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Abstract. Techniques for transforming convex quadratic programs (QPs) into monotone lin-
ear complementarity problems (LCPs) and vice versa are well known. We describe a class of
LCPs for which a reduced QP formulation—one that has fewer constraints than the “stan-
dard” QP formulation—is available. We mention several instances of this class, including the
known case in which the coefficient matrix in the LCP is symmetric.
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1. Introduction

In this note, we consider linear complementarity problems (LCPs) and convex
quadratic programs (QPs) over closed convex cones, and examine the relation-
ship between LCP and QP formulations of the same problem. We show that for
a subclass of LCPs, it is possible to define a QP that has fewer constraints than
the standard QP reformulation and whose primal-dual solution yields a solution
of the LCP.

Our work is related to that of Robinson [4,5], who discusses methods for re-
ducing variational inequalities (possibly nonlinear and nonmonotone) that have
certain structural properties. There is a subclass of problems for which the reduc-
tion techniques discussed here and those of Robinson are identical. We mention
some problems of this type in Section 4 and discuss the relationship between the
reduction techniques in more detail there.

The significance of our results derives partly from the fact that software for
solving QP is generally more prevalent than software for LCP. Given some LCP
formulation of a problem, and a code for solving QP, it will generally be to our
advantage to find the most compact QP representation of the problem possible
before calling the solver.
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Section 2 provides some background and presents an existence result for the
solution of monotone LCP. Section 3 proves the main results about reduced QP
formulations. Some examples are given in Section 4.

2. Background

We now define affine variational inequalities, linear complementarity problems,
and quadratic programming problems over a closed convex cone in Euclidean
space R", and outline the techniques by which a given problem can be formulated
by any one of these techniques. We also state results about the equivalence of
these formulations and existence of solutions.

We use (-, -) to denote an inner product in R". (All our examples use (z,y) =
zTy.) We use M, Q, R, and S to denote linear operators on R or, equivalently,
their n X n matrix representations.

Closed convex cones are closed sets K C R" such that for any vectors v € K
and y € K, we have that az+ 8y € K for all @ > 0 and 3 > 0. Note in particular
that 0 € K, that by setting o € [0,1] and 8 = 1 — a we verify the convexity
property, and that * + K C K for all x € K. The dual cone or polar cone for K

is defined by

K4 {s|{y,s) <0forall ye K}.

It is easy to verify that (K*)* = K; see Rockafellar [6, p. 121]. The normal cone
for K at a point x is defined by

det [{s|(s,y—a)<O0forallye K}, ifx € K,
Nic(w) = {0 iteg K. (M

It follows immediately that K* = Ng (0).
Given a convex function f on R", we define the conjugate function f* by

P (y) = sup {(x,y) = ) |+ € ri(dom[)}.
The subgradient of f is the multifunction defined by
OF(x) = {y| F(2) > () + (3.2 — a) for all =},
As in Robinson [4], we use these definitions to note the following relationship:
y€ Ng(x) & x € Ni-(y). (2)
A proof of this claim follows if we note that
Ng(x) = Ik (),

where Ik is the indicator function for K (which takes on the value 0 on K and
oo otherwise), use the fact that I} = Ix« (Rockafellar [6, Theorem 14.1]), and
then apply Theorem 23.5 of [6].
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Consider the affine variational inequality problem over the closed convex cone
K CR™
Find z € R" such that ¢ — Mz € Ng(z), (3)
where M € R*™™ and ¢ € R" are given. If z solves (3), we have from z + y € K
for all y € K and the definition (1) that

(g—Mwz,y)={(¢g— Mz, (zt+y)—z)<0, forally e K.

Therefore ¢ — Mz € K*, so it is natural to write the LCP associated with (3)
as follows:

Find # € K such that ¢ — Mz € K*, {(#,q— Mz)=0. (4)

In fact, Proposition 1.5.2 of Cottle, Pang, and Stone [1] shows that problems (3)
and (4) are equivalent.

