
COMPUTING DERIVATIVES OF COMPUTER PROGRAMSCHRISTIAN H. BISCHOF AND H. MARTIN B�UCKERInstitute for Scienti�c ComputingAachen University of TechnologyD-52056 AachenGermanyE-mail: fbischof,bueckerg@sc.rwth-aachen.deAutomatic di�erentiation is introduced as a powerful technique to compute deriva-tives of functions given in the form of a computer program in a high-level program-ming language such as Fortran, C, or C++. In contrast to traditional approachessuch as handcoding of analytic expressions, numerical approximation by divideddi�erences, or manipulation of symbolic algebraic expressions by computer algebrasystems, automatic di�erentiation o�ers the following substantial bene�ts: it is ac-curate up to machine precision, e�cient in terms of computational cost, applicableto a 1-line formula as well as to a 100,000-line code, and can be produced withminimal human e�ort.1 IntroductionNumerical simulations arising in large-scale scienti�c applications such as quantumchemistry often require the evaluation of derivatives of some objective function. Anexample is given in this conference proceedings1 where the need for derivatives inquantum chemical calculations of molecular properties is demonstrated. Derivativesplay a crucial role not only in quantum chemistry but in numerical computing ingeneral. Examples include the solution of nonlinear systems of equations, sti� ordi-nary di�erential equations, partial di�erential equations, and di�erential-algebraicequations. Derivatives are also ubiquitous in the areas of sensitivity analysis ofcomputer models, inverse problems, and (multidisciplinary) design optimization.Traditionally, such problems with derivatives have been addressed by using tech-niques of numerical and analytical di�erentiation as discussed by Gauss.1 Here, wewill discuss another powerful technique called automatic di�erentiation (AD) forcomputing derivative information, say, gradients or Hessians. AD has been success-fully applied,2;3 it is currently less well known than and sometimes confused withsymbolic di�erentiation. The purpose of this note is to call attention to automaticdi�erentiation, to provide some background information on the technique, and tohighlight its advantages over other techniques of di�erentiation.To abstract from the particular area of interest, letf : R n ! Rm with x 7! ydenote any vector-valued objective function whose derivatives are sought. We call xthe vector of independent variables and y the vector of dependent variables. In large-scale applications, the objective function f is typically not available in analytic formbut is given by a computer code written in a high-level programming languagesuch as Fortran, C, or C++. Think of f as a function computed by, say, one ofthe modules of the TURBOMOLE program system to compute and analyze theelectronic structure of molecules.4 Given such a representation of the objective1

function f(x) = �y1(x); y2(x); : : : ; ym(x)�T , computational methods often demandthe evaluation of the Jacobian matrixJ(x) := 0B@ @@x1 y1(x) : : : @@xn y1(x)...@@x1 ym(x) : : : @@xn ym(x)1CA 2 Rm�n (1)at some point of interest x 2 R n .A well-known and widely used approach for the approximation of the Jacobianmatrix is the use of divided di�erences (DD). For the sake of simplicity, we onlymention �rst-order forward DD but stress that the following discussion appliesto DD as a technique of numerical di�erentiation in general. Using �rst-orderforward DD, one approximates the ith column of the Jacobian matrix Eq. (1) byf(x+ hiei)� f(x)hi ; (2)where hi is a suitably chosen step size and ei 2 R n is the ith Cartesian unit vector.An advantage of the DD approach is that the function f needs to be evaluatedonly at some suitably chosen points. Roughly speaking, f is used as a black-box.The main disadvantage of DD is that the accuracy of the approximation dependscrucially on a suitable choice of these points, that is, of the step size hi. However,any strategy to determine a step size faces the dilemma of mutual inuence oftruncation and cancellation error: The step size should be small to decrease theerror of Eq. (2) in approximating Eq. (1) even if in�nite-precision arithmetic wereused; the step size should be large to avoid cancellation of signi�cant digits whenusing �nite-precision arithmetic in the computation of Eq. (2).Another traditional approach for computing derivatives is handcoding of an-alytic expressions. Here, an analytic expression for the Jacobian matrix J(x) isidenti�ed �rst and then implemented by hand using any high-level programminglanguage. If care is taken, handcoding results in highly optimized implementations.However, analytic expressions are not always available. Furthermore, handcodingis smooth only for \simple" objective functions, is substantially error-prone, andrequires considerable human e�ort.Computer algebra systems such as MACSYMA can, in principle, also be usedto �nd an explicit expression for the Jacobian matrix J(x). A disadvantage ofsymbolic di�erentiation is that the length of the representation of the resultingderivative expressions increases rapidly with the number n of independent vari-ables. This property is extremely painful when higher-order derivatives are consid-ered. For instance, the Hessian of an objective function of some complexity in morethan three variables can easily result in expressions �lling several pages. More-over, symbolic di�erentiation is inherently ine�cient in terms of computing time,because of the rapid growth of the underlying expressions. The reader is referredto an article by Griewank5 for a more detailed discussion of computing derivativessymbolically. Another computer algebra system, Maple, is unusual in that it doeso�er the additional option of automatic di�erentiation. However, the intention ofautomatic di�erentiation of Maple procedures is the development of e�cient pro-grams in Maple and other programming languages (Fortran, C). On the other hand,2

