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2 Stephen J. WrightSection 2 provides some background and presents an existence result for thesolution of monotone LCP. Section 3 proves the main results about reduced QPformulations. Some examples are given in Section 4.2. BackgroundWe now de�ne a�ne variational inequalities, linear complementarity problems,and quadratic programming problems over a closed convex cone in Euclideanspace IRn, and outline the techniques by which a given problem can be formulatedby any one of these techniques. We also state results about the equivalence ofthese formulations and existence of solutions.We use h�; �i to denote an inner product in IRn. (All our examples use hx; yi =xTy.) We use M , Q, R, and S to denote linear operators on IRn or, equivalently,their n� n matrix representations.Closed convex cones are closed sets K � IRn such that for any vectors x 2 Kand y 2 K, we have that �x+�y 2 K for all � � 0 and � � 0. Note in particularthat 0 2 K, that by setting � 2 [0; 1] and � = 1 � � we verify the convexityproperty, and that x+K � K for all x 2 K. The dual cone or polar cone for Kis de�ned by K� def= fs j hy; si � 0 for all y 2 Kg:It is easy to verify that (K�)� = K; see Rockafellar [6, p. 121]. The normal conefor K at a point x is de�ned byNK(x) def= �fs j hs; y � xi � 0 for all y 2 Kg; if x 2 K,; if x =2 K. (1)It follows immediately that K� = NK (0).Given a convex function f on IRn, we de�ne the conjugate function f� byf�(y) = supx fhx; yi � f(x) jx 2 ri(domf)g:The subgradient of f is the multifunction de�ned by@f(x) = fy j f(z) � f(x) + hy; z � xi for all zg:As in Robinson [4], we use these de�nitions to note the following relationship:y 2 NK(x) , x 2 NK� (y): (2)A proof of this claim follows if we note thatNK(x) = @IK(x);where IK is the indicator function for K (which takes on the value 0 on K and1 otherwise), use the fact that I�K = IK� (Rockafellar [6, Theorem 14.1]), andthen apply Theorem 23.5 of [6].



On Reduced Convex QP Formulations of Monotone LCP Problems 3Consider the a�ne variational inequality problem over the closed convex coneK � IRn: Find x 2 IRn such that q �Mx 2 NK(x); (3)where M 2 IRn�n and q 2 IRn are given. If x solves (3), we have from x+ y 2 Kfor all y 2 K and the de�nition (1) thathq �Mx; yi = hq �Mx; (x+ y) � xi � 0; for all y 2 K.Therefore q �Mx 2 K�, so it is natural to write the LCP associated with (3)as follows: Find x 2 K such that q �Mx 2 K�; hx; q �Mxi = 0: (4)In fact, Proposition 1.5.2 of Cottle, Pang, and Stone [1] shows that problems (3)and (4) are equivalent.We are interested in monotone problems, those for which M is positivesemide�nite but not necessarily symmetric.The formulation (4) reduces to the standard monotone LCP if we take K =IRn+, the nonnegative orthant. We obtain the mixed monotone LCP if we setK = IR�n+ � IRn��n for some �n strictly between 0 and n. The dual cone in this caseis K� = IR�n� � f0g.Consider now the quadratic programming problem (QP) over a convex coneL: minz2IRm 12 hz;Qzi � hc; zi; subject to Az � b 2 L: (5)The standard technique for reformulating (4) as a quadratic program (5) is tode�ne the inner product to be the objective function and writeminx hx;Mx� qi subject to x 2 K; q �Mx 2 K�; (6)To identify (6) with (5), we de�ne z = x andQ = M +M�; c = q; Az = (z;�Mz); b = (0;�q); L = K �K�:Conversely, the standard technique for reformulating (5) in the form (4) is viathe Karush-Kuhn-Tucker (KKT) optimality conditions for (5), which are thatthere exists a vector v such thatQz � c+ A�v = 0; Az � b 2 L; v 2 L�; hv;Az � bi = 0: (7)Because of the assumed positive semide�niteness of Q and convexity of L, theconditions (7) are su�cient as well as necessary for solving (5).For the particular QP (6) that arises as a reformulation of the LCP (4), theconditions (7) reduce to the following:(M +M�)x� q �M�u+w = 0; (8a)(x;�Mx)� (0;�q) 2 K �K�; (8b)(w; u) 2 K� �K; (8c)h(x; q�Mx); (w; u)i = 0: (8d)



