
A Milestone Reached and a Secret Revealed�Larry WosMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439-4801email: wos@mcs.anl.govAbstractIn this special issue of the Journal of Automated Reasoning, this article sets thestage for the succeeding articles, all of which focus on �nding proofs of theorems offormal logic and on the various methodologies that were employed. The proofs thatare o�ered mark an important milestone for automated reasoning and for logic, foreach of them is indeed new. One of the key questions this article answers is why anautomated reasoning program was able to �nd proofs that had eluded some of the �nestmathematicians and logicians for many, many decades.Keywords: automated reasoning, elegant proofs, logic, proof �nding1 BackgroundWhen the e�ort to automate logical reasoning seriously commenced in the early 1960s, fewif any would have believed that so much would occur before the year 2000. (A far morecomplete story is told in the planned book Automated Reasoning and the Finding of Missingand Elegant Proofs in Formal Logic.) In the context of design and veri�cation, among theastounding successes is the work of Moore and his colleagues in their monumental e�ortthat culminated in the design of a manufactured and used chip (see [Moore1989] and theother articles on system veri�cation in the corresponding special issue of the Journal ofAutomated Reasoning). In mathematics, William McCune's answering (with his program�This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy, underContract W-31-109-Eng-38. 1



EQP) of the Robbins algebra open question marked an impressive advance for automatedreasoning and for mathematics [McCune1997].This special issue of the Journal of Automated Reasoning marks an additional mile-stone, presenting numerous proofs that have been missing in formal logic since the late 1800s.These proofs are remarkable in many respects. First, some of them totally eluded such greatminds as Frege, Hilbert and Ackermann, Tarski and Bernays, Church, Lukasiewicz, Mered-ith, and Rose and Rosser. Second, some of them o�er markedly more satisfying propertiesthan those that exist in the literature. Third, some of the proofs presented in this issuebeautifully illustrate what can be accomplished by relying heavily on an automated reason-ing program (such as William McCune's OTTER [McCune1989]), especially since no clueof any kind was available regarding a promising attack.Of equal importance and in the context of automated reasoning, this special issueillustrates the intricate interplay of the various strategies and methodologies that have beenformulated in recent years. Indeed, none of these powerful strategies and methodologiesalone would have su�ced (from what it appears) to have enabled the completion of theproofs that are presented in this issue. Precisely how each strategy comes into play, therelative importance of each strategy, and the speci�c e�ects of each strategy at all points ina program's attack o�er researchers in automated reasoning a deep and complex problemto solve. This article provides some clues in that regard and focuses on useful examples.For logicians, this article presents a di�erent|but equally challenging|problem. Theproofs presented in this issue, in the main, share a startling property: All proof steps arefree of double negation, contain no terms of the form n(n(It)) for any term t. In thatregard, can the following conjecture be proved? Given a set of axioms A and a formula Fdeducible from A, a proof of F can always be found such that all of its deduced steps arefree of double negation whenever F is free of double-negation terms.2 A Secret RevealedThe reliance on various strategies is, of course, only part of the explanation for the recentsuccesses of automated reasoning programs such as OTTER. What, then, is the secretingredient to the successes reported in this issue? The answer lies in OTTER's abilityto explore unappealing areas of the search space of conclusions, at least unappealing tounaided researchers. This ability enables the program to succeed where �ne minds met animpasse.OTTER, for example, experiences no reluctance at examining conclusions of level 70and greater, where a formula or equation in the input has level 0 and has level n greaterthan 0 when one of its parents has level n� 1. In contrast, the literature strongly suggeststhat researchers seldom if ever venture into that part of the search space, because of its lack2



