Stephen J. Wright*

On Reduced Convex QP Formulations of Monotone LCP Problems

April 28, 2000

Abstract

Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation-one that has fewer constraints than the "standard" QP formulation-is available. We mention several instances of this class, including the known case in which the coefficient matrix in the LCP is symmetric.

Key words. Monotone Linear Complementarity Problems, Convex Quadratic Programming, Karush-Kuhn-Tucker Conditions

1. Introduction

In this note, we consider linear complementarity problems (LCPs) and convex quadratic programs (QPs) over closed convex cones, and examine the relationship between LCP and QP formulations of the same problem. We show that for a subclass of LCPs, it is possible to define a QP that has fewer constraints than the standard QP reformulation and whose primal-dual solution yields a solution of the LCP.

Our work is related to that of Robinson $[4,5]$, who discusses methods for reducing variational inequalities (possibly nonlinear and nonmonotone) that have certain structural properties. There is a subclass of problems for which the reduction techniques discussed here and those of Robinson are identical. We mention some problems of this type in Section 4 and discuss the relationship between the reduction techniques in more detail there.

The significance of our results derives partly from the fact that software for solving QP is generally more prevalent than software for LCP. Given some LCP formulation of a problem, and a code for solving QP, it will generally be to our advantage to find the most compact QP representation of the problem possible before calling the solver.

[^0]Section 2 provides some background and presents an existence result for the solution of monotone LCP. Section 3 proves the main results about reduced QP formulations. Some examples are given in Section 4.

2. Background

We now define affine variational inequalities, linear complementarity problems, and quadratic programming problems over a closed convex cone in Euclidean space \mathbf{R}^{n}, and outline the techniques by which a given problem can be formulated by any one of these techniques. We also state results about the equivalence of these formulations and existence of solutions.

We use $\langle\cdot, \cdot\rangle$ to denote an inner product in R^{n}. (All our examples use $\langle x, y\rangle=$ $x^{T} y$.) We use M, Q, R, and S to denote linear operators on R^{n} or, equivalently, their $n \times n$ matrix representations.

Closed convex cones are closed sets $K \subset \mathrm{R}^{n}$ such that for any vectors $x \in K$ and $y \in K$, we have that $\alpha x+\beta y \in K$ for all $\alpha \geq 0$ and $\beta \geq 0$. Note in particular that $0 \in K$, that by setting $\alpha \in[0,1]$ and $\beta=1-\alpha$ we verify the convexity property, and that $x+K \subset K$ for all $x \in K$. The dual cone or polar cone for K is defined by

$$
K^{*} \stackrel{\text { def }}{=}\{s \mid\langle y, s\rangle \leq 0 \text { for all } y \in K\} .
$$

It is easy to verify that $\left(K^{*}\right)^{*}=K$; see Rockafellar [6, p. 121]. The normal cone for K at a point x is defined by

$$
N_{K}(x) \stackrel{\text { def }}{=} \begin{cases}\{s \mid\langle s, y-x\rangle \leq 0 \text { for all } y \in K\}, & \text { if } x \in K, \tag{1}\\ \emptyset & \text { if } x \notin K\end{cases}
$$

It follows immediately that $K^{*}=N_{K}(0)$.
Given a convex function f on R^{n}, we define the conjugate function f^{*} by

$$
f^{*}(y)=\sup _{x}\{\langle x, y\rangle-f(x) \mid x \in \operatorname{ri}(\operatorname{dom} f)\}
$$

The subgradient of f is the multifunction defined by

$$
\partial f(x)=\{y \mid f(z) \geq f(x)+\langle y, z-x\rangle \text { for all } z\} .
$$

As in Robinson [4], we use these definitions to note the following relationship:

$$
\begin{equation*}
y \in N_{K}(x) \Leftrightarrow x \in N_{K^{*}}(y) \tag{2}
\end{equation*}
$$

A proof of this claim follows if we note that

$$
N_{K}(x)=\partial I_{K}(x)
$$

where I_{K} is the indicator function for K (which takes on the value 0 on K and ∞ otherwise), use the fact that $I_{K}^{*}=I_{K^{*}}$ (Rockafellar [6, Theorem 14.1]), and then apply Theorem 23.5 of [6].

Consider the affine variational inequality problem over the closed convex cone $K \subset \mathbf{R}^{n}$:

$$
\begin{equation*}
\text { Find } x \in \mathrm{R}^{n} \text { such that } q-M x \in N_{K}(x) \tag{3}
\end{equation*}
$$

where $M \in \mathrm{R}^{n \times n}$ and $q \in \mathrm{R}^{n}$ are given. If x solves (3), we have from $x+y \in K$ for all $y \in K$ and the definition (1) that

$$
\langle q-M x, y\rangle=\langle q-M x,(x+y)-x\rangle \leq 0, \text { for all } y \in K
$$

Therefore $q-M x \in K^{*}$, so it is natural to write the LCP associated with (3) as follows:

$$
\begin{equation*}
\text { Find } x \in K \text { such that } q-M x \in K^{*},\langle x, q-M x\rangle=0 \tag{4}
\end{equation*}
$$

In fact, Proposition 1.5.2 of Cottle, Pang, and Stone [1] shows that problems (3) and (4) are equivalent.

We are interested in monotone problems, those for which M is positive semidefinite but not necessarily symmetric.

The formulation (4) reduces to the standard monotone LCP if we take $K=$ R_{+}^{n}, the nonnegative orthant. We obtain the mixed monotone LCP if we set $K=\mathrm{R}_{+}^{\bar{n}} \times \mathrm{R}^{n-\bar{n}}$ for some \bar{n} strictly between 0 and n. The dual cone in this case is $K^{*}=\mathrm{R}_{-}^{\bar{n}} \times\{0\}$.