4 Stephen J. WrightNote that this LCP is quite di�erent from the original form (4), in that thenumber of variables is signi�cantly greater. However, an equivalence relationshipbetween these two LCPs and the QP (6) can be stated as follows.Theorem 1. Suppose that (4) is feasible, that is, there exists x 2 K such thatq �Mx 2 K�. Then the following statements hold.(i) Any solution x of (4) also solves (6), and conversely.(ii) The LCP (4) has a solution.Proof. Lemma 3.1.1 of [1] (generalizing from the special case of K = IRn+ to thecase of closed convex cones K) can be used to show that feasibility of (4) impliesthat the quadratic program (6) is feasible with objective function bounded belowby zero. Therefore (6) has a solution x, so by necessity of the conditions (8), thereexists a vector (u;w) such that (8) is satis�ed by (x; u; w). We now show thatthis x solves (4) by using a generalization of the argument of Theorem 3.1.2 of[1]. By taking the inner product of (8a) with x� u, we obtain0 = hx� u;Mx� q +M�(x� u) +wi� hx� u;Mx� q +wi by monotonicity of M= hx;Mx� qi+ h(x; q�Mx); (w; u)i � hu;wi= hx;Mx� qi � hu;wi by (8d)� hx;Mx� qi since u 2 K, w 2 K�:Since x 2 K and q �Mx 2 K�, we have also that hx;Mx� qi � 0, so it followsthat hx;Mx� qi = 0 and that x solves (4). At this point we have shown thatfeasibility of (4) implies that (6) has a solution and that this solution also solves(4). We complete the result by proving the \converse" statement in (i). To do thiswe simply observe that any solution x of (4) is feasible in (6) with an objectivevalue of 0. Since, as observed earlier, 0 is a lower bound on the objective in (6),we conclude that x solves (6).In place of the last part of the proof, we can observe that, given any x thatsolves (4), we can set u = x and w = q�Mx. The resulting vector triple (x; u; w)satis�es the conditions (8). Since these conditions are su�cient for (6), it followsthat x solves (6).An immediate corollary of this result is that any quadratic program of theform (6) has a solution whose objective value is zero.3. Reduced QP FormulationsWe now examine special structures of the operator M that allow us to de�nea QP reformulation of the LCP (4) with possibly fewer constraints than thestandard reformulation (6). Our results in this section extend the observationof Cottle, Pang, and Stone [1, Section 1.4]. A slightly generalized version of thelatter result states that when M is self-adjoint and monotone, the LCP (4) isequivalent to the following QP:minx 12 hx;Mxi � hq; xi subject to x 2 K: (9)



On Reduced Convex QP Formulations of Monotone LCP Problems 5(To verify the equivalence, note that the necessary and su�cient optimalityconditions for (9) are q�Mx 2 NK(x), which is equivalent to (4).) By comparingwith (6), we see that the quadratic term in the objective of (9) di�ers and thatthe constraint q �Mx 2 K� is not present.The special structure of M that we analyze in this section is de�ned withrespect to a subspace T of IRn. A projection onto this subspace is denoted byPT , where PTx = argmint2T hy � x; y � xi: (10)Note that PT is a self-adjoint linear operator and that PTPT = PT .The orthogonal subspace to T is T? = fy j hy; xi = 0 for all x 2 Tg. We havethat I = PT + PT?; (11)that is, any vector x 2 IRn can be decomposed as x = PTx+ PT?x.In this section we assume certain properties on two-sided projections of Monto T and its complement T?. To be speci�c, we are interested in M for whichthere exist operators S, Q, and R on IRn, such thatPTMPT = PTSPT ; S monotone and self-adjoint, (12a)PTMPT? = PTRPT?; (12b)PT?MPT = PT?(�R�)PT = �PT?R�PT ; (12c)PT?MPT? = PT?QPT? ; Q monotone and self-adjoint: (12d)A number of identities follow from these properties. For example, we havePT (M +M�) = PT (M +M�)PT + PT (M +M�)PT?= PTMPT + PTM�PT + PTMPT? + PTM�PT?= PTMPT + (PTMPT )� + PTMPT? + (PT?MPT )�= 2PTSPT + PTRPT? + (�PT?R�PT )�= 2PTSPT ; (13)where we used the self-adjoint property of S. SimilarlyPT?(M +M�) = 2PT?QPT?: (14)For our problem class of interest, we assume too that T and K are relatedin a certain way. De�ningPTK def= fv j v = PTx for some x 2 Kg; (15)we assume that PTK � K; PT?K � K: (16)Similar inclusions for K� follow by a simple argument: Given any y 2 K�, wehave from PTK � K that hy; PT vi � 0 for all v 2 K. Since hy; PT vi = hPTy; vi,we have that hPTy; vi � 0 for all v 2 K, so that PTy 2 K�. We deduce thatPTK� � K�; PT?K� � K�: (17)We also have the following lemma.