We are interested in monotone problems, those for which M is positive
semidefinite but not necessarily symmetric.

The formulation (4) reduces to the standard monotone LCP if we take K =
R}, the nonnegative orthant. We obtain the mixed monotone LCP if we set
K = RT:IL_ x R*™™ for some n strictly between 0 and n. The dual cone in this case
is K* =R" x {0}.

Consider now the quadratic programming problem (QP) over a convex cone
L:

mFi{I’l" %(z, Qz) —{c,z), subject to Az —b € L. (5)
z€
The standard technique for reformulating (4) as a quadratic program (5) is to
define the inner product to be the objective function and write

min{z, Mx — q) subject to z € K, ¢ — Mz € K*, (6)

To identify (6) with (5), we define z = z and
Q=M+M", ¢c=q, Az=(2,—-Mz), b=(0,—q), L=K x K~.

Conversely, the standard technique for reformulating (5) in the form (4) is via
the Karush-Kuhn-Tucker (KKT) optimality conditions for (5), which are that
there exists a vector v such that

Qz—c+A'v=0, Az—be L, vel* (v,Az—-1b)=0. (7)

Because of the assumed positive semidefiniteness of () and convexity of L, the
conditions (7) are sufficient as well as necessary for solving (5).

For the particular QP (6) that arises as a reformulation of the LCP (4), the
conditions (7) reduce to the following:

M4+ MY —qg—Mu+w=0, (8a)
(2, — M) — (0,—q) € K x K*, (8b)

(w,u) € K* x K, (8¢)
((w,q— Mz), (w,u)) = 0. (8d)
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Note that this LCP is quite different from the original form (4), in that the
number of variables is significantly greater. However, an equivalence relationship
between these two LCPs and the QP (6) can be stated as follows.

Theorem 1. Suppose that ({) is feasible, that is, there exists ¥ € K such that
qg— Mx € K*. Then the following statements hold.

(i) Any solution x of ({) also solves (6), and conversely.
(ii) The LCP (4) has a solution.

Proof. Lemma 3.1.1 of [1] (generalizing from the special case of K = R} to the
case of closed convex cones K) can be used to show that feasibility of (4) implies
that the quadratic program (6) is feasible with objective function bounded below
by zero. Therefore (6) has a solution x, so by necessity of the conditions (8), there
exists a vector (w,w) such that (8) is satisfied by (z,u,w). We now show that
this # solves (4) by using a generalization of the argument of Theorem 3.1.2 of
[1]. By taking the inner product of (8a) with « — u, we obtain

O={(r—u,Mz—q+ M*(z —u)+w)

>{x—u, Mz —q+w) by monotonicity of M
= (2, Mz —q)+ (2,9 — Mz), (v, u)) — (u,w)

={x, Mz — q) — {u,w) by (8d)

>z, Mz —q) since u € K, w & K*.

Since # € K and ¢ — Mx € K*, we have also that (&, Mz — ¢) > 0, so it follows
that (#, M2z — ¢) = 0 and that z solves (4). At this point we have shown that
feasibility of (4) implies that (6) has a solution and that this solution also solves
(4). We complete the result by proving the “converse” statement in (i). To do this
we simply observe that any solution x of (4) is feasible in (6) with an objective
value of 0. Since, as observed earlier, 0 is a lower bound on the objective in (6),
we conclude that x solves (6).

In place of the last part of the proof, we can observe that, given any x that
solves (4), we can set u = # and w = ¢— M. The resulting vector triple (x, u, w)
satisfies the conditions (8). Since these conditions are sufficient for (6), it follows
that  solves (6).

An immediate corollary of this result is that any quadratic program of the
form (6) has a solution whose objective value is zero.

