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SUMMARY

We present a new shape measure for tetrahedral elements that is optimal in that it gives the distance of a
tetrahedron from the set of inverted elements. This measure is constructed from the condition number of
the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume.
Using this shape measure, we formulate two optimization objective functions that are differentiated by their
goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the
worst-quality element in the mesh. We review the optimization techniques used with each objective function
and present experimental results that demonstrate the effectiveness of the mesh improvement methods. We
show that a combined optimization approach that uses both objective functions obtains the best-quality
meshes for several complex geometries.

KEY WORDS:  Mesh Improvement, Optimization-based Mesh Smoothing, Mesh Quality, Element Condition
Number

1. Introduction

Local mesh smoothing algorithms are commonly used for simplicial mesh improvement. These
methods relocate a set of adjustable vertices, one at a time, to improve mesh quality in a
neighborhood of that vertex. The new grid point position is determined by considering a local
submesh containing the adjustable, or free, vertex, v, and its incident vertices and elements. Overall
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improvement in the mesh is obtained by performing some number of sweeps over the set of adjustable
vertices.

The most commonly used local mesh smoothing technique is Laplacian smoothing[7, 20] which
moves the free vertex to the geometric center of its incident vertices. Laplacian smoothing is
computationally inexpensive but does not guarantee improvement in element quality. To address
this problem, several optimization-based approaches to mesh smoothing have been developed in
recent years.[23, 13, 1, 22, 16] In these techniques, the local submesh is evaluated according to some
objective function based on a quality metric such as element angle or aspect ratio. Function and,
possibly, gradient information are used to relocate the free vertex in such a way that the objective
function is optimized.

Several optimization objective functions based on geometric criteria have been proposed for a
priori improvement of a simplicial mesh. For example, Bank proposed a ratio of triangle area
to edge length squared for two-dimensional meshes,[2] Shephard and Georges proposed a similar
ratio of volume to face areas for tetrahedral meshes [23] Freitag et. al. used angle-based measures
for both two- and three-dimensional meshes [11, 13] and Knupp has proposed a number of shape
quality measures derived from simplicial element Jacobian matrices.[16, 15] Canann et. al. proposed
a distortion metric for both triangles and quadrilaterals that could be used with both valid and
inverted elements.[22] In addition, a posteriori metrics have been proposed by Bank and Smith to
improve finite element meshes by optimizing solution error indicators.[1]

In Section 2, we propose a new quality metric for the a priori improvement of tetrahedral meshes.
The metric is based on the condition number of the linear transformation from an equilateral
tetrahedron to an arbitrary tetrahedron. We show that the condition number metric is a tetrahedral
shape measure according to the formal definition given in Dompierre, et. al.[5] and that it is optimal
in that it gives the distance of a tetrahedron to the set of inverted elements. We show that this
previously overlooked metric is well-motivated, no more expensive to compute than other commonly-
used shape measures, and effective. In addition, the condition number metric is notable because it
is referenced to the “ideal” element. This allows us to flexibly choose our ideal element shape and
thereby reference element quality to an ideal anisotropic element as well as to an isotropic one.
We have proved that the metric is equivalent (in the sense of Liu and Joe[19]) to the Mean Ratio
metric.[21, 17]

In Section 3, we formulate two optimization objective functions using the element condition
number that are suitable for mesh improvement if the initial mesh is valid. The first objective function
targets the improvement of average element quality; the second targets the improvement of the worst
element quality. In previous papers, we have independently proposed optimization techniques for
mesh improvement as measured by average element quality[16] and mesh improvement as measured
by extremal element quality,[13] and we review these optimization techniques in Section 3.2. If
the initial mesh is not valid, it may be preprocessed using an optimization-based mesh untangling
approach that creates valid, although poor-quality, elements.[10, 12, 18]

In Section 4, we present numerical results for each optimization approach on four tetrahedral
meshes. We compare each technique to a baseline Laplacian smoother, and illustrate that in all test
cases, a combined optimization approach produces the best-quality meshes. Finally, in Section 5, we
offer concluding remarks and directions for future research.
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2 L. FREITAG AND P. KNUPP

