to look for an optimal administration protocol.Let h(I; T;N; u; v) = ( _I; _T ; _N; _u)be the right-hand side of the system of di�erential equations describing themodel. For brevity, we denote the state variables by (I; T;N; u) = (x1; x2; x3; x4).We want to minimize the �nal number of tumor cells while keeping the normalcells above a �xed amount for the entire course of treatment. We have chosenthis amount to be 75 percent of the tumor-free normalized carrying capacity forthis experiment. Thus, in the parlance of optimal control theory, the objectivefunction is J(x; v) = T (tf ) = x2(tf )and the inequality constraint isk(x; t; v) = x3(t)� :75 � 0 0 � t � tf (7)Using the standard approach (Kamien and Schwartz 1991), we derive the Hamil-tonian for the optimal control problem :H = p1( _x1) + p2( _x2) + p3( _x3) + p4( _x4) + �k12
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where the functions pi(t) satisfy the co-state equations, _pi = �@H@xi :_p1 = �p1� �x2�+ x2 � c1x2 � d1 � a1(1� e�x4)�+ p2c2x2_p2 = �p1� ��x1(�+ x2)2 � c1x1�� p2 �r1 � 2r1b1x2 � c2x1 � c3x3 � a2(1� e�x4)� + p3c4x3_p3 = p2c3x3 � p3 �r2 � 2r2x23 � c4x2 � a3(1� e�x4 )�� �(t)_p4 = �e�x4 (a1p1x1 + a2p2x2 + a3p3x3) (8)and �(t) � 0 with �(t)k(t) = 0 (9)Equation 9 along with the de�nition of k in Equation 7 is consistent with�(t) = (1 for x3(t) � :750 otherwise (10)The boundary values for the co-state variables are given by @J@xi ����t=tf , orp1(tf ) = 0; p2(tf ) = 1; p3(tf ) = 0; p4(tf ) = 0The control equation is then @H@v = p4which is independent of the control variable, v. We assume that the amount ofdrug entering the patient at time t is bounded above and satis�es0 � v(t) � vmaxWe therefore have bang-bang solutions as candidates for optimal protocols; see(Kamien and Schwartz 1991):v = 8><>:0 p4 > 0vmax p4 < 0singular p4 = 0 (11)Thus, the co-state variable, p4, is the switching function for the system, and thedrug should be injected at the maximum rate, vmax, whenever p4 is negativeand should be stopped whenever p4 is positive.In the next section we describe some numerical solutions to this optimalcontrol problem and compare them with a standard periodic protocol, whereeach treatment is of relatively short duration.16



5 Numerical SolutionsThe problem as formulated in Section 4 is a two-point boundary value prob-lem (TPBVP) for which the initial states of the state variables are known, andthe �nal states of the co-state variables are known. For these numerical experi-ments we used a direct collocation method to solve the TPBVP, implemented inDIRCOL v1.2 (von Stryk 1999). The algorithm is sensitive to user input at vari-ous stages: in particular, it fails if the initial estimates of the state variables andthe control variable are not close enough to optimal values. The grid of pointsat which the control is given is also crucial to the success of the algorithm.5.1 ParametersIn this section we summarize the parameters of the model in lexicographic order.Since our model is qualitative, rather than quantitative, there is no claim thatthese values are fully realistic. While we attempt to use reasonable parametervalues, there is still much work to be done toward accurate parameter-valueestimation. In fact, since the model itself is still a preliminary one, we donot suggest that it produces quantitative results that reect real-life quantities.Rather, we believe that the qualitative behavior of the model does indeed reectthe qualitative behavior of real tumors with respect to the response to treatment.Recall that the units of cells were rescaled, so that one unit represents thecarrying capacity of the normal cells in the region of the tumor. This dependson the type of tumor, of course, but it is reasonable to allow this to be on theorder of 1011 cells (Rieker 1999). If one assumes that there are between 108and 109 cells per cubic centimeter of tissue, then the normal cell population atcarrying capacity encompasses a volume with a diameter somewhere between5:8 and 12:4 centimeters. The parameter ranges implemented are as follows:� Fraction Cell Kill: 0 � ai � 0:5, with a3 � a1 � a2. In our experiments,these numbers were considered variable, in the sense that di�erent drugs providefor di�erent cell kill rates. On the other hand, we wanted to avoid unreasonablye�cient drugs, hence the upper bound of 0.5 on all the values.� Carrying Capacities: b�11 � b�12 = 1.� Competition Terms: c1; c2; c3; c4 taken to be positive in these experiments.It is reasonable to assume that c2 is larger than the rest, since the competitionbetween immune cells and tumor cells is most detrimental to the tumor cells.Some authors argue that c3 might be negative, and there is clinical evidencefor this (Panetta 1996), (Michelson and Leith 1996). A negative competitioncoe�cient in this case would imply that instead of the normal cells destructivelycompeting with the tumor cells for resources and space, the presence of thenormal cells would in fact stimulate further growth of the tumor cell population.In these preliminary experiments, however, we assume destructive competition,and we stick to the case 0 < c3 < c2. When the coe�cient c2 is greater than c3,this simply indicates that the presence of the immune system is more damagingto the tumor cell population than is the competition between the tumor cellsand normal cells. 17