3. Reduced QP Formulations

We now examine special structures of the operator M that allow us to define
a QP reformulation of the LCP (4) with possibly fewer constraints than the
standard reformulation (6). Our results in this section extend the observation
of Cottle, Pang, and Stone [1, Section 1.4]. A slightly generalized version of the
latter result states that when M is self-adjoint and monotone, the LCP (4) is
equivalent to the following QP:

mxin%@v, Muz) — {q,z) subject to = € K. (9)
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(To verify the equivalence, note that the necessary and sufficient optimality
conditions for (9) are g— M € Ng (z), which is equivalent to (4).) By comparing
with (6), we see that the quadratic term in the objective of (9) differs and that
the constraint ¢ — Mx € K™ is not present.

The special structure of M that we analyze in this section is defined with
respect to a subspace 1" of R®. A projection onto this subspace is denoted by
Pr, where

Prex _arggrélTn@—x,y—x) (10)

Note that Pr is a self-adjoint linear operator and that PrPr = Pr.

The orthogonal subspace to T'is T+ = {y| (y, ) = 0 for all z € T'}. We have
that

I =Pp+ Ppe, (11)

that is, any vector € R” can be decomposed as # = Prxz 4+ Ppoz.

In this section we assume certain properties on two-sided projections of M
onto T and its complement T+ . To be specific, we are interested in M for which
there exist operators S, ), and R on R", such that

PrMPr = PpSPr, S monotone and self-adjoint, (12a)
PrMPp. = PPRPp., (12b)
PpoMPp = Ppo(—R*)Pr = —Pp. R* Pr, (12¢)
PriMPp. = Ppi@QPpy, () monotone and self-adjoint. (12d)
A number of identities follow from these properties. For example, we have
Pr(M+M*)=Pp(M+ M")Pr+ Pr(M+ M*)Pp.
= PrMPpr+ PrM*Pr + PrMPpy. + PrM*Pp.
= PrMPr+ (PPMPr) + PpM Py + (Ppo M Pp)*
=2PrSPr + PrRPyp. + (—PpL R*Pp)*
= 2PpSPr, (13)
where we used the self-adjoint property of S. Similarly
Ppo(M+M*)=2Pp.QPp.. (14)

For our problem class of interest, we assume too that 7" and K are related
in a certain way. Defining

PrK Y {v|v = Pra for some z € K}, (15)

we assume that
PrKkCK, Pr.KCK. (16)

Similar inclusions for K* follow by a simple argument: Given any y € K*, we
have from PrK C K that (y, Ppv) <0 for all v € K. Since (y, Prv) = (Pry, v},
we have that (Pry,v) <0 for all v € K| so that Pry € K*. We deduce that

PpK* C K*, PpiK* C K*. (17)

We also have the following lemma.
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Lemma 1. Suppose that (16) holds. Then for any x € K, we have
NPTK(PTl’) = {v | Prv e NK(PTl‘)} (18)

Proof. Note first that Prx € PrK, since x € K. Therefore, from the definition
(1), we have
NPTK(PTl‘) = {v | <U,PTt — PTl‘> < 0, allt € [{}
={v|{v, Prt) — (v, Ppa) <0, allt € K}
= {v|{Prv,t) — (Prv, Ppz) <0, allt € K}
={v|{Prv,t — Ppz) <0, allt € K}
= {v|Prv e Ng(Prx)}.

Similar relationships follow from (16) and (17); in particular, for any y € K*,
we have

NPTJ_K*(PTJ_y):{U|PTJ_UENK*(PTJ_y)}. (19)
The following technical lemma is also useful in proving our main result.

Lemma 2. Let x1, x5, vi, and vy be vectors such that
r) € K, 29 € K; vy € Ng(x1), v2 € Ng(®2);  (v2,21) = (v1,22) = 0.

Then
v+ v E NK(l‘l + l‘z).