2. Tetrahedral Jacobian Matrices and Condition Numbers

To facilitate our discussion of the condition number quality metric, we first discuss the linear
transformations associated with triangular and tetrahedral elements. Figure 1 illustrates the two-
dimensional case. Let ¢ be an arbitrary triangular element consisting of three vertices v,, n =0, 1, 2,
with coordinates x,, € R3. Define the edge vectors

€kn = Xk — Xp (1)

with & #n and & = 0,1, 2. Vertex v, has two attached edge vectors, e,41, and e,49,, where the
indices are taken modulo three. The columns of the Jacobian matrix, denoted A, consist of the edge
vectors attached to a vertex. This linear transformation takes points in the reference triangle (a right-
angled triangle) to points in the physical triangle, ¢. Define the matrix W such that it transforms
the reference triangle to an ideal, equilateral triangle. Then the matrix S = AW ™! transforms the
ideal triangle to the physical triangle. This linear transformation is critical because 1t measures the
deviation of the physical triangle from the ideal shape.

A
w AW
— —
Reference Element Ideal Element Physical Element

Figure 1. The relationship between the linear transformations and the reference, ideal, and physical
elements

A critical part of the theory to be presented are the matrix norms associated with these linear
transformations, and we briefly review that information now. Let I be the identity matrix, and S
be an arbitrary matrix. The Frobenius norm of S is defined in terms of the trace:

| S |=[tr(sT9) ]2,

The Frobenius norm is invariant to rotation matrices, that is, | SR |=| RS |=| S |, where R is a
rotation matrix (RT R = I, det(R) = 1). If S is invertible, then S~ exists, and one can define the
adjoint matrix of S:

adj (S) = det(S)S™t.

Similarly, matrices and linear transformations can be defined for tetrahedral elements, and we
now construct a new tetrahedral shape measure based on the resulting norms and matrix condition
number.

2.1. Tetrahedral Jacobian Matrices

For the three dimensional case, let 7" be an arbitrary tetrahedral element consisting of four vertices
U, n = 0,1,2,3 with coordinates x,, € R?. Define the edge vectors, ey ,, as in Equation 1 for
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k = 0,1,2,3 and note that e, p = —e . Each vertex v, of the tetrahedra has three attached
edge vectors, €p41,n, €nt2,n, and e,43 5, Where the indices are taken modulo four. In this case the
Jacobian matrix at node n, denoted A, , consists of the columns of the triplet of attached edge
vectors, namely,

Ap = (_1)n ( €n+ln €n42n En43n )

Let «, be the determinant of A,. A right-handed rule is assumed for the edge-ordering so that
oy > 0 for elements with positive volume. Let V(T') denote the volume of the tetrahedron.

Theorem 1. The determinants of A, are independent of n; that is «, = ag for n = 1,2, 3.
Proof.
Let M be the following constant matrix

1 1 1
M=| -1 0 0
0 -1 0

The determinant of M equals 1. A direct calculation shows that
A, =Ag M"

for n = 1,2, 3. Taking the determinant of this expression gives o, = aq. §

Tt is well known that the volume of a tetrahedron is one-sixth of the Jacobian determinant,[14]
hence ag = 6 V(T') and V(T) > 0 if and only if ag > 0. An element is said to be valid if and only if
ag > 0.

One can easily show that the following relationships hold for the Jacobian matrix:

| An =l ensin | + 1 entan [P + [ entan [, and

| adj (An) P=] eng1n X engon |7+ | enton X €ngsn | + | €ngsn X engin %,

which provide a geometric interpretation of the norms. The norm-squared of A, is the sum of the
lengths-squared of the attached edge vectors and the norm-squared of the adjoint is the sum of the
squares of the areas of the attached triangular faces.

Unlike the determinant ay,, the norms of A, and adj (A,,) are not independent of n because not
all of the lengths and areas of the tetrahedron affect the result for A,,. However, one can create a
weighted Jacobian matrix that is independent of n, as will be shown next.