� Death Rates: d1 and d2. Here d1 is the per capita death rate of the immunecells, with d1 = :2, and d2 is the per capita death rate of the drug, with d2 = 1.� Per Unit Growth Rates: r1 and r2, with time normalized so that r2 = 1.Depending on the type of cancer and the stage of growth, r1 may be bigger orsmaller than r2. See, for example, (Kusama et al. 1972), (Arner�v et al. 1992),and (Steel 1977). Here we assume that the tumor cell population grows morerapidly than the normal cell population, and let r1 > r2.� Immune Source Rate: s, a steady source rate for immune cells in the absenceof a tumor. In our experiments, 0 � s � :5; see (Kuznetsov et al. 1994).� Immune Threshold Rate: �, which is inversely related to the steepness ofthe immune response curve. When the number of tumor cells, T , is equal to�, the immune response rate is at half of its maximum value. We used � = :3.See, for example, the parameter estimation work in (Kuznetsov et al. 1994).� Immune Response Rate: �, which we assume to have a baseline value of 1.With the other parameter choices, an interesting range of � is the interval (0,2.5).In numerical experiments, we varied � in this range to determine bifurcations inthe behavior of the system of equations 2. See Figures 2 and 3 for illustrationsof the e�ects of varying �.Initial values are I(0) = s=d1, T (0) = 10�5, N (0) = 1. When chemotherapyis initiated, the initial tumor mass is small, and immune and normal cells areat their healthy equilibrium levels. We are assuming a situation in which asmuch of the tumor has been removed as is possible by surgery or radiation. Aninitial tumor population of 10�5 normalized units is equivalent to 106 tumorcells. If these tumor cells formed a sphere, it would occupy a volume of radiusbetween 0:12 and 0:27 centimeters. The clinical detection threshold for a tu-mor is generally 107 cells (Shochat, Hart, and Agur 1999), so the initial tumorvolume of 10�5 normalized units is below clinical detection levels. Note thatthe presence of a preoperative clinically detectable tumor does not necessarilyimply that the tumor has completely escaped immunosurveillance, simply thatthe immune system response was not su�cient to curtail the rapid growth ofthe tumor cell population.Results from preliminary numerical experiments follow. Figures 4 and 5 showtypical optimal solutions. The upper graphs show the time evolution of thethree types of cells, while the lower graphs show the control variable, v. Noticethat the numerical simulation did produce bang-bang type optimal solutions.Comparison of the two graphs shows the e�ect of changing the parameter �,showing greater tumor reduction in the case of higher immune response rate.Since the tumor population is an order of magnitude smaller than the otherpopulations, the amount of tumor on each of the plots has been scaled up by afactor of ten in order to make the di�erence in tumor progression visible. Notealso that the control in the reduced immune response case calls for about 19%more total medication to be administered over the course of treatment.18
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Figure 4: Optimal control solution with a lower value of �. Tumor cell popula-tion only is scaled up by a factor of 10 for visibility.19
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5.2 Comparison with Standard ProtocolsThe protocol suggested by the optimal control algorithm dictates that the drugbe administered continuously over relatively long periods of time|on the orderof days. Standard protocol is to administer the drug for a short time, on theorder of several hours, with periodically repeated treatments every few weeks.Figure 6 compares the optimal control protocol with a standard protocol of theperiodically pulsed type. Although traditional pulsed chemotherapy is generallyadministered once every two or three weeks, in our experiments we increase thefrequency of the pulses to every other day. This is to ensure that the total doseadministered over the treatment period of 150 days is equivalent to the totaldose administered with the optimal control protocol. Because of their hightime frequency, the pulsed doses would obscure the graph and are therefore notdepicted. However, the progression of the tumor in response to the pulsed dosesis depicted. Note that the optimal control protocol allows the tumor to oscillatein size with larger amplitude, although it does result in a smaller tumor massat the prescribed �nal time, tf . Clinically it is clearly not considered desirableto induce such oscillations. However, it is important to keep in mind that ourspeci�c goal in the context of the optimal control problem is to minimize the �naltumor size while keeping the patient healthy by some measure. The measure ofhealth that we specify is in terms of the population of normal cells, which werequire to stay above a certain minimum. The optimal control algorithm didexactly what it was directed to do, and did in fact reduce the �nal tumor masswith respect to the mass resulting from pulsed therapy, without allowing thenormal cell population to oscillate by more than about 5%. From Figures 4 and5 it is clearly seen that there are only very small amplitude oscillations in thenormal cell population.We also compare the output of our model with data from (Thomlinson 1982)from a patient with a breast carcinoma. Figure 9, page 490 of (Thomlinson1982) shows the progression of the size of a