6 Stephen J. WrightLemma 1. Suppose that (16) holds. Then for any x 2 K, we haveNPTK(PTx) = fv jPTv 2 NK (PTx)g: (18)Proof. Note �rst that PTx 2 PTK, since x 2 K. Therefore, from the de�nition(1), we haveNPTK(PTx) = fv j hv; PT t � PTxi � 0; all t 2 Kg= fv j hv; PT ti � hv; PTxi � 0; all t 2 Kg= fv j hPTv; ti � hPT v; PTxi � 0; all t 2 Kg= fv j hPTv; t � PTxi � 0; all t 2 Kg= fv jPTv 2 NK(PTx)g:Similar relationships follow from (16) and (17); in particular, for any y 2 K�,we have NPT?K�(PT?y) = fu jPT?u 2 NK� (PT?y)g: (19)The following technical lemma is also useful in proving our main result.Lemma 2. Let x1, x2, v1, and v2 be vectors such thatx1 2 K; x2 2 K; v1 2 NK(x1); v2 2 NK(x2); hv2; x1i = hv1; x2i = 0:Then v1 + v2 2 NK (x1 + x2):Proof. Since v1 2 NK(x1) and v2 2 NK(x2), we have thathv1; t� x1i � 0; hv2; t� x2i � 0; for all t 2 K: (20)But given any t 2 K, we have thathv1 + v2; t� (x1 + x2)i= hv1; t� x1i � hv1; x2i + hv2; t� x2i � hv2; x1i= hv1; t� x1i+ hv2; t� x2i � 0;proving the result.We are now ready to derive our main result, which is to show that under theassumptions on M and K made in this section, a solution of (4) can be obtainedfrom the primal-dual solution of the following convex quadratic program:min 14hx; (M +M�)xi � hPT q; xi (21a)subject to PT?(q �Mx) 2 PT?K�; (21b)PTx 2 PTK: (21c)



On Reduced Convex QP Formulations of Monotone LCP Problems 7The (necessary and su�cient) optimality conditions for this problem are as fol-lows:�PT q + 12(M +M�)x�M�PT?u+ PT v = 0; (22a)PT?(q �Mx) 2 PT?K�; (22b)PTx 2 PTK; (22c)u 2 NPT?K�(PT?(q �Mx)); (22d)v 2 NPTK(PTx): (22e)Because of (18) and (19), we have thatPT?u 2 NK�(PT?(q �Mx)); PTv 2 NK(PTx):We can therefore rewrite (22) as follows:�PT q + 12(M +M�)x�M�PT?u+ PTv = 0; (23a)PT?(q �Mx) 2 PT?K�; (23b)PTx 2 PTK; (23c)PT?u 2 NK� (PT?(q �Mx)); (23d)PTv 2 NK(PTx): (23e)We now show that the primal-dual solution of (21) yields a solution of (3)(equivalently, (4)). By operating on (23a) with PT?, we obtain from (12d), theself-adjointness of Q and PT? , and the identity (14) that0 = 12PT?(M +M�)x � PT?M�PT?u= PT?QPT?x� [PT?QPT?]�u= PT?QPT?x� PT?QPT?u: (24)From (23d), and using (2), we obtainPT?(q �Mx) 2 NK(PT?u): (25)By expanding PT?(q �Mx) and using (12) and (24), we obtainPT?(q �Mx) = PT?q � PT?MPT?x� PT?MPTx= PT?q � PT?QPT?x+ PT?R�PTx= PT?q � PT?QPT?u+ PT?R�PTx;so from (25) we havePT?q � PT?QPT?u+ PT?R�PTx 2 NK(PT?u): (26)We now operate on (23a) with PT and use (12), (13), and self-adjointness ofPT and PT? to obtain0 = �PT q + PTSPTx� PTM�PT?u+ PTv= �PT q + PTSPTx� [PT?MPT ]�u+ PTv= �PT q + PTSPTx+ [PT?R�PT ]�u+ PTv= �PT q + PTSPTx+ PTRPT?u+ PT v: (27)