of appeal.Many researchers|without the assistance of a program such as OTTER|also mightavoid seeking proofs requiring a large number of applications of condensed detachment.One of the more charming results in that regard concerns the study of a single axiom ofLukasiewicz for two-valued sentential (or propositional) calculus for which no proof existedin the literature. The �rst proof of this deep theorem was found by OTTER, a proof oflength 200 (applications of condensed detachment); its length alone suggests how di�cultand how deep the theorem is. That proof was found with a methodology discussed in anarticle in this special issue. After numerous experiments, a 70-step proof was completed.Another aspect of the secret to OTTER's success|where researchers had been thwarted|rests with moves that are unnatural. Such moves are designed to have the program go whereno person has gone before (at least voluntarily), to explore parts of the search space of con-clusions that are indeed forbidding. For one example, by instructing the program to treatcertain very long formulas as extremely simple (short), OTTER will explore that part of theconclusion space found at level 65 and beyond. The �rst proof of the Lukasiewicz 23-lettersingle axiom for two-valued sentential (or propositional) calculus has level 68. For a secondexample, a program can be directed to explore the conclusions derivable from hypothesesthat are on-the-surface ugly and lengthy expressions|expressions that instinct and perhapsexperience would suggest be avoided.An even more striking example of an unnatural move that led to OTTER's success inbreaking new ground concerns the avoidance of double negation. Before this practice wasintroduced, many proofs were harder to complete and, in too many cases, never completedwithout substantial guidance from a researcher. A case in point focuses on Meredith's singleaxiom for two-valued sentential calculus.% Following is the Meredith single axiom.P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).For years, on and o�, attempts to produce (from the Meredith axiom) an unguided deriva-tion of a three-axiom system of Lukasiewicz met with failure.% Following are Lukasiewicz 1 2 3.P(i(i(x,y),i(i(y,z),i(x,z)))).P(i(i(n(x),x),x)).P(i(x,i(n(x),y))).Then, when a methodology was formulated that emphasizes the avoidance of double nega-tion (as detailed in this special issue), the �rst fully automated proof was obtained.The secret to the recent accomplishments of automated reasoning programs, and in3



particular the secret to the many successes reported in this special issue, can now be castin a more general light.When a question resists answer or a problem resists solution, (at least whena reasoning program is part of the team) to sharply increase the likelihood ofsuccess, replace the question or problem with one that is far tougher.Intuition might naturally suggest to the contrary, but the evidence suggests such is the case.3 Interplay and IntricacyTo me, the most fascinating aspect of automated reasoning concerns strategy. With afew examples, this article illustrates not only the intricate interplay of various strategiesthemselves, but also their interplay with other procedures o�ered by OTTER, showing howcomplex is the program's attack.For the �rst example, consider the case in which the hot list strategy is used to permitthe program to visit, revisit, and re-revisit some chosen set of formulas or equations (de-pending on the value assigned the input heat parameter). Also assume that the resonancestrategy is used to instruct the program to prefer new items that pattern-match (where allvariables are considered indistinguishable) any of the included resonators. In the case sofar described, little or no interplay between the strategies occurs. However, if the (static)variation of the hot list strategy is replaced with the dynamic variation and the value as-signed to the dynamic heat weight input parameter as well as the values assigned to theresonators is appropriately chosen, then much interplay can result.If, say, the dynamic heat weight is assigned the value 1 and the resonators correspond-ing to key lemmas are each assigned the value 1, if and when the lemmas are proved, theirclause equivalents will be adjoined to the hot list permitting the program to emphasize theirrole by visiting, revisiting, and re-revisiting them. Much interplay between the dynamichot list strategy and the resonance strategy may occur, and the interplay may be crucialto reaching the objective. In contrast, in the given situation, unwise assignments of valuesmay result in too much interplay and cause the size of the hot list to grow rapidly andproduce the side e�ect of destroying the program's e�ectiveness.For a second example, assume that some formula or equation is conjectured to beunwanted, whether the goal is to �nd a �rst proof or to �nd a shorter proof than thatin hand. Assume further (as occurred in some of the research reported in this issue) thatclosely related items are also conjectured to provide interference with reaching the objective.A reasonable beginning would suggest that appropriate demodulators be included to blockthe use of unwanted items and, because of the nature of demodulation, also block (children4