Consider now the quadratic programming problem (QP) over a convex cone L :

$$
\begin{equation*}
\min _{z \in \mathrm{R}^{m}} \frac{1}{2}\langle z, Q z\rangle-\langle c, z\rangle, \text { subject to } A z-b \in L \tag{5}
\end{equation*}
$$

The standard technique for reformulating (4) as a quadratic program (5) is to define the inner product to be the objective function and write

$$
\begin{equation*}
\min _{x}\langle x, M x-q\rangle \text { subject to } x \in K, q-M x \in K^{*}, \tag{6}
\end{equation*}
$$

To identify (6) with (5), we define $z=x$ and

$$
Q=M+M^{*}, \quad c=q, \quad A z=(z,-M z), \quad b=(0,-q), \quad L=K \times K^{*} .
$$

Conversely, the standard technique for reformulating (5) in the form (4) is via the Karush-Kuhn-Tucker (KKT) optimality conditions for (5), which are that there exists a vector v such that

$$
\begin{equation*}
Q z-c+A^{*} v=0, \quad A z-b \in L, \quad v \in L^{*},\langle v, A z-b\rangle=0 \tag{7}
\end{equation*}
$$

Because of the assumed positive semidefiniteness of Q and convexity of L, the conditions (7) are sufficient as well as necessary for solving (5).

For the particular QP (6) that arises as a reformulation of the LCP (4), the conditions (7) reduce to the following:

$$
\begin{align*}
\left(M+M^{*}\right) x-q-M^{*} u+w & =0, \tag{8a}\\
(x,-M x)-(0,-q) & \in K \times K^{*}, \tag{8b}\\
(w, u) & \in K^{*} \times K, \tag{8c}\\
\langle(x, q-M x),(w, u)\rangle & =0 . \tag{8d}
\end{align*}
$$

Note that this LCP is quite different from the original form (4), in that the number of variables is significantly greater. However, an equivalence relationship between these two LCPs and the QP (6) can be stated as follows.
Theorem 1. Suppose that (4) is feasible, that is, there exists $x \in K$ such that $q-M x \in K^{*}$. Then the following statements hold
(i) Any solution x of (4) also solves (6), and conversely.
(ii) The LCP (4) has a solution.

Proof. Lemma 3.1.1 of [1] (generalizing from the special case of $K=\mathrm{R}_{+}^{n}$ to the case of closed convex cones K) can be used to show that feasibility of (4) implies that the quadratic program (6) is feasible with objective function bounded below by zero. Therefore (6) has a solution x, so by necessity of the conditions (8), there exists a vector (u, w) such that (8) is satisfied by (x, u, w). We now show that this x solves (4) by using a generalization of the argument of Theorem 3.1.2 of [1]. By taking the inner product of (8a) with $x-u$, we obtain

$$
\begin{aligned}
0 & =\left\langle x-u, M x-q+M^{*}(x-u)+w\right\rangle & & \\
& \geq\langle x-u, M x-q+w\rangle & & \text { by monotonicity of } M \\
& =\langle x, M x-q\rangle+\langle(x, q-M x),(w, u)\rangle-\langle u, w\rangle & & \\
& =\langle x, M x-q\rangle-\langle u, w\rangle & & \text { by }(8 \mathrm{~d}) \\
& \geq\langle x, M x-q\rangle & & \text { since } u \in K, w \in K^{*} .
\end{aligned}
$$

Since $x \in K$ and $q-M x \in K^{*}$, we have also that $\langle x, M x-q\rangle \geq 0$, so it follows that $\langle x, M x-q\rangle=0$ and that x solves (4). At this point we have shown that feasibility of (4) implies that (6) has a solution and that this solution also solves (4). We complete the result by proving the "converse" statement in (i). To do this we simply observe that any solution x of (4) is feasible in (6) with an objective value of 0 . Since, as observed earlier, 0 is a lower bound on the objective in (6), we conclude that x solves (6).

In place of the last part of the proof, we can observe that, given any x that solves (4), we can set $u=x$ and $w=q-M x$. The resulting vector triple (x, u, w) satisfies the conditions (8). Since these conditions are sufficient for (6), it follows that x solves (6).

An immediate corollary of this result is that any quadratic program of the form (6) has a solution whose objective value is zero.

3. Reduced QP Formulations

We now examine special structures of the operator M that allow us to define a QP reformulation of the LCP (4) with possibly fewer constraints than the standard reformulation (6). Our results in this section extend the observation of Cottle, Pang, and Stone [1, Section 1.4]. A slightly generalized version of the latter result states that when M is self-adjoint and monotone, the LCP (4) is equivalent to the following QP:

$$
\begin{equation*}
\min _{x} \frac{1}{2}\langle x, M x\rangle-\langle q, x\rangle \text { subject to } x \in K \tag{9}
\end{equation*}
$$

(To verify the equivalence, note that the necessary and sufficient optimality conditions for (9) are $q-M x \in N_{K}(x)$, which is equivalent to (4).) By comparing with (6), we see that the quadratic term in the objective of (9) differs and that the constraint $q-M x \in K^{*}$ is not present.

The special structure of M that we analyze in this section is defined with respect to a subspace T of R^{n}. A projection onto this subspace is denoted by P_{T}, where

$$
\begin{equation*}
P_{T} x=\arg \min _{t \in T}\langle y-x, y-x\rangle \tag{10}
\end{equation*}
$$