8 Stephen J. WrightHence, by substitution into (23e), we obtainPT q � PTSPTx� PTRPT?u 2 NK (PTx): (28)From Lemma 2, we have by combining (26) and (28) that(PT?q � PT?QPT?u+ PT?R�PTx) + (PT q � PTSPTx� PTRPT?u)2 NK(PT?u+ PTx);so that, using (11) and (12), we haveq � PTMPTx� PTMPT?u� PT?MPT?u� PT?MPTx 2 NK(PT?u+ PTx):If we de�ne x� = PT?u+ PTx; (29)we see immediately that q �Mx� 2 NK(x�): (30)We conclude that from the primal-dual solution of (21), we can construct asolution of (3), and therefore of (4). This result, slightly enhanced, can be statedformally as follows.Theorem 2. Suppose that for the matrix M , the subspace T , and the closedconvex cone K the conditions (12) and (16) (and therefore (17)) are satis�ed.Then if (x; u; v) is a primal-dual solution of (21), we have that x� de�ned by(29) is a solution of (4). Moreover, if Q in (12d) is strictly monotone on thesubspace T?|that is, hv;Qvi > 0 for all 0 6= v 2 T?|then the primal solutionx of (21) also solves (4).Proof. We have proved the �rst statement already in the paragraphs above. Forthe second statement we have, by taking inner products of (24) with x, thathPT?x;QPT?xi= hx; PT?QPT?xi = hx; PT?QPT?ui = hPT?x;QPT?ui = hPT?u;QPT?xi:By taking the inner product of (24) with u, we have similarly thathPT?u;QPT?xi = hPT?u;QPT?ui:It follows from these identities thathPT?(u� x); QPT?(u � x)i = 0:so from the strict monotonicity property we have PT?u = PT?x. Therefore wecan replace PT?u by PT?x in (29), giving the result.



On Reduced Convex QP Formulations of Monotone LCP Problems 9A similar result can be proved if we replace (21) by its dual, by interchangingthe roles of T and T?. We obtain the following QP:min 14hx; (M +M�)xi � hPT?q; xi (31a)subject to PT (q �Mx) 2 PTK�; (31b)PT?x 2 PT?K: (31c)We show by similar logic to the analysis of (21) that a primal-dual solution of(31) yields a solution of (4) under the assumptions of this section. The formalresult is as followsTheorem 3. Suppose that for the matrix M , the subspace T , and the closedconvex cone K the conditions (12) and (16) (and therefore (17)) are satis�ed.Then if (x; u; v) is a primal-dual solution of (31), we have that x� de�ned byx� = PTu+ PT?x; (32)is a solution of (4). Moreover, if S is strictly monotone on the subspace T , thenthe primal solution x of (31) also solves (4).The signi�cance of Theorems 2 and 3 is that the number of linear equali-ties and inequalities required to express the relations PT?(q �Mx) 2 PT?K�,PTx 2 PTK, and so on is often fewer than the corresponding number required torepresent q�Mx 2 K�, x 2 K in the standard formulation (5). Therefore, if wehave available software for solving convex QPs, we might expect more e�cientpractical performance from applying it to the formulations (21) and (31) thanto (5).4. ExamplesWe now consider some examples of problems of the type analyzed in Section 3,illustrating the reduced QP formulations in each case.Example 1. Consider �rst the case in which the cone K � IRn is a Cartesianproduct of the form K = K0 �K1; (33)where K0 � IRn0 and K1 � IRn1 are both closed convex cones, with n = n0 + n1.Assume too that the coe�cient matrix M can be written in the formM = � �S �R� �RT �Q� ; (34)where �S 2 IRn0�n0 and �Q 2 IRn1�n1 are symmetric positive semide�nite. Thevector q and the vector of unknowns x are partitioned correspondingly as follows:� q0q1 � ; �x0x1 � ; where x0; q0 2 IRn0 ; x1; q1 2 IRn1 :