in this note we consider automatic di�erentiation for generating derivatives of largeproduction codes written in virtually any high-level programming language.Automatic di�erentiation is another option for computing the Jacobian ma-trix J(x). Virtually any computer program written in a high-level programminglanguage such as Fortran, C, or C++ can be di�erentiated by this black-box mecha-nism. Given a program for the evaluation of the objective function f , this techniquegenerates, in a completely automatic fashion, another computer program, called theextended program, that evaluates f(x) and J(x) simultaneously. The key conceptbehind AD is the fact that every computation, no matter how complicated, is ex-ecuted on a computer as a (potentially very long) sequence of a limited set ofelementary arithmetic operations such as additions, multiplications, and intrinsicfunctions such as sin() and cos(). By applying the chain rule over and over againto the composition of these elementary operations, the extended program can begenerated accurately evaluating f(x) and J(x) up to machine precision. AD tech-niques are discussed in a monograph6 and a forthcoming book.7 Di�erentiating acomputer program by AD meets all of the following requirements:Reliability: The computed derivatives should ideally be accurate to machine pre-cision. If the functional relation between x and y is not necessarily smooth,the user should get a warning that something might be amiss.Computational Cost: In many applications, the computation of derivatives isthe dominant computational burden. Hence, the amount of memory and run-time required for the derivative code should be minimized as much as possibleand in any case be bounded a priori.Scalability: The approach should give correct results for a 1-line formula as wellas a 100,000-line code.Human E�ort: Derivatives are a means to an end. Hence a user should not spendmuch time in preparing a code for di�erentiation, in particular in situations inwhich computer models are bound to change frequently.Handcoding, divided-di�erence approximations, and symbolic manipulators fallshort with respect to the previously mentioned criteria. The main drawbacks ofdivided-di�erence approximations are their numerical unpredictability and theircomputational cost. In contrast, both the handcoding and symbolic approachessu�er from a lack of scalability and require considerable human e�ort.In the next section, we give a brief overview of automatic di�erentiation. Sec-tion 3 discusses issues that arise in the design of software packages implementingthe AD technology. In Section 4, we discuss some issues concerning the use of ADtools. In the last section, we summarize AD's advantages and provide pointers toAD tools.2 Basic Modes of Automatic Di�erentiationTraditionally, two basic approaches to automatic di�erentiation have been em-ployed: the so-called forward mode and reverse mode, which date back to the3