Define an equilateral tetrahedron 7, to have sides of length one and four vertices with the
coordinates (0,0,0), (1,0,0), (1/2,4/3/2,0), and (1/2,v/3/6,+/2/+/3). This tetrahedron serves as

the ideal element. Let W,, be the Jacobian matrix at the nth vertex of T,. For example,

1 1/2 1/2
Wo=1| 0 v3/2 V3/6
0 0  V2/V3

and wy = det(Wy) = \/5/2
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4 L. FREITAG AND P. KNUPP

Theorem 2.

Let T be any tetrahedron with Jacobian matrices A, and S, be the linear transformation that takes
W, to A, then S, = Ag Wo_l. That is, S, is independent of n.

Proof.

By definition, S, W,, = A,. If n = 0, Sy = Ag Wo_l. Theorem 1 applies to the matrices W, of T..
Thus W,, = Wy M"” for n = 1,2,3. Because A, = Ay M, we have the stated result.§

In other words, there exists a unique linear transformation between the ideal tetrahedron 7, and
the physical tetrahedron 7'. Thus, let us denote Wy by W and wqg by w.

Theorem 3.

The norms | A,W=! | and | WA, | are independent of n. That is | A,W=! |=| AgW~! | and
(WA = WA,

Proof.

The result for n = 0 is immediate. Define the matrix R = WM W !, where M is defined in the proof
of Theorem 1. A direct calculation shows that R is a rotation matrix with a positive determinant.

Therefore, det(R") = 1 and (R")T R® = [ for n = 1,2, 3. Hence
| AW = | AM"W |

| AW R™ |

= |AW™].

Similarly, the second result can be proved by observing that W Azt = (A, W=1)~! = (R*)~! W A;*
and showing that (R")~! is a rotation matrix. §

2.2. Tetrahedral Condition Numbers

Let T, be any valid tetrahedron. Then A_?! exists, and one can compute the weighted condition
number of the matrix A,

Ko (An) = AW (AW TH 7]

Because (A, W=1)~1 = WA_! Theorem 3 shows that , (A,) is independent of n which is not true
for the unweighted condition number k(A,) =| A, || A7 |. Now let A be any of the four Jacobian
matrices of T4 and iy (A) =| AW || WA™! |. Recall that S = AW ~! is the linear transformation
taking the ideal element to the physical element; hence &, (A) =| S || S7! |= k(S). That is, &(S) is
the condition number of the linear transformation between the ideal and physical tetrahedron.

Theorem 4.

Let S be derived from a tetrahedron with positive volume. Then 3/x(S) is a tetrahedral shape
measure.

Proof.

We use the formal definition given in Dompierre, et. al.[5] to prove this assertion. That is, we show
that 3/x(S) is (1) continuous, (2) invariant to translations and rotations, (3) has values greater than
zero and less than or equal to one, (4) has a value of one if and only if the element is ideal, and (5)
has a value of zero for degenerate tetrahedra.
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First, it is clear that | S | is a continuous function of the coordinates of T}, and likewise so is
| S71 |. Therefore x(S) is a continuous function of the coordinates of any tetrahedron with positive
volume.

Second, the Jacobian matrix is invariant to translations so x(.S) is invariant to translations. Let
A=XARA with A > 0 and R a rotation matrix, corresponding to a uniform scaling and rotation of
the tetrahedron. Let S = AW ~L. Because the Frobenius norm is invariant under rotations, it is clear
that K?(g) = %(S5). Finally, £(5) is invariant to scaling because for any real number, ¢, the definition
of condition number directly shows that x(eS) = x(5).

Third, it is clear that 0 < 3/k(S). For any matrix, | S |? is the sum of the squares of its singular
values o;. Thus

K1(S) = (oi/05)"
i
This is a continuous function of three variables and its minimum may be found by computing the
solution to dk?/de; = 0 with i = 1,2,3. The solution is ¢; = o where ¢ is any positive constant.
Hence (S) > 3. This shows that 0 < 3/x(5) < 1.