breast carcinoma and its responseto injections of a combination of cytotoxic drugs. Thomlinson notes that tumorgrowth cycles are asynchronously o�set from treatment times, making it appearthat the patient could be resistant to the therapy. However, Thomlinson arguesthat drug resistance does not completely explain the asynchronous behavior.The same asynchronous phenomenon appears in our model, both with optimalcontrol therapy and with traditional pulsed therapy. In this model, this behavioris caused by the detrimental e�ect of chemotherapy on the immune cells, andthe subsequent interaction of the immune cells with tumor cells. This type ofoscillatory behavior is in fact typical of many predator-prey interaction models.The results of the numerical experiment are shown in Figures 7 and 8. Notethat the tumor populations have been scaled up on the plots for clarity.21
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6 Directions for Future WorkA natural extension of this work would be to study other objective functionsin the optimal control problem, as described in Section 1.3. For example, wemight attempt to minimize a linear combination of the average tumor size andthe �nal tumor size by lettingJ(x; v; t) = K1 1tf Z tf0 T (t) dt+K2T (tf );where K1 and K2 are prioritizing weights. Note that this objective functionreduces to that of Equation (3) if K1 = 0 and K2 = 1. This more general-ized objective function might allow us to reduce the tumor size oscillations thatappear with our current objective function. Alternatively, we may consider al-lowing the total time of treatment to vary. As we saw in Section 3, for someparameter values there are coexisting equilibria, that is, equilibria at which alltypes of cells have positive values. In the case where such an equilibrium occursat a small level of tumor cells but at a large level of normal cells, this point couldrepresent a permanent \indolent" tumor. If the equilibrium were stable, a ther-apy that put the system in the basin of attraction of this indolent equilibriumwould be considered a \cure." Thus our objective function might minimize thedistance to this equilibrium, rather than the distance to the immune-normal cellplane (as is the case when the number of tumor cells is minimized).An enhancement of the current model would take into account the cell cycle.We would begin by modeling the cell cycle of the tumor cells in two stages,where the drug a�ects the cell only in the mitotic stage. This would turnthe di�erential equations into delay-di�erential equations and would complicatethe optimal control problem but would not necessarily make it intractable. Infact, such problems have been extensively studied in applications to economicsand management (Kamien and Schwartz 1991) where necessary conditions foroptimality can sometimes be derived.Another element of the model we wish to examine more closely is the assump-tion that the competition between cells, speci�cally the competition betweentumor cells and normal cells, is in proportion to the product of their numbers.This assumes that each cell is equally likely to compete with each cell of theother type. While this assumption may be reasonable if we are dealing withliquid cancers, such as leukemia, in a solid tumor, such as breast cancer, thecompetition between the tumor and normal cells for resources is more likely tooccur along the interface between the two. We therefore propose to look at amodel that takes into account the geometry of the tumor and uses a stochastic,nearest-neighbor competition paradigm. The competition between the immunecells and the tumor cells could stay as it is, since it is based on cell interactionsas described in Section 1.Another re�nement of the model would include time-varying competitionterms. It is known among clinicians and through in vitro experiments that smalltumors are inhibited by the presence of normal cells but that large tumors arestimulated by normal cells. In particular, there is evidence that the production25



of �broblasts can stimulate tumor cell growth. We plan to incorporate thisinteraction into our model and study the resulting parameter space, focusing onthe competition parameter c3.In clinical experience, a patient will respond at �rst to chemotherapy, andthen cease to do so. One explanation for these symptoms is the evolution ofdrug-resistant subpopulations of tumor cells. We also plan to add this newpopulation as another state variable to investigate the dynamical rami�cations.Choosing a therapy would then involve also determining the time when thepatient should be given a new batch of drugs. The statement of the optimalcontrol problem would then change as well, with a new term being added tothe objective function and to the control variable. The times at which drugcombinations should be changed as well as the periods of drug administrationwould be chosen to minimize the new objective function.AcknowledgmentsWe thank the members of the Mathematics Of Medicine group at St. Vincent'sHospital in Los Angeles, especially Dr. Charles Wiseman and Dr. Tom Starbird.We also thank Dr. Je� Rieker of Pomona Valley Hospital for helpful discussions.The �rst author thanks Argonne National Laboratory and Harvey Mudd Collegefor supporting this research. Argonne support is under U.S. Department ofEnergy Contract W-31-109-ENG-38.
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