early sixties and seventies, respectively. These modes are distinguished by how thechain rule is used to propagate derivatives through the computation. We brieysummarize the main points about these two approaches; a more detailed descriptioncan be found in the literature.5;6;8The forward mode propagates derivatives of intermediate variables with respectto the independent variables and follows the control ow of the original program.By exploiting the linearity of di�erentiation, the forward mode allows us to computearbitrary linear combinations J S of columns of the Jacobian matrix J . In matrix-matrix multiplication, the symbol S denotes an arbitrary n� p matrix. The e�ortrequired to compute not only the objective function but also J S is roughly p timesthe runtime and memory of the original program. In particular, when p = 1 andthus the matrix S reduces to a vector s, we compute the directional derivativeJ s = limh!0 f(x+ hs)� f(x)h ;where h is some step size.In contrast, the reverse mode of automatic di�erentiation propagates deriva-tives of the �nal result with respect to an intermediate quantity, so-called adjointquantities. To propagate adjoints, one must be able to reverse the ow of the pro-gram and must remember or recompute any intermediate value that nonlinearlya�ects the �nal result. In particular, one must store the intermediate values thathave been involved in nonlinear operations before they are overwritten or go outof scope. Sometimes some of these intermediates can be recomputed during thereverse sweep, but in any case one has to keep a log of the branch directions taken.For an m� q matrix W , the reverse mode allows us to compute arbitrary linearcombinations W T J of rows of the Jacobian matrix J with roughly q times as manyoating-point operations as required for the evaluation of f . In a straightforwardimplementation, however, the storage requirements may be proportional to thenumber of oating-point operations required for the evaluation of f , as a resultof the tracing required to make the program \reversible." When q = 1 and thusthe matrix W T reduces to a row vector wT , we compute the derivative wT J . Thereverse mode is particularly attractive for the computation of long gradients, as itsoperations count does not depend on the number n of independent variables.The forward mode can be naturally extended to second or third (and evenhigher) derivatives, but the complexity grows like the square or cube p, respectively.Especially for Hessian-vector products, a combined forward and reverse sweep isattractive, since it still has essentially the same complexity as a single evaluationof the underlying scalar function. In any case, automatic di�erentiation producescode that computes derivatives accurate to machine precision.5 The techniques ofautomatic di�erentiation are directly applicable to computer programs of arbitrarylength containing branches, loops, and subroutines.The weighting and combining of derivatives through the matrices W and S arenatural and useful for many applications, especially if sparsity in J can be exploited.Unfortunately, many existing AD tools are (like computer algebra packages) stillexclusively oriented toward the evaluation of Cartesian derivatives, that is, thepartials of certain dependent variables with respect to certain independent variables.4

3 Design of Automatic Di�erentiation ToolsAutomatic di�erentiation can be viewed as a particular semantic transformationproblem: Given a code for computing a function, we would like to generate a codethat computes the derivatives of that function. To e�ect this transformation, twoapproaches have been employed:Operator Overloading: Modern computer languages such as C++ or Fortran 90make it possible to rede�ne the meaning of elementary operators. We can, forexample, de�ne a type for oating-point numbers that have gradient objects as-sociated with them (let's call this new type adouble), and for each elementaryoperation such as a multiplication, we can de�ne the meaning of the operator\�" for variables of type adouble as follows. An assignment z = x � y notonly computes the product of x and y but also updates the associated gradientobject in a product rule fashion rz = xry + yrx. So, each occurrence of amultiplication of two adoubles in the code will also e�ect the update of theassociated derivatives in a transparent fashion.Source Transformation: Another way of changing the semantics of the code isto rewrite it explicitly. For example, the assignment z = x � y is rewritten intoa piece of code that contains not only the computation of z but also an im-plementation of the vector linear combination rz = xry+ yrx, implementedeither as a do-loop or as a subroutine call.Each of these approaches has its advantages and disadvantages. The advantages ofoperator overloading are threefold.Terseness: All that is required for a new data type, such as adoubles, is a newclass de�nition. While such a class de�nition can be substantial, comprisingseveral thousand lines of code, it hides this complexity from the user of an ADtool.Flexibility: If we want to change an implementation strategy associated with aparticular class, the source code remains una�ected. All that changes is theclass de�nition itself. So, for example, whether we compute �rst- or second-order derivatives is reected in the class de�nition but not in the code beingdi�erentiated.Full Access to Runtime Information: The reverse mode of AD requires theability to reverse the partial ow of program execution. One way to do this is touse operator overloading to generate a tape that logs all the operations actuallyperformed, and use this tape as the input for a derivative interpreter, whichthen can compute any derivatives desired using either the forward or reversemode of automatic di�erentiation. This approach is, for example, chosen inthe ADOL-C package.9The drawbacks of operator overloading are the followingLack of Transparency: While it is aesthetically pleasing that the source codedoes not change, even though its meaning does, it does not aid in debugging,5