by subsumption) items subsumed by the unwanted items. However, so-called cousins ofthe undesirables might create havoc, items that pattern-match an undesirable (where allvariables are treated as indistinguishable). To protect against such cousins, appropriateresonators with assigned values greater than the assigned max weight could be included.Finally, assume that a list of hints is included to instruct the program to prefer any formulaor equation that was identical to one of the hints. If an undesirable item is a member of sucha list of hints and the options are chosen to also give preference to any (subsuming parent)item that subsumed one of the hints, the mere presence of the corresponding resonatorwith a very high assigned value will not su�ce. Instead, the hint or hints in questionmust be removed. Thus, a quite di�erent type of interplay is encountered, interplay amongdemodulation, resonance, and hints. The interplay has the e�ect of avoiding not only theimmediate undesirable items, but also a type of child, of cousin, and of parent. Sometimesexperimentation shows that one of the three su�ces, and sometimes the triad is needed.For a third example of interplay and intricacy, assume that the goal is to �nd a shorterproof than that which the literature o�ers. Briey, ancestor subsumption compares twoderivation paths to the same conclusion and (in e�ect) gives preference to the shorter. Onemight immediately conjecture that this procedure su�ces and that no strategy is needed.Easily overlooked is the fact that the use of a shorter proof to an intermediate step mayforce the entire proof to be longer, an occurrence that has frequently been encountered inmy research, for example, when studying proofs of the Meredith single axiom.To experience a taste of this phenomenon, consider the following. Assume that theprogram or the researcher has found two proofs of a key lemma L, the �rst of length 10,and the second of length 7, and that the lemma and its proof are to be used in the proofof a theorem T . Next, assume that all of the 10 steps of the �rst proof of L can be put tofrequent use in the proof of T , but 5 of the 7 steps of the second proof of L are useless forthe rest of a proof of T . If the situation is worsened by the fact that inaccessibility to thesteps that are present in the �rst proof of L but absent from the second proof of L forcesthe inclusion of, say, 9 steps that could have been avoided by relying on the �rst proof, anice illustration is given of how a shorter subproof can get in the way of �nding a shortertotal proof.The subtle intricacies of reasoning and the interplay that can occur become even moreapparent with the following example. Let the task be that of �nding a �rst proof that P(perhaps consisting of one or more formulas or equations) implies Q (perhaps consisting ofone or more formulas or equations). Or, let the task be that of �nding a shorter proof thatP implies Q. Assume that a proof that Q implies R is in hand. As experimentation hasshown, the goal can be reached by including resonators that correspond to the proof thatQ implies R. Indeed, success can occur by acting as if the goal were to directly prove thatP implies R, rather than merely juxtaposing two proofs (one for P implies Q followed byone for Q implies R). 5



At least odd, and perhaps quite counterintuitive, is the fact that a proof of R fromQ should provide any assistance in deducing Q from P . To emphasize the point, clearlyif a proof of Q from P is found or is in hand, a proof of R from P is readily producible(transitivity su�ces), but the Q implies R segment should be irrelevant to the P impliesQ segment. Nevertheless, as the earlier-cited planned book details, a far shorter double-negation-free proof that the Meredith single axiom implies the Lukasiewicz three-axiomsystem was found by relying, in part, on a proof that the Lukasiewicz system implies thatof Church. (For a �ne treatment of the need for strategy and related topics, see [Fitting1996],pages 104{107.)4 The Value of EleganceSome of the proofs presented in this special issue are more elegant than proofs ever beforefound. One might naturally question the value of access to elegant proofs. Three answersimmediately come to mind. First, the completion of a proof whose elegance rests with itsbrevity can lead directly to the discovery of a dependency among axioms, a dependency thatwas not previously known. Second, such a proof might instead show that a lemma thoughtindispensable is in fact dispensable, not key to the proof of one or more deep theorems.Third, as illustrated in one of the articles in this issue, sometimes the elegance rests withthe avoidance of certain types of term. Such a proof can refute a myth, showing that a typeof argument is totally unneeded and relied upon merely because of tradition.Indeed, a glance at or an intense study of the literature might readily and understand-ably lead to the conclusion that the equivalence of t and not of not of t is indispensable tothe proof of the deep theorems in various areas of formal logic. The nature of mathematicsand logic is a most fascinating topic, and part of that nature rests with what is necessaryand what is su�cient.Everything being equal, more elegant (when the focus is on length) proofs are easierto follow, yield their treasure more readily, and are more tractable in various respects, notthe least of which is that concerning soundness. More generally, contrary to the viewsexpressed in a New York Times article in 1991 [Kolata1991], much can often be learnedfrom the proofs yielded by a program such as OTTER. Indeed, a study of the output �lescan lead to important advances, as occurred with the formulation of demodulation.The preceding observations in part explain the interest in elegant proofs and the interestin proofs that pursue a direct path from point P to point R, rather than merely beingsatis�ed with proof juxtaposition. They also help set the stage for many of the articlesfound in this special issue. 6