Note that P_{T} is a self-adjoint linear operator and that $P_{T} P_{T}=P_{T}$.
The orthogonal subspace to T is $T^{\perp}=\{y \mid\langle y, x\rangle=0$ for all $x \in T\}$. We have that

$$
\begin{equation*}
I=P_{T}+P_{T^{\perp}} \tag{11}
\end{equation*}
$$

that is, any vector $x \in \mathrm{R}^{n}$ can be decomposed as $x=P_{T} x+P_{T^{\perp} x}$.
In this section we assume certain properties on two-sided projections of M onto T and its complement T^{\perp}. To be specific, we are interested in M for which there exist operators S, Q, and R on R^{n}, such that

$$
\begin{align*}
P_{T} M P_{T} & =P_{T} S P_{T}, \quad S \text { monotone and self-adjoint } \tag{12a}\\
P_{T^{M}} M P_{T^{\perp}} & =P_{T} R P_{T^{\perp}} \tag{12~b}\\
P_{T^{\perp}} M P_{T} & =P_{T^{\perp}}\left(-R^{*}\right) P_{T}=-P_{T^{\perp}} R^{*} P_{T}, \tag{12c}\\
P_{T^{\perp}} M P_{T^{\perp}} & =P_{T^{\perp}} Q P_{T^{\perp}}, Q \text { monotone and self-adjoint. } \tag{12d}
\end{align*}
$$

A number of identities follow from these properties. For example, we have

$$
\begin{align*}
P_{T}\left(M+M^{*}\right) & =P_{T}\left(M+M^{*}\right) P_{T}+P_{T}\left(M+M^{*}\right) P_{T^{\perp}} \\
& =P_{T} M P_{T}+P_{T} M^{*} P_{T}+P_{T} M P_{T^{\perp}}+P_{T} M^{*} P_{T^{\perp}} \\
& =P_{T} M P_{T}+\left(P_{T} M P_{T}\right)^{*}+P_{T} M P_{T^{\perp}}+\left(P_{T^{\perp}} M P_{T}\right)^{*} \\
& =2 P_{T} S P_{T}+P_{T} R P_{T^{\perp}}+\left(-P_{T^{\perp}} R^{*} P_{T}\right)^{*} \\
& =2 P_{T} S P_{T} \tag{13}
\end{align*}
$$

where we used the self-adjoint property of S. Similarly

$$
\begin{equation*}
P_{T^{\perp}}\left(M+M^{*}\right)=2 P_{T^{\perp}} Q P_{T^{\perp}} \tag{14}
\end{equation*}
$$

For our problem class of interest, we assume too that T and K are related in a certain way. Defining

$$
\begin{equation*}
P_{T} K \stackrel{\text { def }}{=}\left\{v \mid v=P_{T} x \text { for some } x \in K\right\}, \tag{15}
\end{equation*}
$$

we assume that

$$
\begin{equation*}
P_{T} K \subset K, \quad P_{T \perp} K \subset K \tag{16}
\end{equation*}
$$

Similar inclusions for K^{*} follow by a simple argument: Given any $y \in K^{*}$, we have from $P_{T} K \subset K$ that $\left\langle y, P_{T} v\right\rangle \leq 0$ for all $v \in K$. Since $\left\langle y, P_{T} v\right\rangle=\left\langle P_{T} y, v\right\rangle$, we have that $\left\langle P_{T} y, v\right\rangle \leq 0$ for all $v \in K$, so that $P_{T} y \in K^{*}$. We deduce that

$$
\begin{equation*}
P_{T} K^{*} \subset K^{*}, \quad P_{T \perp} K^{*} \subset K^{*} \tag{17}
\end{equation*}
$$

We also have the following lemma.

Lemma 1. Suppose that (16) holds. Then for any $x \in K$, we have

$$
\begin{equation*}
N_{P_{T} K}\left(P_{T} x\right)=\left\{v \mid P_{T} v \in N_{K}\left(P_{T} x\right)\right\} \tag{18}
\end{equation*}
$$

Proof. Note first that $P_{T} x \in P_{T} K$, since $x \in K$. Therefore, from the definition (1), we have

$$
\begin{aligned}
N_{P_{T} K}\left(P_{T} x\right) & =\left\{v \mid\left\langle v, P_{T} t-P_{T} x\right\rangle \leq 0, \text { all } t \in K\right\} \\
& =\left\{v \mid\left\langle v, P_{T} t\right\rangle-\left\langle v, P_{T} x\right\rangle \leq 0, \text { all } t \in K\right\} \\
& =\left\{v \mid\left\langle P_{T} v, t\right\rangle-\left\langle P_{T} v, P_{T} x\right\rangle \leq 0, \text { all } t \in K\right\} \\
& =\left\{v \mid\left\langle P_{T} v, t-P_{T} x\right\rangle \leq 0, \text { all } t \in K\right\} \\
& =\left\{v \mid P_{T} v \in N_{K}\left(P_{T} x\right)\right\} .
\end{aligned}
$$

Similar relationships follow from (16) and (17); in particular, for any $y \in K^{*}$, we have

$$
\begin{equation*}
N_{P_{T^{\perp}} K^{*}}\left(P_{T^{\perp}} y\right)=\left\{u \mid P_{T^{\perp}} u \in N_{K^{*}}\left(P_{T^{\perp}} y\right)\right\} \tag{19}
\end{equation*}
$$

The following technical lemma is also useful in proving our main result.
Lemma 2. Let x_{1}, x_{2}, v_{1}, and v_{2} be vectors such that

$$
x_{1} \in K, x_{2} \in K ; \quad v_{1} \in N_{K}\left(x_{1}\right), v_{2} \in N_{K}\left(x_{2}\right) ; \quad\left\langle v_{2}, x_{1}\right\rangle=\left\langle v_{1}, x_{2}\right\rangle=0
$$

Then

$$
v_{1}+v_{2} \in N_{K}\left(x_{1}+x_{2}\right)
$$

Proof. Since $v_{1} \in N_{K}\left(x_{1}\right)$ and $v_{2} \in N_{K}\left(x_{2}\right)$, we have that

$$
\begin{equation*}
\left\langle v_{1}, t-x_{1}\right\rangle \leq 0,\left\langle v_{2}, t-x_{2}\right\rangle \leq 0, \text { for all } t \in K \tag{20}
\end{equation*}
$$