Fourth, suppose 3/k(S) = 1. Then the singular values of S must be constant and S = ¢ R. Then
the Jacobian matrix associated with the tetrahedron must have the form A = ¢ R W, in other words,
3/k(S) attains its maximum value only if the tetrahedral element is a rotation and uniform scaling
of the ideal tetrahedron. The converse is easy to show.

Fifth, the definition of a degenerate tetrahedral element given in Dompierre, et. al.[5] is somewhat
vague. As noted, a tetrahedron with a small volume is not necessarily degenerate. This is reflected
in the properties of the condition number. For example, if A = ¢ W, where 0 < ¢ << 1, then
a = det(W) is small, but 3/k,(eW) = 1. Thus a tetrahedron with small volume does not
necessarily make 3/k(S) large. Dompierre, et. al. give an example of a degenerate tetrahedron,
one whose volume goes to zero but at least some of the lengths do not. Suppose there exist constants
b and ¢ such that 0 < b <| S| and 0 < ¢ <[ adj (S) |. Then both | A | and | adj(A) | are bounded

below by a positive constant. Because
k(S) =[S | adj(S) | /det(S),

the limit of 3/x(S) as @ — 0 is zero. Hence, for the given example, the condition number satisfies
the requirement that a shape measure go to zero for a degenerate element. In fact, the condition
number provides a rigorous definition of a degenerate element. Let 0 < € << 1 be given. Then T} is
degenerate if 3/k(S) < €. §

The distinguishing feature between the condition number metric and the other weighted
nondimensional quality metrics given in Knupp[15] is given in the following well-known theorem][4]
adapted to our current setting.

Theorem 5.

1/&(S) is the greatest lower bound for the distance of S to the set of singular matrices.

Proof.

Let S and X be 3 x 3 matrices with S non-singular and S+ X singular. Write S+X = S(I+S71X).
If | ST1X |< 1, then I+ S™'X is nonsingular. This would mean that S + X is nonsingular, so we
must have | ST1X |[> 1. But 1 <| S71X |<] S || X |; hence | X | /| S |> 1/k(S). Therefore

min{| X | /| S |: S+ X singular} = 1/£(S5).
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6 L. FREITAG AND P. KNUPP

§

Because S is singular if and only if A is singular, we are guaranteed that minimization of &(S)
will increase the distance between A and the set of singular matrices.

Results similar to those presented in this section can be given for triangular elements.

2.8. The Condition Number of Poor Quality Tetrahedral Elements

The second author reported numerical experiments which show that the common tetrahedral shape
degeneracies can be detected by the condition number.[15] We now consider the taxonomy of poorly-
shaped tetrahedra given in Cheng, et. al.[3] which is shown in Figure 2. The primary characteristic
of these elements is that the four vertices are either nearly linear as shown in the top row or nearly
planar as shown in the bottom row.

Spire Spear Spindle Spike Splinter

Wedge Spade Cap Sliver

Figure 2. Poor-quality tetrahedral elements

We now examine the behavior of the condition number metric as the quality of each of the nine
poorly-shaped tetrahedra worsens. We report the value of the function x(5)/3 rather than 3/x(S) so
that x(S) = 1 for an ideal element and k(S) — oo as the element becomes increasingly distorted.
We compare this metric to two commonly used quality metrics: minimum dihedral angle and element
aspect ratio defined as

(% Z?:l le) ’
Ay = L) @)
8.47967V

where L; is the length of each edge of the tetrahedron and V is the volume.[21] The aspect ratio
metric is also normalized so that A, = 1 corresponds to an ideal element and A, — oo as the
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element becomes increasingly distorted.

Minumum Dihedral Angle Aspect Ratio Condition Number
T
E,Eﬁ;%}/i;g o—o Spire o—o Spire
3 10° ‘ s——=a Spear s——=a Spear
o—— Spindle 10° | o— Spindle |
&—= Spike a——= Spike
< < Splinter < < Splinter
v——v Wedge 3 v—v Wedge
Spire % 10° > > Spade E > > Spade
=—=a Spear o +—+Cap Z 10 +——Cap
oo Spindie g % -« Sliver 5 * = Sliver
s—a Spike § NR §
a < Splinter i % 3
v——v Wedge 10° + % 10" |
> >Spade 7J
+—+ Cap
-+ Sliver
N
. . . 10° . . - 10° . . . =
10° 10° 10" 10° 10* 10° 10° 10" 10° 10* 10° 10° 10" 10