5 Experimentation and an Arsenal of WeaponsWhen attacking a deep theorem or a hard problem with the aid of a powerful reasoningprogram, the researcher is presented with tough decisions to make. Indeed, if one considersthat the number of options o�ered by OTTER and the choices of values for those options,one gets a taste of the impracticality of an exhaustive set of experiments. For example, thevalue to assign to max weight may be as small as 2 and as large as 48 (or larger), for heatas small as 0 and as large as 10, and for the pick given ratio as small as 1 and as large as12. In other words, because some experiments require much CPU time, a full treatmentof the possibly fruitful paths to a proof might require many thousands of CPU-hours. Noshortcut to the automation of logical reasoning exists when the goal is that of proving adeep theorem.Such is also the nature of mathematics and logic, as evidenced by the many decades thatsometimes elapse before a question is �nally answered. Indeed, some of the proofs found inthe McCune and Padmanabhan monograph [McCune1996] would not have been found (soexperimentation strongly suggests) without just the appropriate combination of values forthe parameters o�ered by OTTER. For one example, an assignment of the value 11 to thepick given ratio provided what was needed, where both smaller and larger values producedessentially nothing of use. For a quite di�erent example, in contrast to the reliance on thehot list strategy with an assignment of the value 8 to the heat parameter when studying asingle axiom being generally a good move, total avoidance of the hot list strategy proved tobe the right move, resulting in the discovery of a 51-step proof (rather than a 53-step) prooffor the Meredith single axiom in which no formula contains more than 6 distinct variables.In the articles found in this special issue, and reviewed briey in the following sec-tion, the need for a large arsenal of weapons becomes apparent, and the complexity ofmathematics and logic is exempli�ed.What is common to the articles is reliance on experimentation. Indeed, experimentationat many levels is required. However, when a result is presented as the culmination of asequence of experiments, only the highlights are typically presented, with the excursionsomitted.6 The Articles in BriefThe �rst of the articles that follow, written by Dolph Ulrich, provides an overview ofthe importance of the areas of logic on which the research focuses. It also discusses thesigni�cance of the research itself.Next is an article by Robert Vero� showing how, in some cases, linked inference can be7



used to prove that no shorter proof than that in hand exists. This use of linked inferenceis indeed unique and contrasts nicely with the original objective of the formulation of suchinference rules.The next article, written by Ken Harris and Branden Fitelson, presents remarkableresults focusing on distributivity in many-valued sentential calculus. Indeed, before theirresearch, no proofs of the featured theorems existed.Next are two articles, respectively by Robert Vero� and Larry Wos, both concernedwith the Meredith single axiom and its fully automated proof. Although the two approachesdi�er widely, each is successfully used to prove the cited theorem and, most important, eachof the approaches is of general interest and useful in unrelated contexts.The closing article for this special issue, by Branden Fitelson and Larry Wos, is con-cerned with the successful �nding of various missing proofs. Some of the proofs are included,as well as the key elements of the various methodologies that were used.References[Fitting1996] Fitting, M., First-Order Logic and Automated Theorem Proving, GraduateTexts in Computer Science, Springer-Verlag, Berlin, 1996.[Kolata1991] Kolata, G., \Computers still can't do beautiful mathematics", New YorkTimes, Review Section E, 14 July 1991, p. 4.[McCune1989] McCune, W., OTTER 1.0 users' guide, Tech. Report ANL-88/44, ArgonneNational Laboratory, Argonne, IL, January 1989.[McCune1996] McCune, M., and Padmanabhan, R., Automated Deduction in EquationalLogic and Cubic Curves, Lectures Notes in Computer Science 1095, Springer-Verlag, NewYork, 1996.[McCune1997] McCune, W., \Solution of the Robbins problem", J. Automated Reasoning19, no. 3 (1997) 263{276.[Moore1989] Moore, J Strother, \System Veri�cation", J. Automated Reasoning 5, no. 4(1989) 409{410. 8