since one has to deduce the meaning of the operations implied by the sourcecode and the associated class de�nitions.Implementation Overhead: The actions associated with a class de�nition canbe viewed as an implied subroutine call, and although much progress has beenmade recently in the compilation of operator overloading, the runtime overheadof this technique can be substantial depending on the sophistication of thecompiler.Dusty Deck Assimilation: Many existing computer codes are written in lan-guages such as Fortran 77 or ANSI-C that do not support operator overload-ing. In particular, assimilating large codes into the supposedly backwards-compatible Fortran 90 or C++ languages turns out to be a thorny task.On the other hand, the advantages of the source transformation approach are asfollows.Simplicity of Generated Code: Since the derivative code is spelled out exactly,usually in the same language as the input code, it is easier to follow the actionsof the derivative code as long as the chain rule is applied in a basic localfashion. This simplicity also facilitates compiler optimizations and hence fasterexecution of the generated code.Dusty Deck Assimilation: The source transformation approach requires tradi-tional compiler infrastructure such as parsers, generators and manipulators ofintermediate languages, and unparsers. These tools are readily available forlanguages such as Fortran 77 or ANSI-C, at least in the commercial world.Variable Scope: Operator overloading inherently sees one elementary operationat a time. Source transformation approaches, on the other hand, have accessto the context of a particular computation and hence have more exibility inapplying derivative rules. For example, the ADIFOR10;11 and ADIC12 toolsview a program as a sequence of assignment statements, applying the reversemode at this level and the forward mode overall.The disadvantages of the source transformation approach are the following.Implementation Complexity: Source transformation approaches, at least at themoment, require considerable tool infrastructure, in particular for the process-ing of language-dependent features. Also, the lack of a standardized languagedescription makes changing the semantics of a particular automatic di�erenti-ation tool a potentially rather involved task.Code Expansion or Subroutine Interface Swell: A \pure" source transfor-mation approach is infeasible when the action associated with a particularstatement exceeds a certain level of complexity. In this case, either the lengthof the generated code grows too large for a compiler to digest, or rather ex-tensive subroutine library interfaces must be maintained to encapsulate thebasic computational kernels. The latter approach, in many ways, is similar tooperator overloading, albeit considerably less elegant.6

Of course, the relevance of these advantages and disadvantages depends to a greatextent on the particular application.Given the mathematical underpinnings of the concept of derivatives, the \black-box" application of an AD tool usually raises several questions that we brieyaddress here.Question: How do you know that the code represents a globally di�erentiablefunction?Answer: We don't. AD computes the derivative de�ned by the sequence of as-signment statements executed in the course of a function evaluation. Hence,for a branch (if-statement), which potentially introduces a nondi�erentiability,AD will compute a one-sided directional derivative. This problem is furtherdiscussed by Fischer.13Question: How do you deal with intrinsics?Answer: Some intrinsics functions, such as abs() and sqrt(), are not di�eren-tiable in all points of their domain. Some tools invoke an extension handleragging such occurrences; others ignore such occurrences.Question: What happens when you di�erentiate through iterative processes?Answer: It depends. AD generates a new iteration, and it is not clear a prioriwhether the new iteration will converge and what it will converge to, althoughempirically AD leads to the desired result. However, derivative convergencemay lag, or derivatives may diverge. For some commonly used approaches forsolving nonlinear systems of equations, this issue is discussed by Griewank etal.14 This problem clearly requires more research, but the emergence of robustAD tools has made it possible to tackle this problem for sophisticated numericalmethods.4 Using Automatic Di�erentiation ToolsBased on our experience with the ADIFOR10;11 and ADIC12 tools for automaticdi�erentiation, this section explores some of the subtler issues related to the use ofAD and the implications for numerical software design. In particular, we focus onthe issues that arise from the fact that AD di�erentiates a given computer programstep by step, in a fashion that is oblivious of the overall semantics of a program.This \myopic" view gives AD tools the power to deal with programs of arbitrarylength, but it also implies that users of AD tools may have to communicate someof their knowledge to an AD tool to arrive at a desired solution. Speci�cally, weillustrate the issues arising in the context of nondi�erentiable language intrinsicssuch as max() and numerical integrators.7