10 Stephen J. WrightWe now de�ne T = IRn0 � f0g; T? = f0g � IRn1 ; (35)and note that (16) obviously holds, sincePTK = K0 � f0g; PT?K = f0g �K1:We identify the components in (34) with the quantities S, R, and Q from (12)by de�ning S = � �S 00 0� ; R = �0 �R0 0 � ; Q = �0 00 �Q� : (36)By referring to (21), we can write the reduced QP formulation of this mixedmonotone LCP as follows:minx0;x1 12 (xT0 �Sx0 + xT1 �Qx1)� qT0 x0; (37a)subject to q1 + �RTx0 � �Qx1 2 K�1 ; (37b)x0 2 K0: (37c)Note that we have modi�ed the formulation (21) by omitting the constraints inwhich both sides are identically zero. The standard QP formulation (5) wouldhave 2n constraints, in contrast to the n constraints needed in (37). The alter-native formulation (31) becomesminx0;x1 12 (xT0 �Sx0 + xT1 �Qx1)� qT1 x1; (38a)subject to q0 � �Sx0 � �Rx1 2 K�0 (38b)x1 2 K1: (38c)Example 1A. If there is rank de�ciency in the matrix �Q, the vector x1 informulation (37) can be replaced by a lower-dimensional object. In the extremecase of �Q = 0, x1 does not appear at all. The reduced formulation (37) reducesfurther to minx0 12xT0 �Sx0 � qT0 x0; (39a)subject to q1 + �RTx0 2 K�1 ; (39b)x0 2 K0: (39c)This case is covered by the analysis of Robinson [4, Proposition 2]. We canidentify the optimality conditions for (39) with Robinson [4, eq. (8)] by de�ning�d(�) appropriately and setting Y = K1 and P = K0.If instead we have that �S = 0, then (38) can be used to obtain a reducedproblem in which only the variables x1 appear.Example 1B. Suppose that n1 = 0, so that �R, �Q, and q1 are all vacuous. Then(37) reduces to minx0 12xT0 �Sx0 � qT0 x0; subject to x0 2 K;



On Reduced Convex QP Formulations of Monotone LCP Problems 11where K = K0. This is simply the form (9) whose equivalence to (4) in the caseof symmetric positive semide�nite �S was essentially noted by Cottle, Pang, andStone [1, Section 1.4]. Again, the reduction of Robinson [4, eq. (8)] yields thesame result.The following alternative, generally less useful formulation is available from(38): minx0 12xT0 �Sx0; subject to q0 � �Sx0 2 K�:Example 1C. A further special case of Example 1 is the linear programmingproblem in standard form. Here we have�S = 0; �Q = 0; �R = �AT ;with the coordinate cones are de�ned asK0 = IRn0+ ; K1 = IRn1 :The resulting LCP (4) is thenq1 �Ax0 = 0; q0 +ATx1 � 0; x0 � 0; xT0 (ATx1 + q0) + xT1 (�Ax0 + q1) = 0;which by simple elimination of terms becomesAx0 = q1; ATx1 � �q0; x0 � 0; xT0 q0 + xT1 q1 = 0: (40)The reduced QP form (21) (equivalently (37)) isminz;w �qT0 x0 s.t. Ax0 = q1; x0 � 0; (41)which is simply the linear programming problem in standard form. The alterna-tive reduced QP form (31) (equivalently (38)) ismin �qT1 x1 s.t. ATx1 � �q0; (42)which is just the dual of the standard form. In practice, it is usually bene�cialto apply software to either (41) or (42), rather than to the larger self-dual formthat would arise from the standard QP formulation (5), namely,min �qT0 x0 � qT1 x1s.t. Ax0 = q1;ATx1 � �q0;x0 � 0:Application of linear programming software to this form would be e�cient onlyif the code was designed to recognize and exploit the self-dual structure.Example 2.We now consider the extended linear-quadratic programming (ELQP)problem �rst proposed by Rockafellar [7,8]. Given nonempty polyhedral convexsets Y � IRn0 and Z � IRn1 , matrices �S and �Q, and vectors q0 and q1 with the