But given any $t \in K$, we have that

$$
\begin{aligned}
& \left\langle v_{1}+v_{2}, t-\left(x_{1}+x_{2}\right)\right\rangle \\
= & \left\langle v_{1}, t-x_{1}\right\rangle-\left\langle v_{1}, x_{2}\right\rangle+\left\langle v_{2}, t-x_{2}\right\rangle-\left\langle v_{2}, x_{1}\right\rangle \\
= & \left\langle v_{1}, t-x_{1}\right\rangle+\left\langle v_{2}, t-x_{2}\right\rangle \leq 0,
\end{aligned}
$$

proving the result.
We are now ready to derive our main result, which is to show that under the assumptions on M and K made in this section, a solution of (4) can be obtained from the primal-dual solution of the following convex quadratic program:

$$
\begin{align*}
& \min \frac{1}{4}\left\langle x,\left(M+M^{*}\right) x\right\rangle-\left\langle P_{T} q, x\right\rangle \tag{21a}\\
& \text { subject to } P_{T^{\perp}}(q-M x) \in P_{T^{\perp}} K^{*} \tag{21b}\\
& P_{T} x \in P_{T} K \tag{21c}
\end{align*}
$$

The (necessary and sufficient) optimality conditions for this problem are as follows:

$$
\begin{align*}
-P_{T} q+\frac{1}{2}\left(M+M^{*}\right) x-M^{*} P_{T^{\perp}} u+P_{T} v & =0 \tag{22a}\\
P_{T^{\perp}}(q-M x) & \in P_{T^{\perp}} K^{*} \tag{22b}\\
P_{T} x & \in P_{T} K \tag{22c}\\
u & \in N_{P_{T^{\perp} K^{*}}}\left(P_{T^{\perp}}(q-M x)\right),(\tag{22~d}\\
v & \in N_{P_{T} K}\left(P_{T} x\right) \tag{22e}
\end{align*}
$$

Because of (18) and (19), we have that

$$
P_{T^{\perp} u} u N_{K^{*}}\left(P_{T^{\perp}}(q-M x)\right), \quad P_{T} v \in N_{K}\left(P_{T} x\right)
$$

We can therefore rewrite (22) as follows:

$$
\begin{align*}
-P_{T} q+\frac{1}{2}\left(M+M^{*}\right) x-M^{*} P_{T^{\perp}} u+P_{T} v & =0 \tag{23a}\\
P_{T^{\perp}}(q-M x) & \in P_{T^{\perp}} K^{*} \tag{23b}\\
P_{T} x & \in P_{T} K \tag{23c}\\
P_{T^{\perp}} u & \in N_{K^{\star}}\left(P_{T^{\perp}}(q-M x)\right) \tag{23d}\\
P_{T} v & \in N_{K}\left(P_{T} x\right) \tag{23e}
\end{align*}
$$

We now show that the primal-dual solution of (21) yields a solution of (3) (equivalently, (4)). By operating on (23a) with $P_{T^{\perp}}$, we obtain from (12d), the self-adjointness of Q and $P_{T^{\perp}}$, and the identity (14) that

$$
\begin{align*}
0 & =\frac{1}{2} P_{T^{\perp}}\left(M+M^{*}\right) x-P_{T^{\perp}} M^{*} P_{T^{\perp}} u \\
& =P_{T^{\perp}} Q P_{T^{\perp}} x-\left[P_{T^{\perp}} Q P_{T^{\perp}}\right]^{*} u \\
& =P_{T^{\perp}} Q P_{T^{\perp}} x-P_{T^{\perp}} Q P_{T^{\perp}} u \tag{24}
\end{align*}
$$

From (23d), and using (2), we obtain

$$
\begin{equation*}
P_{T^{\perp}}(q-M x) \in N_{K}\left(P_{T^{\perp}} u\right) . \tag{25}
\end{equation*}
$$

By expanding $P_{T^{\perp}}(q-M x)$ and using (12) and (24), we obtain

$$
\begin{aligned}
P_{T^{\perp}}(q-M x) & =P_{T^{\perp q}}-P_{T^{\perp}} M P_{T^{\perp}} x-P_{T^{\perp}} M P_{T} x \\
& =P_{T^{\perp} q}-P_{T^{\perp}} Q P_{T^{\perp}} x+P_{T^{\perp}} R^{*} P_{T} x \\
& =P_{T^{\perp} q}-P_{T^{\perp}} Q P_{T^{\perp}} u+P_{T^{\perp}} R^{*} P_{T} x,
\end{aligned}
$$

so from (25) we have

$$
\begin{equation*}
P_{T^{\perp} q}-P_{T^{\perp}} Q P_{T^{\perp} u}+P_{T^{\perp}} R^{*} P_{T} x \in N_{K}\left(P_{T^{\perp} u} u\right) \tag{26}
\end{equation*}
$$

We now operate on (23a) with P_{T} and use (12), (13), and self-adjointness of P_{T} and $P_{T^{\perp}}$ to obtain

$$
\begin{align*}
0 & =-P_{T} q+P_{T} S P_{T} x-P_{T} M^{*} P_{T^{\perp}} u+P_{T} v \\
& =-P_{T} q+P_{T} S P_{T} x-\left[P_{T^{\perp}} M P_{T}\right]^{*} u+P_{T} v \\
& =-P_{T} q+P_{T} S P_{T} x+\left[P_{T^{\perp}} R^{*} P_{T}\right]^{*} u+P_{T} v \\
& =-P_{T} q+P_{T} S P_{T} x+P_{T} R P_{T^{\perp}} u+P_{T} v . \tag{27}
\end{align*}
$$

Hence, by substitution into (23e), we obtain

$$
\begin{equation*}
P_{T} q-P_{T} S P_{T} x-P_{T} R P_{T^{\perp}} u \in N_{K}\left(P_{T} x\right) . \tag{28}
\end{equation*}
$$