Epsilon Epsilon Epsilon

Figure 3. The minimum dihedral angle, aspect ratio, and condition number metrics as a function of
tetrahedral element quality

For each element type shown in Figure 2, we create a series of poor quality tetrahedra and compute
and plot the resulting metric values in the log-log graphs shown in Figure 3. We start with the ideal
tetrahedral element and modify it so that the vertices are no more than a distance of ¢ from the center
line for the elements in the first row and are no taller than ¢ for the element types in the second row.
In Figure 3 we plot the values for each of the metric as € decreases. Ideally, the minumum dihedral
angle should decrease as the tetrahedra become increasingly distorted. However, this metric is not a
tetrahedral shape measure as defined by Dompierre et. al.[5] which is reflected by the fact that it is
unable to detect spear, spindle, or spire elements. In contrast, both the aspect ratio and condition
number metrics effectively detect all nine distorted element types. In addition, the dihedral angle
metric is more expensive to compute than the other two because there are six values per tetrahedron
rather than one. In particular, on a Sun Ultra 2 with 300 MHz processors, the dihedral angle metric
required 1.73 - 10~* seconds to compute for each tetrahedron, whereas the the aspect ratio and
condition number metrics required 3.80 - 1077 and 6.58 - 10~° seconds, respectively.

3. Optimization-based Smoothing Techniques

Using the element condition number quality metric, we now derive two objective functions that
are useful for optimization-based mesh improvement. We then briefly describe the associated
optimization algorithms; more details can be found in the references mentioned below.

3.1. Optimization Objective Functions

To build objective functions for mesh improvement based on the condition number of the tetrahedron,
consider a node in the interior of a valid tetrahedral mesh with M attached tetrahedra. Let A,,

be a Jacobian matrix corresponding to the mth element and S,, = A, W~!. Let &, = K(Sm),
m=20,1,..., M — 1, be the weighted condition number of the mth attached tetrahedron normalized
so that an equilateral tetrahedron has a x value of one, and K = (g, K1, ..., kar—1). The vector
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Prepared using nmeauth.cls



8 L. FREITAG AND P. KNUPP

p-norm of K can be used to construct a local objective function to minimize the condition number

M-1
| K =1 wbh]".
m=0
The choice p = 2 gives the ¢; norm of K
M-1
| K = wp]'? (3)
m=0

which can be used to minimize the average condition number, while p — co gives the £, norm

| K

o= max{Kkm},
m

which can be used to minimize the maximum condition number. For the results presented in Section
4, we reformulate the objective function as the equivalent maximization problem as follows:

Kopin = H}%n{—ﬁm}. (4)

Because the condition number is not defined for elements with negative volume, one must begin
optimization with a valid mesh. To achieve this, the mesh is pre-processed with an untangling
objective function based on the £, norm of the Jacobian determinant.[12, 10, 18] We note that
some optimization techniques require the gradient of the condition number «(.S) with respect to the
free vertex position x. Let S = AW™!. One can apply the chain rule and the formulas given in
Knupp[15] to compactly write the gradient:

Ok

_ Ok T
Vi = aSVV U
with ™ = [1,1,1]. An explicit calculation shows that
o ]S * S 2 T -7 1 S
3S_d6t(S)ZK(S)[|S| IT—S"S]—r(S)S™ 4+ |57 F9)

3.2. Optimization Procedures

We now formulate the optimization problem associated with each of the objective functions given
above. In each case, the characteristics of the objective function demand different solution techniques,
and we briefly describe the methods used.

Optimization of the {5 objective function. The formulation of the optimization problem for
the £5 objective function given in (3) is

M-1

min [Z fom (x)2]H2.

m=0

This objective function is smooth with continuous derivatives, and the problem can be solved with
various techniques for unconstrained optimization.