Proof. Since vy € Nk (21) and va2 € Nk (22), we have that
(v1,t —21) <0, (vo,t—a9) <0, forallteK. (20)
But given any ¢t € K, we have that

(V1 4 vo, 0= (21 + 22))
= <Ul,t — l‘1> — <Ul,l‘2> + <Uz,t — l‘2> — <Uz,l‘1>
= <Ul,t—l‘1>—|— <Uz,t— l‘2> S 0,

proving the result.

We are now ready to derive our main result, which is to show that under the
assumptions on M and K made in this section, a solution of (4) can be obtained
from the primal-dual solution of the following convex quadratic program:

min %(x, (M 4+ M™)x)y — (Ppq,x) (21a)
subject to Pp.(q¢— Mx) € Ppo K™, (21b)
Prz € PrK. (21¢)
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The (necessary and sufficient) optimality conditions for this problem are as fol-
lows:

—PTq+%(M+M*)$—M*PTLU+PTU:0, (22a)
Ppi(q— Mz) € PpoK*, (22b)
Prx € PrK, (22c¢)
u € Np_, K+ (Pri(g — Mux)), (22d)
v € Np,. g (Prz). (22e)
Because of (18) and (19), we have that
Priu € Ng«(Ppi(q— Mz)), Ppvée Ng(Prz).

We can therefore rewrite (22) as follows:
—PTq—i—%(M—i—M*)J:—M*PTLu—I—PTv:O, (23a)
Pri(q— Mz) € ProK*, (23b)
Prx € PrK, (23¢)
Priu € Ng«(Ppe(q— Mz)), (23d)
Prv € Ng(Prz). (23e)

We now show that the primal-dual solution of (21) yields a solution of (3)
(equivalently, (4)). By operating on (23a) with Pp., we obtain from (12d), the
self-adjointness of @ and Pp., and the identity (14) that

0= %PTJ_(M + M*)l‘ — PpiM*Priu
= PTJ_QPTJ_$ — [PTJ_QPTJ_]*U

:PTJ_QPTJ_l‘—PTJ_QPTJ_U. (24)
From (23d), and using (2), we obtain
PTJ_((] — Ml‘) S NK(PTJ_U). (25)

By expanding Pp.(¢ — Mx) and using (12) and (24), we obtain
Pri(¢g—Muz)= Pprq— Pp . MPprx — Ppo M Pru
=Ppiq—PpiQPpra+ PpL R Pra
=Ppig—PriQPpiu+ PpL R Pra,
so from (25) we have
Priq— PpiQPriu+ Ppi R*Pro € Ng(Priu). (26)
We now operate on (23a) with Pr and use (12), (13), and self-adjointness of
Pr and Pp. to obtain
0=—-Prq+PrSPrx— PrM*Ppiu-+ Pru
= —Prq+ PpSPra — [Ppo M Pp]*u+ Prv
= —Prq+ PpSPra+ [PrLR* Pr]*u+ Prv
= —Prq+ PrSPrx+ PrRPpriu+ Pru. (27)
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Hence, by substitution into (23¢), we obtain
Prq— PpSPrz — PrRPr.u € N (PTl‘) (28)
From Lemma 2, we have by combining (26) and (28) that

(Ppiq— PpiQPpiu+ PpoR*Pra) + (Prq— PrSPrx — PrRPp.u)
S NK(PTJ_U + PTl‘),

so that, using (11) and (12), we have
q — PTMPTl‘ — PTMPTJ_U — PTJ_MPTJ_U — PTJ_MPTl‘ S NK(PTJ_U + PTl‘).
If we define

r* = Ppiu+ Pre, (29)

we see immediately that
q— Mz" € Ng(z*). (30)
We conclude that from the primal-dual solution of (21), we can construct a

solution of (3), and therefore of (4). This result, slightly enhanced, can be stated
formally as follows.

Theorem 2. Suppose that for the matriz M, the subspace T, and the closed
conver cone K the conditions (12) and (16) (and therefore (17)) are satisfied.
Then if (x,u,v) is a primal-dual solution of (21), we have that z* defined by
(29) is a solution of ({). Moreover, if Q in (12d} is strictly monotone on the
subspace T+ —that is, (v,Qu) > 0 for all 0 # v € T+ —then the primal solution
x of (21) also solves (4).