From Lemma 2, we have by combining (26) and (28) that

$$
\begin{aligned}
& \left(P_{T \perp q}-P_{T \perp} Q P_{T^{\perp}} u+P_{T^{\perp}} R^{*} P_{T} x\right)+\left(P_{T} q-P_{T} S P_{T} x-P_{T} R P_{T \perp} u\right) \\
& \quad \in N_{K}\left(P_{T^{\perp}} u+P_{T} x\right)
\end{aligned}
$$

so that, using (11) and (12), we have

$$
q-P_{T} M P_{T} x-P_{T} M P_{T^{\perp}} u-P_{T^{\perp}} M P_{T} \perp u-P_{T^{\perp}} M P_{T} x \in N_{K}\left(P_{T^{\perp}} u+P_{T} x\right) .
$$

If we define

$$
\begin{equation*}
x^{*}=P_{T^{\perp}} u+P_{T} x \tag{29}
\end{equation*}
$$

we see immediately that

$$
\begin{equation*}
q-M x^{*} \in N_{K}\left(x^{*}\right) \tag{30}
\end{equation*}
$$

We conclude that from the primal-dual solution of (21), we can construct a solution of (3), and therefore of (4). This result, slightly enhanced, can be stated formally as follows.

Theorem 2. Suppose that for the matrix M, the subspace T, and the closed convex cone K the conditions (12) and (16) (and therefore (17)) are satisfied. Then if (x, u, v) is a primal-dual solution of (21), we have that x^{*} defined by (29) is a solution of (4). Moreover, if Q in (12d) is strictly monotone on the subspace T^{\perp}-that is, $\langle v, Q v\rangle>0$ for all $0 \neq v \in T^{\perp}$-then the primal solution x of (21) also solves (4).

Proof. We have proved the first statement already in the paragraphs above. For the second statement we have, by taking inner products of (24) with x, that

$$
\begin{aligned}
& \left\langle P_{T^{\perp} x}, Q P_{T^{\perp} x}\right\rangle \\
& =\left\langle x, P_{T^{\perp}} Q P_{T^{\perp}} x\right\rangle=\left\langle x, P_{T^{\perp}} Q P_{T^{\perp}} u\right\rangle=\left\langle P_{T^{\perp}} x, Q P_{T^{\perp} u} u=\left\langle P_{T^{\perp}} u, Q P_{T^{\perp} x}\right\rangle .\right.
\end{aligned}
$$

By taking the inner product of (24) with u, we have similarly that

It follows from these identities that

$$
\left\langle P_{T^{\perp}}(u-x), Q P_{T^{\perp}}(u-x)\right\rangle=0 .
$$

so from the strict monotonicity property we have $P_{T \perp u}=P_{T \perp x}$. Therefore we can replace $P_{T^{\perp} u}$ by $P_{T^{\perp}} x$ in (29), giving the result.

A similar result can be proved if we replace (21) by its dual, by interchanging the roles of T and T^{\perp}. We obtain the following QP:

$$
\begin{array}{r}
\min \frac{1}{4}\left\langle x,\left(M+M^{*}\right) x\right\rangle-\left\langle P_{T^{\perp}} q, x\right\rangle \\
\text { subject to } P_{T}(q-M x) \in P_{T} K^{*} \\
P_{T^{\perp}} x \in P_{T^{\perp}} K . \tag{31c}
\end{array}
$$

We show by similar logic to the analysis of (21) that a primal-dual solution of (31) yields a solution of (4) under the assumptions of this section. The formal result is as follows

Theorem 3. Suppose that for the matrix M, the subspace T, and the closed convex cone K the conditions (12) and (16) (and therefore (17)) are satisfied. Then if (x, u, v) is a primal-dual solution of (31), we have that x^{*} defined by

$$
\begin{equation*}
x^{*}=P_{T} u+P_{T^{\perp}} x \tag{32}
\end{equation*}
$$

is a solution of (4). Moreover, if S is strictly monotone on the subspace T, then the primal solution x of (31) also solves (4).

The significance of Theorems 2 and 3 is that the number of linear equalities and inequalities required to express the relations $P_{T^{\perp}}(q-M x) \in P_{T^{\perp}} K^{*}$, $P_{T} x \in P_{T} K$, and so on is often fewer than the corresponding number required to represent $q-M x \in K^{*}, x \in K$ in the standard formulation (5). Therefore, if we have available software for solving convex QPs, we might expect more efficient practical performance from applying it to the formulations (21) and (31) than to (5).

4. Examples

We now consider some examples of problems of the type analyzed in Section 3, illustrating the reduced QP formulations in each case.

Example 1. Consider first the case in which the cone $K \subset \mathrm{R}^{n}$ is a Cartesian product of the form

$$
\begin{equation*}
K=K_{0} \times K_{1} \tag{33}
\end{equation*}
$$

where $K_{0} \subset \mathrm{R}^{n_{0}}$ and $K_{1} \subset \mathrm{R}^{n_{1}}$ are both closed convex cones, with $n=n_{0}+n_{1}$. Assume too that the coefficient matrix M can be written in the form

$$
M=\left[\begin{array}{cc}
\bar{S} & \bar{R} \tag{34}\\
-\bar{R}^{T} & \bar{Q}
\end{array}\right],
$$

where $\bar{S} \in \mathrm{R}^{n_{0} \times n_{0}}$ and $\bar{Q} \in \mathrm{R}^{n_{1} \times n_{1}}$ are symmetric positive semidefinite. The vector q and the vector of unknowns x are partitioned correspondingly as follows:

$$
\left[\begin{array}{l}
q_{0} \\
q_{1}
\end{array}\right],\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right], \text { where } x_{0}, q_{0} \in \mathrm{R}^{n_{0}}, x_{1}, q_{1} \in \mathrm{R}^{n_{1}}
$$