We use a robust minimization algorithm that requires only objective function values. M search
directions are computed from the sum of e, 1, for each of the attached tetrahedra. The objective
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function is then evaluated at various distances along the scaled search directions, and the node is
moved to the position that provides the greatest decrease in the value of the objective function. If no
decrease is found, the node is not moved. See Knupp and Freitag[10] and Knupp[15] for more details.

Optimization of the {;,; objective function. The optimization problem for the ¢;,; objective
function given in (4) is formulated as
max 097121%111‘14_1{—.%m (x)},

where each k,, 1s a nonlinear, smooth, and continuously differentiable function of the free vertex
position. Let the maximum value of the functions evaluated at x be called the active value, and
the set of functions that obtain that value, the active set, be denoted by S(x). Because multiple
elements can obtain the maximum value, the composite objective function has discontinuous partial
derivatives where the active set changes from one set of functions to another set.

We solve this nonsmooth optimization problem using an analogue of the steepest descent method
for smooth functions. The search direction, s, at each step is the steepest descent direction derived
from all possible convex linear combinations of the gradients in S(x). The line search subproblem
along s is solved by predicting the points at which the active set § will change. These points are found
by computing the intersection of the projection of a current active function in the search direction
with the linear approximation of each —k, (x) given by the first-order Taylor series approximation.
The distance to the nearest intersection point from the current location gives the initial step length,
(4. The initial step is accepted if the actual improvement achieved by moving v exceeds 90 percent
of the estimated improvement or the subsequent step results in a smaller function improvement.
Otherwise, § is halved recursively until a step is accepted, or [ falls below some minimum step
length tolerance. More detail on this optimization algorithm can be found in Freitag, et. al.[13] and
Freitag][8].

4. Numerical Experiments
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Figure 4. The four tetrahedral mesh test cases for duct, gear, hook and foam geometries

We now demonstrate the effectiveness of each of the optimization techniques in improving
tetrahedral meshes compared with a baseline Laplacian smoother. We use four tetrahedral meshes
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10 L. FREITAG AND P. KNUPP

generated by the CUBIT package[6] for duct, gear, hook, and foam geometries. These meshes are
shown in Figure 4. In Table I, we give the number of elements in each mesh, N and the initial mesh
quality as measured by the following metrics:

1. The number of distorted elements in the mesh, Np, namely those with a normalized condition
number greater than 3.0.

2. The average normalized condition number for all of the elements in the mesh, £4.4.

3. The maximum normalized condition number of any element in the mesh, K4z .

4. The average and maximum tetrahedral aspect ratio given by Equation 2.

The overall quality of each initial mesh as measured by £4,4 and A
contains a number of distorted elements.

Yavg is quite good, but each mesh

Table I. Initial quality of the four test cases
Geom. N Np Kavg | Kmae Av(wq A
Duct 4267 | 39 1.305 | 3.790 1.441 5.191
Gear 3116 | 25 1.423 | 3.448 1.622 4.782
Hook 4675 | 30 1.360 | 5.176 1.533 6.151
Foam 4847 | 47 1.392 | 4.362 1.579 8.197

Mesh improvement results are obtained by using the CUBIT and Opt-MS[9] software packages
developed at Sandia National Laboratories and Argonne National Laboratory, respectively. An
interface between these two packages has been developed, and we also report the results of a combined
optimization approach that uses the two software packages in concert. We will measure the success
of our smoothing techniques by their ability to eliminate distorted elements and to improve both
the average and the maximum quality metric values.

We attempt to improve each initial mesh described in Table I with six different smoothing
techniques:

1. Laplacian smoothing;

2. “smart” Laplacian smoothing, which accepts a Laplacian step only if the local submesh is
improved as measured by Kpaz;

{5 smoothing as described in Section 3;

liny smoothing as described in Section 3;

restricted {;,; smoothing that is applied only if £142 > 3.0 in the local submesh; and

a combined optimization-based approach that uses £5 smoothing on each local submesh followed
by the restricted £;,; approach.

S O W

In each case, we iterate over the interior nodes in the mesh until the change in all node point positions
is smaller than some tolerance.