12 Stephen J. Wrightsame form as in Example 1, and a matrix A 2 IRn0�n1 , the ELQP problem is asfollows: miny2Y �hq0; yi+ 12hy; �Syi + �Z; �Q(q1 + AT y); (43)where �Z; �Q(u) = supz2Z hz; ui � 12hz; �Qzi: (44)The dual of this problem ismaxz2Z hq1; zi � 12 hz; �Qzi � �Y;�S(q0 �Az); (45)where �Y;�S(v) = supy2Y hy; vi � 12 hy; �Syi: (46)ELQP has proved to be a highly versatile framework that includes many piece-wise linear and piecewise quadratic problems. We consider here the case in whichY and Z are closed convex cones. This subset of ELQP includes linear andquadratic programming problems as special cases. For instance, the constraintq1 + ATy � 0 can be enforced by setting �Q = 0 and Z = IRn1+ in (44). Theframework can also incorporate \soft constraints," a modeling technique that isfrequently used in practice. In this technique, a violation of a desired inequalityis not forbidden, but is discouraged by the inclusion of a quadratic term in theviolation in the objective. For instance, if we setZ = IRn1+ ; �Q = (�=2)I;for some � > 0, then from (44) we have�Z; �Q(q1 + ATy) = 12� (q1 +AT y)+22 ; (47)where the subscript \+" denotes projection onto IRn1+ .It is easy to show that the optimality conditions for (43), (44) simply havethe form of the LCP in Example 1. These conditions areq0 � �Sy �Az 2 NY (y);q1 + ATy � �Qz 2 NZ(z):As in Example 1, we have that the reduced QP formulation (21) isminy;z 12(yT �Sy + zT �Qz)� qT0 y; (48a)subject to q1 + AT y � �Qz 2 Z�; (48b)y 2 Y: (48c)The alternative formulation, corresponding to (31), isminy;z 12 (yT �Sy + zT �Qz) � qT1 z; (49a)subject to q0 � �Sy � Az 2 Y � (49b)z 2 Z: (49c)



On Reduced Convex QP Formulations of Monotone LCP Problems 13Example 2A. A special case of ELQP is the subproblem that arises in the stabi-lized sequential quadratic programming (SSQP) method described in Wright [9].The subproblem to be solved is similar to the one that leads to (47). It has theform minz 12zT �Qz � cT z +max��0 �T (b� Az) � 12�k�� ��k22; (50)where �� is the estimate of � from the previous iteration and � > 0 is thestabilization parameter. When �Q is positive semide�nite, this problem has theform of (45), (46) if we sety = �; q1 = c; q0 = b+ ���; �S = �I; Z = IRn; Y = IRm+ ;and ignore the constant term in the objective. The form (49) is thenminz;� 12�k�k22 + 12zT �Qz � cT z subject to Az � b+ �(�� ��) � 0;which is equivalent to the form derived by Li and Qi [2, eq. (15)]. We can elim-inate � from this problem (at the cost of some nonsmoothness in the objective)and write it as minz 12� [b� Az + ��]+22 + 12zT �Qz � cT z:Example 3. Finally, we mention the problem that motivated this note. It wasdescribed by Mangasarian and Musicant [3], who considered a QP formulationof the Huber regression problem. Given a matrix A 2 IR`�d and a vector b 2 IR`,we seek the vector z 2 IRd that minimizes the objective functionX̀i=1 �((Az � b)i); (51)where the function � is de�ned as�(t) = � 12 t2; jtj � ;jtj � 122; jtj > ;where  is a positive parameter. By setting the derivative of (51) to zero, Wecan formulate this problem as an LCP by introducing variables w; �1; �2 2 IR`and writing w � Az + b+ �2 � �1 = 0; (52a)ATw = 0; (52b)w + e � 0 ? �1 � 0; (52c)�w + e � 0 ? �2 � 0: (52d)



14 Stephen J. WrightWe can write the problem as2664 �b0�e�e3775� 2664 I �A �I IAT 0 0 0I 0 0 0�I 0 0 037752664 wz�1�23775 2 K�a �K�b ; (53a)2664 wz�1�23775 2 Ka �Kb; (53b)*2664 wz�1�23775 ;2664 I �A �I IAT 0 0 0I 0 0 0�I 0 0 037752664 wz�1�23775� 2664 �b0�e�e3775+ = 0; (53c)where Ka = f0g � IR`; Kb = IRd � IR2+̀ � IR2`+d: (54)Thus by de�ning T = IR` � f0g; T? = f0g � IR2`+d; (55)it is easy to verify that (16) and (17) are satis�ed and that the properties (12)hold, with Q = 0 and PTSPT = PT . Therefore the second statement of Theo-rem 3 holds, and (31) is min 12wTw + eT (�1 + �2); (56a)subject to w � Az + b+ �2 � �1 = 0; �1 � 0; �2 � 0;which is the form given in [3, formula (23)]. Note that the naive QP formulation(6) would have many more constraints than this form.Theorem 2 suggests another QP formulation for (53). From the form (21),we obtain min 12wTw + bTw;subject to �ATw = 0;�e � w � 0;�e + w � 0;that is, min 12wTw + bTw; subject to � ATw = 0; �e � w � e: (57)The second statement in Theorem 2 does not apply in this case, but we canstill conclude that the primal-dual solution of (57) yields a solution of (53). Inparticular, the Lagrange multiplier vector for the constraint �ATw = 0 yields asolution of (51).
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