We now define

$$
\begin{equation*}
T=\mathbf{R}^{n_{0}} \times\{0\}, \quad T^{\perp}=\{0\} \times \mathbf{R}^{n_{1}} \tag{35}
\end{equation*}
$$

and note that (16) obviously holds, since

$$
P_{T} K=K_{0} \times\{0\}, \quad P_{T^{\perp}} K=\{0\} \times K_{1} .
$$

We identify the components in (34) with the quantities S, R, and Q from (12) by defining

$$
S=\left[\begin{array}{cc}
\bar{S} & 0 \tag{36}\\
0 & 0
\end{array}\right], \quad R=\left[\begin{array}{cc}
0 & \bar{R} \\
0 & 0
\end{array}\right], \quad Q=\left[\begin{array}{ll}
0 & 0 \\
0 & \bar{Q}
\end{array}\right]
$$

By referring to (21), we can write the reduced QP formulation of this mixed monotone LCP as follows:

$$
\begin{align*}
\min _{x_{0}, x_{1}} & \frac{1}{2}\left(x_{0}^{T} \bar{S} x_{0}+x_{1}^{T} \bar{Q} x_{1}\right)-q_{0}^{T} x_{0} \tag{37a}\\
\text { subject to } q_{1}+\bar{R}^{T} x_{0}-\bar{Q} x_{1} & \in K_{1}^{*}, \tag{37b}\\
x_{0} & \in K_{0} . \tag{37c}
\end{align*}
$$

Note that we have modified the formulation (21) by omitting the constraints in which both sides are identically zero. The standard QP formulation (5) would have $2 n$ constraints, in contrast to the n constraints needed in (37). The alternative formulation (31) becomes

$$
\begin{align*}
\min _{x_{0}, x_{1}} \frac{1}{2}\left(x_{0}^{T} \bar{S} x_{0}+x_{1}^{T} \bar{Q} x_{1}\right)-q_{1}^{T} x_{1} & \tag{38a}\\
\text { subject to } q_{0}-\bar{S} x_{0}-\bar{R} x_{1} & \in K_{0}^{*} \tag{38b}\\
x_{1} & \in K_{1} \tag{38c}
\end{align*}
$$

Example 1A. If there is rank deficiency in the matrix \bar{Q}, the vector x_{1} in formulation (37) can be replaced by a lower-dimensional object. In the extreme case of $\bar{Q}=0, x_{1}$ does not appear at all. The reduced formulation (37) reduces further to

$$
\begin{align*}
\min _{x_{0}} \frac{1}{2} x_{0}^{T} \bar{S} x_{0}-q_{0}^{T} x_{0}, & \tag{39a}\\
\text { subject to } q_{1}+\bar{R}^{T} x_{0} & \in K_{1}^{*}, \tag{39b}\\
x_{0} & \in K_{0} . \tag{39c}
\end{align*}
$$

This case is covered by the analysis of Robinson [4, Proposition 2]. We can identify the optimality conditions for (39) with Robinson [4, eq. (8)] by defining $-d(\cdot)$ appropriately and setting $Y=K_{1}$ and $P=K_{0}$.

If instead we have that $\bar{S}=0$, then (38) can be used to obtain a reduced problem in which only the variables x_{1} appear.
Example 1B. Suppose that $n_{1}=0$, so that \bar{R}, \bar{Q}, and q_{1} are all vacuous. Then (37) reduces to

$$
\min _{x_{0}} \frac{1}{2} x_{0}^{T} \bar{S} x_{0}-q_{0}^{T} x_{0}, \quad \text { subject to } x_{0} \in K
$$

where $K=K_{0}$. This is simply the form (9) whose equivalence to (4) in the case of symmetric positive semidefinite \bar{S} was essentially noted by Cottle, Pang, and Stone [1, Section 1.4]. Again, the reduction of Robinson [4, eq. (8)] yields the same result.

The following alternative, generally less useful formulation is available from (38):

$$
\min _{x_{0}} \frac{1}{2} x_{0}^{T} \bar{S} x_{0}, \quad \text { subject to } q_{0}-\bar{S} x_{0} \in K^{*}
$$

Example 1C. A further special case of Example 1 is the linear programming problem in standard form. Here we have

$$
\bar{S}=0, \quad \bar{Q}=0, \quad \bar{R}=-A^{T}
$$

with the coordinate cones are defined as

$$
K_{0}=\mathrm{R}_{+}^{n_{0}}, \quad K_{1}=\mathrm{R}^{n_{1}}
$$

The resulting LCP (4) is then
$q_{1}-A x_{0}=0, q_{0}+A^{T} x_{1} \leq 0, x_{0} \geq 0, x_{0}^{T}\left(A^{T} x_{1}+q_{0}\right)+x_{1}^{T}\left(-A x_{0}+q_{1}\right)=0$,
which by simple elimination of terms becomes

$$
\begin{equation*}
A x_{0}=q_{1}, \quad A^{T} x_{1} \leq-q_{0}, \quad x_{0} \geq 0, \quad x_{0}^{T} q_{0}+x_{1}^{T} q_{1}=0 \tag{40}
\end{equation*}
$$

The reduced QP form (21) (equivalently (37)) is

$$
\begin{equation*}
\min _{z, w}-q_{0}^{T} x_{0} \text { s.t. } A x_{0}=q_{1}, x_{0} \geq 0 \tag{41}
\end{equation*}
$$

which is simply the linear programming problem in standard form. The alternative reduced QP form (31) (equivalently (38)) is

$$
\begin{equation*}
\min -q_{1}^{T} x_{1} \text { s.t. } A^{T} x_{1} \leq-q_{0} \tag{42}
\end{equation*}
$$

which is just the dual of the standard form. In practice, it is usually beneficial to apply software to either (41) or (42), rather than to the larger self-dual form that would arise from the standard QP formulation (5), namely,

$$
\begin{aligned}
\min -q_{0}^{T} x_{0}-q_{1}^{T} x_{1} & \\
\text { s.t. } A x_{0} & =q_{1} \\
A^{T} x_{1} & \leq-q_{0} \\
x_{0} & \geq 0
\end{aligned}
$$

Application of linear programming software to this form would be efficient only if the code was designed to recognize and exploit the self-dual structure.