In Table IT we report the results of each technique in terms of the number of distorted elements
remaining in the mesh after smoothing, the values of the quality metrics, ¢; =Kavg, Kmaz, 4
Ay owr @ well as the percentage change from the initial value as computed by the formula

Yavg’

P, = Yifinal — iinitial % 100.
Yiinitial

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 0:0-0
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Because of the way the metrics are normalized, a negative P; value indicates an improvement in
mesh quality whereas a positive P; value indicates a worsening of mesh quality. We also report the
number of nodes moved during the mesh smoothing process, Cs, which corresponds to the number
of calls made to each smoother. For the combined approach, Cg is reported as the number of calls
to the £5 smoother, Cy, plus the number of calls to the fips smoother, Cs, and is denoted (C1,C4).

Table 11. Mesh quality improvement results for the optimization-based smoothing techniques

Technique || Np (P) | Kavg (P) || Kmaz (P) | Av(wg (P) || Ay (P) | Cyg
Duct Geometry
Laplacian 78 (4+100) - 1.452 (+.76) || 24.25 (+367) 1303
Smart Lap. 31 (-20.5) | 1.300 (-.38) 3.691 (-2.6) 1.433 (-.56) 4.964 (4.3) 732
£y Opt. 15 (-62) 1.275 (-2.2) 3.690 (-2.6) 1.400 (-2.8) 4578 (-11.8) 2773
Ling Opt. 4 (-90) 1.379 (4+5.7) 3.045 (-19.7) | 1.571 (+9.0) 3.979 (-23.3) 5498
Restricted ;¢ 4 (-90) 1.313 (+.61) 3.045 (-19.7) | 1.493 (+3.6) 3.979 (-23.3) 32
Combined 4 (-90) 1.280 (-2.2) 3.045 (-19.7) 1.409 (-2.2) 3.980 (-23.3) | (2773,13)
Gear Geometry
Laplacian 63 (+152) - 1.661 (+2.4) || 84.80 (+1673) 1051
Smart Lap. 11 (-56) 1.414 (-.63) 3.309 (-4.0) 1.610 (-.74) 4.782 (0) 492
£y Opt. 3 (-88) 1.378 (-3.2) 3.657 (+6.1) 1.560 (-3.8) 5.201 (+8.8) 2141
Ling Opt. 0 (-100) | 1.455 (+2.2) 2.996 (-13.1) | 1.682 (+3.6) 3.703 (-22.5) 2213
Restricted £, 0 (-100) | 1.425 (+.14) 2.996 (-13.1) | 1.627 (+.31) || 4.744 (-13.1) 24
Combined 0 (-100) 1.380 (-3.0) 2.996 (-13.1) 1.562 (-3.6) 3.953 (-17.3) (2141,3)
Hook Geometry
Laplacian 64 (+113) | 1.393 (+2.4) || 74.28 (+1335) | 1.569 (4+2.3) || 88.19 (+1334) 1443
Smart Lap. 27 (-10) 1.356 (-.25) 5.176 (0) 1.529 (-.26) 6.151 (0) 798
£y Opt. 7 (-77) 1.331 (-2.1) 3.747 (-27.6) 1.495 (-2.4) 4.437 (-27.9) 2933
Ling Opt. 0 (-100) | 1.429 (+5.1) 2.973 (-48.0) | 1.659 (+8.2) || 4.331 (-29.6) 5970
Restricted ;¢ 0 (-100) | 1.367 (+.51) 2.990 (-42.2) | 1.549 (+1.0) || 4.331 (-29.6) 34
Combined 0 (-100) 1.332 (-2.1) 2.973 (-42.6) 1.497 (-2.3) 4.331 (-29.6) (2933,5)
Foam Geometry
Laplacian 82 (+74) - 1.622 (+2.7) || 83.17 (+914) 916
Smart Lap. 42 (-11) 1.390 (-.14) 4.362 (0) 1.575 (-.25) 8.197 (0) 555
£y Opt. 21 (-55) 1.372 (-1.4) 4.310 (-1.2) 1.552 (-1.7) 6.760 (-17.5) 2637
Ling Opt. 25 (-47) 1.447 (+4.0) 4.310 (-1.2) 1.672 (+5.8) 6.596 (-19.5) 3376
Restricted ;¢ 25 (-53) 1.398 (+.43) 4.310 (-1.2) 1.590 (4.70) 6.596 (-19.5) 33
Combined 24 (-49) 1.375 (-1.2) 4.310 (-1.2) 1.556 (-1.4) 6.596 (-19.5) | (2637,11)