Proof. We have proved the first statement already in the paragraphs above. For
the second statement we have, by taking inner products of (24) with z, that

<PTJ_$,QPTJ_$>
= <$,PTJ_QPTJ_$> = <$,PTJ_QPTJ_U> = <PTJ_$,QPTJ_U> = <PTJ_U,QPTJ_$>.

By taking the inner product of (24) with u, we have similarly that
(Prew,QPpiz) = (Ppiu, QPpru).
It follows from these identities that
(Pre(u—2),QPpi(u—x))=0.

so from the strict monotonicity property we have Priu = Ppix. Therefore we
can replace Ppiu by Proz in (29), giving the result.
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A similar result can be proved if we replace (21) by its dual, by interchanging
the roles of T and T+. We obtain the following QP:

min %(x,(M—i—M*)@— (Pryq,x) (31a)
subject to Pp(¢— Mx) € PrK*, (31b)
Ppix € PpoK. (31c)

We show by similar logic to the analysis of (21) that a primal-dual solution of
(31) yields a solution of (4) under the assumptions of this section. The formal
result is as follows

Theorem 3. Suppose that for the matriz M, the subspace T, and the closed
conver cone K the conditions (12) and (16) (and therefore (17)) are satisfied.
Then if (x,u,v) is a primal-dual solution of (31), we have that x* defined by

¥ = Pru+ Ppuyux, (32)

is a solution of (4). Moreover, if S is strictly monotone on the subspace T, then
the primal solution x of (31) also solves (4).

The significance of Theorems 2 and 3 is that the number of linear equali-
ties and inequalities required to express the relations Ppi(¢ — Mx) € Ppo K*,
Prz € PrK, and so on is often fewer than the corresponding number required to
represent ¢ — Mz € K*, € K in the standard formulation (5). Therefore, if we
have available software for solving convex QPs, we might expect more efficient
practical performance from applying it to the formulations (21) and (31) than
to (5).

4. Examples

We now consider some examples of problems of the type analyzed in Section 3,
illustrating the reduced QP formulations in each case.

Example 1. Consider first the case in which the cone K C R" is a Cartesian
product of the form
K =Ky x Ky, (33)

where Kq C R" and K; C R™ are both closed convex cones, with n = ng +nj.
Assume too that the coefficient matrix M can be written in the form

S R

w=| gl (349

where S € R ™ and Q € R*™* ™ are symmetric positive semidefinite. The
vector g and the vector of unknowns z are partitioned correspondingly as follows:

|:q0:| ’ |:x0:| ’ where anqoeRnDa xlaneRn1~
q1 Tl
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We now define
T=R"x{0}, T*+={0}xR", (35)

and note that (16) obviously holds, since
PrK = Ko x {0}, PpoK = {0} x K.

We identify the components in (34) with the quantities S, R, and @ from (12)

by defining <0 . -
52[00],32[00],Q:[0Q]. (36)

By referring to (21), we can write the reduced QP formulation of this mixed
monotone LCP as follows:

xrznxli (@ Szo + 21 Q1) — qf o, (37a)
subject to q1 + RTxo — Q1 € KT, (37b)
xg € K. (37C)

Note that we have modified the formulation (21) by omitting the constraints in
which both sides are identically zero. The standard QP formulation (5) would
have 2n constraints, in contrast to the n constraints needed in (37). The alter-
native formulation (31) becomes

gjnxnl L(af Szo + 2] Quy) — ¢f x4, (38a)
subject to qo — Sxg — Ry € K} (38b)
r1 € Ky. (38C)

Example 1A. If there is rank deficiency in the matrix @, the vector z; in
formulation (37) can be replaced by a lower-dimensional object. In the extreme
case of Q =0, #; does not appear at all. The reduced formulation (37) reduces
further to

min %xggxo — gl o, (39a)
subject to ¢, + RTzy € KT, (39b)
xg € K. (39C)

This case is covered by the analysis of Robinson [4, Proposition 2]. We can
identify the optimality conditions for (39) with Robinson [4, eq. (8)] by defining
—d(-) appropriately and setting Y = K; and P = K.