Example 2. We now consider the extended linear-quadratic programming (ELQP) problem first proposed by Rockafellar [7,8]. Given nonempty polyhedral convex sets $Y \subset \mathrm{R}^{n_{0}}$ and $Z \subset \mathrm{R}^{n_{1}}$, matrices \bar{S} and \bar{Q}, and vectors q_{0} and q_{1} with the
same form as in Example 1, and a matrix $A \in \mathrm{R}^{n_{0} \times n_{1}}$, the ELQP problem is as follows:

$$
\begin{equation*}
\min _{y \in Y}-\left\langle q_{0}, y\right\rangle+\frac{1}{2}\langle y, \bar{S} y\rangle+\theta_{Z, \bar{Q}}\left(q_{1}+A^{T} y\right) \tag{43}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{Z, \bar{Q}}(u)=\sup _{z \in Z}\langle z, u\rangle-\frac{1}{2}\langle z, \bar{Q} z\rangle . \tag{44}
\end{equation*}
$$

The dual of this problem is

$$
\begin{equation*}
\max _{z \in Z}\left\langle q_{1}, z\right\rangle-\frac{1}{2}\langle z, \bar{Q} z\rangle-\theta_{Y, \bar{S}}\left(q_{0}-A z\right), \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{Y, \bar{S}}(v)=\sup _{y \in Y}\langle y, v\rangle-\frac{1}{2}\langle y, \bar{S} y\rangle . \tag{46}
\end{equation*}
$$

ELQP has proved to be a highly versatile framework that includes many piecewise linear and piecewise quadratic problems. We consider here the case in which Y and Z are closed convex cones. This subset of ELQP includes linear and quadratic programming problems as special cases. For instance, the constraint $q_{1}+A^{T} y \leq 0$ can be enforced by setting $\bar{Q}=0$ and $Z=\mathrm{R}_{+}^{n_{1}}$ in (44). The framework can also incorporate "soft constraints," a modeling technique that is frequently used in practice. In this technique, a violation of a desired inequality is not forbidden, but is discouraged by the inclusion of a quadratic term in the violation in the objective. For instance, if we set

$$
Z=\mathrm{R}_{+}^{n_{1}}, \quad \bar{Q}=(\sigma / 2) I
$$

for some $\sigma>0$, then from (44) we have

$$
\begin{equation*}
\theta_{Z, \bar{Q}}\left(q_{1}+A^{T} y\right)=\frac{1}{2 \sigma}\left\|\left(q_{1}+A^{T} y\right)_{+}\right\|_{2}^{2} \tag{47}
\end{equation*}
$$

where the subscript " + " denotes projection onto $R_{+}^{n_{1}}$.
It is easy to show that the optimality conditions for (43), (44) simply have the form of the LCP in Example 1. These conditions are

$$
\begin{aligned}
q_{0}-\bar{S} y-A z & \in N_{Y}(y), \\
q_{1}+A^{T} y-\bar{Q} z & \in N_{Z}(z) .
\end{aligned}
$$

As in Example 1, we have that the reduced QP formulation (21) is

$$
\begin{align*}
& \min _{y, z} \frac{1}{2}\left(y^{T} \bar{S} y+z^{T} \bar{Q} z\right)-q_{0}^{T} y \tag{48a}\\
& \text { subject to } q_{1}+A^{T} y-\bar{Q} z \in Z^{*}, \tag{48b}\\
& y \in Y \tag{48c}
\end{align*}
$$

The alternative formulation, corresponding to (31), is

$$
\begin{align*}
& \min _{y, z} \frac{1}{2}\left(y^{T} \bar{S} y+z^{T} \bar{Q} z\right)-q_{1}^{T} z \tag{49a}\\
& \text { subject to } q_{0}-\bar{S} y-A z \in Y^{*} \tag{49b}\\
& z \in Z . \tag{49c}
\end{align*}
$$

Example 2A. A special case of ELQP is the subproblem that arises in the stabilized sequential quadratic programming (SSQP) method described in Wright [9]. The subproblem to be solved is similar to the one that leads to (47). It has the form

$$
\begin{equation*}
\min _{z} \frac{1}{2} z^{T} \bar{Q} z-c^{T} z+\max _{\lambda \geq 0} \lambda^{T}(b-A z)-\frac{1}{2} \epsilon\left\|\lambda-\lambda^{-}\right\|_{2}^{2}, \tag{50}
\end{equation*}
$$

where λ_{-}is the estimate of λ from the previous iteration and $\epsilon>0$ is the stabilization parameter. When \bar{Q} is positive semidefinite, this problem has the form of (45), (46) if we set

$$
y=\lambda, \quad q_{1}=c, \quad q_{0}=b+\epsilon \lambda^{-}, \quad \bar{S}=\epsilon I, \quad Z=\mathrm{R}^{n}, \quad Y=\mathrm{R}_{+}^{m}
$$

and ignore the constant term in the objective. The form (49) is then

$$
\min _{z, \lambda} \frac{1}{2} \epsilon\|\lambda\|_{2}^{2}+\frac{1}{2} z^{T} \bar{Q} z-c^{T} z \quad \text { subject to } A z-b+\epsilon\left(\lambda-\lambda^{-}\right) \geq 0
$$

which is equivalent to the form derived by Li and $\mathrm{Qi}[2$, eq. (15)]. We can eliminate λ from this problem (at the cost of some nonsmoothness in the objective) and write it as

$$
\min _{z} \frac{1}{2 \epsilon}\left\|\left[b-A z+\lambda^{-}\right]_{+}\right\|_{2}^{2}+\frac{1}{2} z^{T} \bar{Q} z-c^{T} z
$$