4.1 Intrinsic FunctionsSince the derivative of sin(x) with respect to x is given by cos(x), an AD tool mighttransform the statement y = sin(x)into the derivative statement ry = cos(x) * r x:Here, the notation ry denotes the derivatives of variable y with respect to somechosen set of variables. In this case, there is no di�culty, since sin() is everywheredi�erentiable.Most computer languages do, however, contain intrinsic functions that are notdi�erentiable in some points in their domain, as for example the Fortran 77 intrinsicsabs(x) and sqrt(x) when the value of the argument is zero. We call such a pointan \exceptional point." We cannot simply claim that the function in question isnot di�erentiable, since a computer program executing such instructions may wellrepresent a smooth function, such as g(x; y) =px4 + y4. Moreover, intrinsics maybe used to guard against unphysical values of simulation parameters. For example,in a weather model one might see code such asrain = max(rain; 0:0):This statement reects the fact that rainfall cannot be negative and is intendedto convert a small negative number, which may have arisen from oating-pointroundo�, to the physically sensible number 0 (i.e., no rain).The function max(x; y) is not di�erentiable for x = y. However, in the previouslydescribed case, it makes sense to de�ne partial derivatives for the exceptional casesas @max(x;y)@ x jx=y := 1:0 and @max(x;y)@ y jx=y := 0:0. These de�nitions do not changerrain when rain is set to zero in the induced AD statementrrain = @max(x; y)@ x rrain:However, these de�nitions would not lead to the desired result if the order of argu-ments in the max() call was reversed, namely,rain = max(0:0; rain):In this case, the derivative of rain would be zeroed out when the value of thevariable was zero, and it would have been appropriate to exchange the de�nitionsof @max@ x and @max@ y . In other contexts, an argument could also be made for setting@max(x;y)@ x jx=y = 0:5 and @max(x;y)@ y jx=y = 0:5, since then automatic di�erentiationprovides a so-called subgradient, which is useful in nonsmooth numerical optimiza-tion, as described, for example, by Clark.15These examples demonstrate the following points:i. No choice of derivative values for exceptional points will always be correct.ii. There is no \automatic" way to decide what sensible choices are.8

Given: parameter p, current time t, current solution xc � x(t; p),suggested time step �t.1) Compute x1 � x(t+�t; p) using Method A.2) Compute x2 � x(t+�t; p) using Method B.3) Compute � = kx1 � x2k for some norm k � k.4) if (� < some given threshold)Accept the higher-order of x1 and x2and update t t+�t.else�t = g(�t; �);goto 1)endifFigure 1. Simpli�ed Description of a Numerical Integratoriii. User insight into the problem is essential.Thus, potential users of AD tools need to be aware of these facts and provide\hints" for an AD tool in the code to be eventually di�erentiated. Such hints areparticularly important for numerical libraries, since these codes typically embodysubtle numerics and will be reused often. To this end, the ADIFOR and ADICsystems employ the completely user-customizable ADIntrinsics system for dealingwith Fortran and ANSI-C intrinsics. Surprisingly, in most cases the derivatives turnout to be the ones intended without the need for derivatives intrinsics modi�cations.4.2 Numerical IntegratorsAnother problem arises from the fact that an AD tool, when applied to a codeembodying a numerical method, will not only di�erentiate the solution producedby this method, but also take into account the way by which one arrived at thesolution. As an illustration, consider a parameter-dependent initial value problem_x(p) = f(x; p; t) with x(t = 0) = x0; (3)where p is a parameter. Figure 1 shows a simpli�ed version of the time-stepping loopof a typical explicit numerical integrator with step size control. In this �gure, thenotation Method A and Method B is used for two integration methods of di�erentorder, and g is some function that adjusts the time step �t. For simplicity, weignore the fact that the time step will be adjusted upward if there is a good �t.If, for a given p, we are interested in @ x@ p ��t=T , where T is the �nal time, we canemploy an AD tool to di�erentiate this code with respect to p. If we di�erentiatewith respect to p and use r to denote dd p , the chain rule of di�erential calculusnow implies that r(�t) = @ g@ (�t)r(�t) + @ g@ �r�:9