If instead we have that S = 0, then (38) can be used to obtain a reduced
problem in which only the variables x, appear.

Example 1B. Suppose that n; = 0, so that R, @, and ¢; are all vacuous. Then
(37) reduces to

min %l‘ggl‘o — qOTa:o, subject to zy € K,
To
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where K = K. This is simply the form (9) whose equivalence to (4) in the case
of symmetric positive semidefinite S was essentially noted by Cottle, Pang, and
Stone [1, Section 1.4]. Again, the reduction of Robinson [4, eq. (8)] yields the
same result.

The following alternative, generally less useful formulation is available from

(38):

21‘55’1‘0, subject to qo — Sxg € K*.

min
To

Example 1C. A further special case of Example 1 is the linear programming
problem in standard form. Here we have

S=0, Q=0, R=—-A"T,
with the coordinate cones are defined as
Ko =R}, K;=R".

The resulting LCP (4) is then
g1 —Azg =0, qo+ ATz, <0, 29> 0, l‘g(ATld +q0) + l‘f(—Al‘o +¢1) =0,
which by simple elimination of terms becomes

Aro=q1, ATe) < —qo, 20>0, zlqo+2Tq =0. (40)
The reduced QP form (21) (equivalently (37)) is

min —qOTxo s.t. Azg = q1, 2o > 0, (41)

zZ,w

which is simply the linear programming problem in standard form. The alterna-
tive reduced QP form (31) (equivalently (38)) is

min —¢? z; s.t. ATz < —qo, (42)

which is just the dual of the standard form. In practice, it is usually beneficial
to apply software to either (41) or (42), rather than to the larger self-dual form
that would arise from the standard QP formulation (5), namely,

min —qg zo — ¢f ¥,
s.t. Axg = q1,
ATzy < —qo,
zg > 0.

Application of linear programming software to this form would be efficient only
if the code was designed to recognize and exploit the self-dual structure.

Example 2. We now consider the extended linear-quadratic programming (ELQP)
problem first proposed by Rockafellar [7,8]. Given nonempty polyhedral convex
sets Y C R" and Z C R™, matrices S and @, and vectors ¢g and ¢; with the
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same form as in Example 1, and a matrix A € R***"* the ELQP problem is as
follows:

min —(q0,9) + 5y, Sy) + 05 g(qn + ATy), (43)
where B
HZVQ(U) = suIZ) (z,u) — %(z, Qz). (44)
z€

The dual of this problem is

I?EaZX<Q1aZ>_ %<ZaQZ> _QY,S(QO —AZ), (45)
where B
Oy,5(v) = sup (y,v) — 5(y, Sy). (46)
yeYy

ELQP has proved to be a highly versatile framework that includes many piece-
wise linear and piecewise quadratic problems. We consider here the case in which
Y and Z are closed convex cones. This subset of ELQP includes linear and
quadratic programming problems as special cases. For instance, the constraint
q1 + ATy < 0 can be enforced by setting @ = 0 and Z = R} in (44). The
framework can also incorporate “soft constraints,” a modeling technique that is
frequently used in practice. In this technique, a violation of a desired inequality
is not forbidden, but is discouraged by the inclusion of a quadratic term in the
violation in the objective. For instance, if we set