Example 3. Finally, we mention the problem that motivated this note. It was described by Mangasarian and Musicant [3], who considered a QP formulation of the Huber regression problem. Given a matrix $A \in \mathbf{R}^{\ell \times d}$ and a vector $b \in \mathbf{R}^{\ell}$, we seek the vector $z \in \mathrm{R}^{d}$ that minimizes the objective function

$$
\begin{equation*}
\sum_{i=1}^{\ell} \rho\left((A z-b)_{i}\right) \tag{51}
\end{equation*}
$$

where the function ρ is defined as

$$
\rho(t)= \begin{cases}\frac{1}{2} t^{2}, & |t| \leq \gamma \\ \gamma|t|-\frac{1}{2} \gamma^{2}, & |t|>\gamma\end{cases}
$$

where γ is a positive parameter. By setting the derivative of (51) to zero, We can formulate this problem as an LCP by introducing variables $w, \lambda_{1}, \lambda_{2} \in \mathbf{R}^{\ell}$ and writing

$$
\begin{align*}
w-A z+b+\lambda^{2}-\lambda^{1} & =0, \tag{52a}\\
A^{T} w & =0 \tag{52~b}\\
w+\gamma e \geq 0 & \perp \lambda^{1} \geq 0 \tag{52c}\\
-w+\gamma e \geq 0 & \perp \lambda^{2} \geq 0 . \tag{52~d}
\end{align*}
$$

We can write the problem as

$$
\begin{gather*}
{\left[\begin{array}{c}
-b \\
0 \\
-\gamma e \\
-\gamma e
\end{array}\right]-\left[\begin{array}{cccc}
I & -A & -I & I \\
A^{T} & 0 & 0 & 0 \\
I & 0 & 0 & 0 \\
-I & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
w \\
z \\
\lambda^{1} \\
\lambda^{2}
\end{array}\right] \in K_{a}^{*} \times K_{b}^{*},} \tag{53a}\\
 \tag{53~b}\\
\left\langle\left[\begin{array}{c}
w \\
z \\
\lambda^{1} \\
\lambda^{2}
\end{array}\right] \in K_{a} \times K_{b},\right. \tag{53c}\\
\left\langle\left[\begin{array}{c}
w \\
z \\
\lambda^{1} \\
\lambda^{2}
\end{array}\right],\left[\begin{array}{cccc}
I & -A & -I & I \\
A^{T} & 0 & 0 & 0 \\
I & 0 & 0 & 0 \\
-I & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
w \\
z \\
\lambda^{1} \\
\lambda^{2}
\end{array}\right]-\left[\begin{array}{c}
-b \\
0 \\
-\gamma e \\
-\gamma e
\end{array}\right]\right\rangle=0,
\end{gather*}
$$

where

$$
\begin{equation*}
K_{a}=\{0\} \subset \mathrm{R}^{\ell}, \quad K_{b}=\mathrm{R}^{d} \times \mathrm{R}_{+}^{2 \ell} \subset \mathrm{R}^{2 \ell+d} \tag{54}
\end{equation*}
$$

Thus by defining

$$
\begin{equation*}
T=\mathbf{R}^{\ell} \times\{0\}, \quad T^{\perp}=\{0\} \times \mathbf{R}^{2 \ell+d} \tag{55}
\end{equation*}
$$

it is easy to verify that (16) and (17) are satisfied and that the properties (12) hold, with $Q=0$ and $P_{T} S P_{T}=P_{T}$. Therefore the second statement of Theorem 3 holds, and (31) is

$$
\begin{gather*}
\min \frac{1}{2} w^{T} w+\gamma e^{T}\left(\lambda_{1}+\lambda_{2}\right) \tag{56a}\\
\text { subject to } w-A z+b+\lambda_{2}-\lambda_{1}=0, \quad \lambda_{1} \geq 0, \quad \lambda_{2} \geq 0
\end{gather*}
$$

which is the form given in [3, formula (23)]. Note that the naive QP formulation (6) would have many more constraints than this form.

Theorem 2 suggests another QP formulation for (53). From the form (21), we obtain

$$
\begin{aligned}
& \min \frac{1}{2} w^{T} w+b^{T} w \\
& \text { subject to }-A^{T} w=0 \\
&-\gamma e-w \leq 0 \\
&-\gamma e+w \leq 0
\end{aligned}
$$

that is,

$$
\begin{equation*}
\min \frac{1}{2} w^{T} w+b^{T} w, \quad \text { subject to }-A^{T} w=0,-\gamma e \leq w \leq \gamma e \tag{57}
\end{equation*}
$$

The second statement in Theorem 2 does not apply in this case, but we can still conclude that the primal-dual solution of (57) yields a solution of (53). In particular, the Lagrange multiplier vector for the constraint $-A^{T} w=0$ yields a solution of (51).

Acknowledgments

We thank Olvi Mangasarian for his comments on an earlier version of the manuscript, and Steve Robinson and Todd Munson for pointers to relevant literature.

References

1. R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. Academic Press, San Diego, 1992.
2. Dong-Hui Li and Liqun Qi. A stabilized SQP method via linear equations. Technical report, Mathematics Department, University of New South Wales, February 2000.
3. O. L. Mangasarian and D. R. Musicant. Robust linear and support vector machines. Data Mining Institute Technical Report 99-09, Computer Sciences Department, University of Wisconsin, Madison, WI 53706, November 1999.
4. S. M. Robinson. A reduction method for variational inequalities. Mathematical Programming, Series $A, 80: 161-169,1998$.
5. S. M. Robinson. Composition duality and maximal monotonicity. Mathematical Programming, Series A, 85:1-13, 1999.
6. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, N.J., 1970.
7. R. T. Rockafellar. Linear-quadratic programming and optimal control. SIAM Journal on Control and Optimization, 25:781-814, 1987.
8. R. T. Rockafellar. Computational schemes for large-scale problems in extended linearquadratic programming. Mathematical Programming, 48:447-474, 1990.
9. S. J. Wright. Superlinear convergence of a stabilized SQP method to a degenerate solution. Computational Optimization and Applications, 11:253-275, 1998.

[^0]: Stephen J. Wright: Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439; urightemcs anl . gov

 * Research supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