Clearly, r� 6= 0 in general, since � depends on x, which in turn depends on p.Thus we have the interesting situation that r(�t) 6= 0 when @ g@ � 6= 0; that is, thecomputational equivalent of time, �t, will have a nonzero derivative with respectto the parameter p. Viewed from an analytical perspective, this is nonsense|thevalues of time and the parameter are not related. From a computational perspectivehowever, it does make sense|depending on the value of the parameter, we maychoose a di�erent time discretization. Thus, what we really compute as the �nalvalue xT (p) is xT (p) = x(t(p); p)jt(p)=T(note the dependence of t on p). Thus, we obtainrxt=T = @ x@ t ����t=T � rtt=T + @ x@ p ����t=T ;and with Eq. (3) rxt=T = f(xT ; p; T) � rtt=T + @ x@ p ����t=T :Note that rx and rt will have been computed by the AD-generated derivativecode. We observe the following:i. Depending on how the time discretization was chosen, we will obtain di�erentvalues for rtt=T and thus for rxt=T . Most certainly, we will not obtain@ x@ p ��t=T which is the result desired by most users.ii. If �t would had been zero at every step, we would have rtt=T = 0 and thusrxt=T = @ x@ p ��t=T , as desired by the user. By default, this happens in methodsusing a �xed step size. This case is also discussed by Sandu et al.16iii. Independent of how the time discretization was chosen, we can recover thedesired solution as @ x@ p ����t=T = rxt=T � f(xT ; p; T) � rtt=T : (4)These issues are discussed in more detail by Eberhard and Bischof.17Note that approaches (ii) and (iii) are really geared toward the library developerand the sophisticated AD user, respectively. When an integrator code is written, itis probably feasible to indicate the places where the next time step is assigned andto indicate that an AD tool should treat this statement as constant with respect todi�erentiation, resulting in the assignment of a zero gradient. Current AD tools donot have such facilities built-in yet, but will so soon. At any rate, unless the devel-oper of the integrator provides this information, the considerable sophistication ofthese codes makes it di�cult for others to extract this information from the code.While one might take the attitude that this was not an issue, given the \�x"(iii), this is not really the case. Even when @ x@ p is well behaved, rt and rx canbecome very large and can overow. Furthermore, the user of an AD tool maywell be unaware of these issues, or may not be able to localize the problem since10

the integrator may be buried under other layers of software. However, as shownby Eberhard and Bischof,17 if the �nal time is prescribed, we are likely to obtainrtt=T = 0, and everything works out; we suspect that this situation has happenedin quite a few AD applications.We note that while (ii) and (iii) will result in the right derivatives @ x@ p , thereis no guarantee that the derivatives will be obtained at the same accuracy as thesolution x, since the guard of the if-statement governing acceptance or rejection ofa step will not be augmented by AD, and thus still will be governed only by thebehavior of x. Thus, the derivatives obtained by Eq. (4) will be consistent, butthey may not be as accurate as those obtained by solving the sensitivity equation_xp = @ f@ xxp + @ f@ p ;where xp = @ x@ p , alongside the original di�erential equation Eq. (3). It is easy toadd the norm of r� to the guard for step size control, but an AD tool cannotbe expected to do so without user guidance. Similar issues also arise in the con-text of automatic di�erentiation of iterative solvers for nonlinear equations and arediscussed by Griewank et al.145 Concluding RemarksThis note was meant to give a brief introduction to automatic di�erentiation. Webriey discussed the advantages of this powerful technique in contrast to the better-known approaches of numerical, analytic, and symbolic di�erentiation. Broadlyspeaking, automatic di�erentiation saves work in comparison with handcodingof analytic derivatives and, by computing accurate derivatives, avoids the hasslecaused by inaccurate numerical di�erentiation. We reviewed the forward and re-verse modes of automatic di�erentiation, gave some background on design issues ofautomatic di�erentiation tools, and discussed some subtle issues involved in usingthese tools.Even though automatic di�erentiation tools are still in their infancy, undera wide range of circumstances they already can compute derivatives faster thandivided di�erence approximations.11 Furthermore, there are examples where theavailability of fully accurate derivatives was essential for numerical robustness andconvergence.18;19;20 Another advantage of automatic di�erentiation tools that wedid not discuss in this note is their ability to provide, in a fashion that is transparentto the user, information about the zero/nonzero structure of derivative matrices.21This information is required to solve linear systems involving the Jacobian, and theautomatic detection of the sparsity pattern avoids the error-prone task of having theuser specify the sparsity pattern. This feature is provided in ADIFOR and ADICthrough the SparsLinC library and is used, for example, in the NEOS (Network-enabled Optimization Server) problem-solving environment,22 which is accessibleat http://www-neos.mcs.anl.gov/.The emergence of robust automatic di�erentiation tools applicable tofunctions de�ned by computer programs in general-purpose computer lan-guages such as Fortran 77, Fortran 90, C, and C++ is putting these11