Z:Ril, Q:(O’/Q)[,

for some ¢ > 0, then from (44) we have

1
07000+ ATy = o (@ + A" 94 ;. (47)

where the subscript “4+” denotes projection onto R}*.
It is easy to show that the optimality conditions for (43), (44) simply have
the form of the LCP in Example 1. These conditions are

g0 — Sy — Az € Ny (),
g1+ ATy —Qz € Nz (2).
As in Example 1, we have that the reduced QP formulation (21) is

min 5(y" Sy +:7Q2) — 4y, (48a)
subject to ¢ + ATy — Qz € 77, (48b)
yey. (48¢)
The alternative formulation, corresponding to (31), is
min 3(y" Sy + 27 Qz) — af (49a)
subject to qo — Sy — Az € Y™ (49b)

z € Z. (49¢)
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Example 2A. A special case of ELQP is the subproblem that arises in the stabi-
lized sequential quadratic programming (SSQP) method described in Wright [9].
The subproblem to be solved is similar to the one that leads to (47). It has the
form

mzin %ZTQZ—CTZ+I}\1§8(/\T(I)—AZ) - %e||/\—/\_||§, (50)

where A_ is the estimate of A from the previous iteration and ¢ > 0 is the
stabilization parameter. When @ is positive semidefinite, this problem has the

form of (45), (46) if we set
y=XA q=c, q=bt+ex”, S=e, Z=R', Y =R},
and ignore the constant term in the objective. The form (49) is then

rgli)\n %€||/\||§ + %ZTQZ — 'z subject to Az —b+ e(A=AT) >0,

which is equivalent to the form derived by Li and Qi [2, eq. (15)]. We can elim-
inate A from this problem (at the cost of some nonsmoothness in the objective)
and write 1t as

1 _ =
min o ||[b —Az+ A ]_|_||§ + %ZTQZ — Tz

Example 3. Finally, we mention the problem that motivated this note. It was
described by Mangasarian and Musicant [3], who considered a QP formulation
of the Huber regression problem. Given a matrix A € R4 and a vector b € R,
we seek the vector z € R? that minimizes the objective function

J2

S pl(Az = b)) (51)

i=1

where the function p is defined as

142

5t [t] <~
1) = 2t >~ D
pl) {'ylt — 32, [t >,

where v is a positive parameter. By setting the derivative of (51) to zero, We
can formulate this problem as an LCP by introducing variables w, A1, Ay € R
and writing

w—Az+b+ X2 - A =0,

ATw =0,
wHye >0 LA >0,
—w+ye>0 1L A>0.



14 Stephen J. Wright
We can write the problem as
—b I —A-TT|[w]
0 AT 0 00 z kL ex
—"}/e — I 0 0 0 Al & [\a X [\b, (53&)
—ve -1 0 0 0] [A]
.
; € K, x Ky, (53b)
/\2
w I -A-I17 w —b
z AT 0 00 z 0
</\1’ I 0 00 Al_—'ye>_’ (53¢)
A2 -7 0 00 A2 —e
where
K,={0} CR’, K,=R'xR} cR*% (54)
Thus by defining
T =R x {0}, T+ ={0} x R**+, (55)

it is easy to verify that (16) and (17) are satisfied and that the properties (12)
hold, with ¢ = 0 and PpSPr = Pp. Therefore the second statement of Theo-
rem 3 holds, and (31) is

min %wTw + 'yeT(/\l + Az),

subject to w— Az4+b+Aa—A1 =0, Ay >0, Ay >0,

(56a)

which is the form given in [3, formula (23)]. Note that the naive QP formulation
(6) would have many more constraints than this form.
Theorem 2 suggests another QP formulation for (53). From the form (21),

we obtaln

that is,

min 2w’ w + 07w,

2

min %wTw + 07w,
subject to — ATw =0,
—ye—w <0,

—ye+w <0,

subject to — ATw =10, —ye <w < 7e.

(57)

The second statement in Theorem 2 does not apply in this case, but we can
still conclude that the primal-dual solution of (57) yields a solution of (53). In
particular, the Lagrange multiplier vector for the constraint —A”w = 0 yields a

solution of (51).
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