In three of the four cases, Laplacian smoothing results in a mesh containing inverted elements.
The CUBIT software defines the condition number of inverted elements to be 106, which skews the
Kavg and Kpqe values for those meshes; we do not report those results. In all four cases, Laplacian
smoothing worsens mesh quality by every measure reported: the number of distorted elements

i1s approximately doubled, Av(wg increases by more than two percent, and A,

1s significantly

worsened in all four cases. By design, the “smart” Laplacian smoother improves the mesh in each
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case, but the improvement in the average element quality is less than .5 percent in all cases, and the
improvement in the maximum quality values is zero in two of the four cases.

In contrast, the optimization-based smoothing approaches preserve mesh validity in all four test
cases, and each approach significantly improves the mesh by some measure of mesh quality. Both the
{5 and {;,; smoothers are able to eliminate a majority of the distorted elements. The £;,; smoother
typically does better than £ with respect to this metric, and in two of the four cases eliminates all
of the distorted elements from the mesh. As expected, the £ smoother improves the average element
quality in all four cases by as much 3.2 percent. Although it is not designed to improve &, 4, this can
happen serendipitously as is evidenced in three of the four cases. In the gear geometry, however, k40
worsens by about 6 percent. The results for the ;,; smoother are the inverse of the £ results. The
average element quality is worsened in each case by as much as 5.7 percent in the duct geometry, but
the Kmae and A, values are always significantly improved. The restricted £;,; smoother achieves
nearly the same improvement in Kpmqe and A, as the £, smoother without the corresponding
decrease in average element quality and at a significantly smaller cost. The combined optimization
approach achieves the best overall improvement in each of the four cases; all quality metrics are
significantly improved in all test cases, and its use is recommended.

In each case the number of calls to the £5 smoother is roughly equal to the number of vertices in
the mesh. In contrast the £;,; smoother is called more times, indicating more grid point movement.
This is supported by the fact that the average element quality changes approximately twice as much
when the £, ; smoother is called significantly more times than the ¢ smoother. The restricted ;¢
smoother is called approximately once for each distorted element in the mesh when used alone, and
far fewer times when used in conjunction with the £, smoother. Currently the £;,; and {5 smoothers
are about ten and one hundred times more expensive than smart Laplacian, respectively, and work
to reduce computational cost 1s under way.

5. Conclusions

Our results indicate that Laplacian smoothing can be detrimental to the quality of simplicial meshes
on complex geometries, and we do not recommend its use. In contrast, the optimization approaches,
particularly the combined ¢; and ¢;,; smoothing technique, significantly improved the quality of
each of the test cases. We showed that the behavior of the more commonly accepted aspect ratio
shape measure was mirrored by the behavior of the condition number shape measure, and that the
condition number shape measure is theoretically optimal. In addition, the fact that the condition
number metric can be referenced to any ideal element through the use of the weighting matrix makes
it far more flexible than its geometric counterparts.

Strategically combining different local mesh smoothing strategies is not a new idea; a number
of researchers have combined Laplacian smoothing with their optimization-based approaches to
achieve good quality meshes at a low computational cost.[23, 8] However, this is the first instance
we are aware of in which two optimization strategies have been combined to improve both the
average element quality and the extremal element quality. Although our results showed that these
improvements can be achieved for a small incremental cost to the £5 strategy, further work is needed
to reduce the overall cost of the approach. Techniques that combine Laplacian smoothing with the
combined technique presented here are under consideration.

Finally, we note that the algorithms presented in this paper for smoothing and untangling are
local techniques; a globally optimal solution is not guaranteed although empirical evidence suggests

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 0:0-0
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that the techniques work well in practice.
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