tools within the reach of many computational practitioners in any �eldrequiring derivatives, including quantum chemistry. The web site athttp://www.sc.rwth-aachen.de/Research/AD/subject.html gives a short de-scription of some available automatic di�erentiation tools and provides pointers forobtaining these tools.AcknowledgmentsThis work was completed while the second author was visiting the Mathematicsand Computer Science Division, Argonne National Laboratory, supported by theMathematical, Information, and Computational Sciences Division subprogram ofthe O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy,under Contract W-31-109-Eng-38.References1. J. Gauss, in Modern Methods and Algorithms of Quantum Chemistry, editedby J. Grotendorst, (NIC Directors, J�ulich, Germany, 2000).2. M. Berz, C. Bischof, G. Corliss, and A. Griewank, Computational Di�erenti-ation: Techniques, Applications, and Tools (SIAM, Philadelphia, 1996).3. A. Griewank and G. Corliss, Automatic Di�erentiation of Algorithms (SIAM,Philadelphia, 1991).4. R. Ahlrichs, M. B�ar, M. H�aser, H. Horn, and C. K�olmel, Chemical PhysicsLetters 162, 165 (1989).5. A. Griewank, in Mathematical Programming: Recent Developments and Ap-plications, pages 83{108 (Amsterdam, 1989, Kluwer Academic Publishers).6. L. B. Rall, Automatic Di�erentiation: Techniques and Applications, volume120 of Lecture Notes in Computer Science (Springer Verlag, Berlin, 1981).7. A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorith-mic Di�erentiation (SIAM, Philadelphia, to appear).8. C. Bischof, A. Carle, P. Hovland, P. Khademi, and A. Mauer, ADIFOR 2.0user's guide (Revision D), Technical Memorandum ANL/MCS-TM-192, Math-ematics and Computer Science Division, Argonne National Laboratory, 1998(also CRPC Technical Report CRPC-95516-S).9. A. Griewank, D. Juedes, and J. Utke, ACM Transactions on MathematicalSoftware 22, 131 (1996).10. C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, Scienti�cProgramming 1, 11 (1992).11. C. Bischof, A. Carle, P. Khademi, and A. Mauer, IEEE Computational Science& Engineering 3, 18 (1996).12. C. Bischof, L. Roh, and A. Mauer, Software{Practice and Experience 27, 1427(1997).13. H. Fischer, in Automatic Di�erentiation of Algorithms: Theory, Implementa-tion, and Application, edited by A. Griewank and G. F. Corliss, pages 43{50(SIAM, Philadelphia, Penn., 1991).12

14. A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson, Optimiza-tion Methods and Software 2, 321 (1993).15. F. Clark, Optimization and Nonsmooth Analysis (John Wiley and Sons, NewYork, 1983).16. A. Sandu, G. R. Carmichael, and F. A. Potra, Atmospheric Environment 31,475 (1997).17. P. Eberhard and C. Bischof, Mathematics of Computation 68, 717 (1999).18. P. Hovland, C. Bischof, D. Spiegelman, and M. Casella, SIAM Journal onScienti�c Computing 18, 1056 (1997).19. P. Eberhard, in ICIAM/GAMM 95: Issue 3: Applied Stochastics and Opti-mization, edited by O. Mahrenholtz, K. Marti, and R. Mennicken, pages 40{43(1996), Special Issue of Zeitschrift f�ur Angewandte Mathematik und Mechanik(ZAMM).20. A. Ibsais and V. Ajjarapu, IEEE Transactions on Power Systems 12, 592(1997).21. C. Bischof, P. Khademi, A. Bouaricha, and A. Carle, Optimization Methodsand Software 7, 1 (1996).22. J. Czyzyk, M. P. Mesnier, and J. J. Mor�e, IEEE Computational Science andEngineering 5, 68 (1998).

13

