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1 The Original ProblemFor many years, the Meredith single axiom for two-valued sentential (or propositional)calculus had successfully resisted a fully automated proof.% Following is Meredith's axiom expressed in clause notation.P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).Although the automated reasoning program OTTER [McCune1989] was speedily able toproof check what amounts to the original 41-step proof of the Meredith single axiom, nocombination of strategies and parameter settings yielded a proof that was not stronglyguided by knowledge of that original proof. (Note that proof checking, especially whencondensed detachment is the inference rule to be used, is far, far easier than proof �nding;their natures di�er sharply. Also of note, Meredith's original proof, in contrast to the cited41-step proof, was not based strictly on condensed detachment; indeed, his 38-step proofrelies in part upon substitution and in part on detachment. More generally, be warnedthat proof length, and proof itself, in the literature can be misleading, as the precedingillustrates.) The target, chosen by Meredith and featured in the research discussed here,was the Lukasiewicz three-axiom system.% Lukasiewicz 1 2 3, expressed in clause notation.P(i(i(x,y),i(i(y,z),i(x,z)))).P(i(i(n(x),x),x)).P(i(x,i(n(x),y))).This article focuses on the conquering of the axiom|on the formulation of a method-ology that yields a fully automated proof that begins with the Meredith single axiom andcompletes with the deduction of the three Lukasiewicz axioms. The methodology relies inno way on knowledge of the proof being sought. Moreover, as required by any methodologythat is to be respected, its use led to a distinct and startling success (to be presented here),namely, completion of a proof that the Lukasiewicz 23-letter axiom is su�cient for the studyof all of two-valued sentential (or propositional) calculus. Before the development of themethodology featured in this article, no proof of this single axiom was known. The factorsthat led to the conquest and replaced the years of failure are detailed.Also discussed in this article is the topic of shortening proofs, and the resultant algo-rithm I was able to formulate for making such attempts. The algorithm, as explained inSection 5, is the 1's complement to the methodology featured here.2



2 A Burning QuestionEspecially for the individual unfamiliar with automated reasoning, a natural and evenburning question immediately arises. Why spend time and e�ort trying to �nd a means fora program to prove a theorem whose proof is readily available? From a historical viewpoint,the answer rests with the continued practice of the Argonne group, namely, �rst identifya theorem whose proof is out of reach of our current program and then wrestle with thattheorem until a means is found to bring its proof within range. From the viewpoint ofautomated reasoning, the general principle asserts that progress is quite likely to occurwhen the arsenal of weapons is augmented to permit the proof of a theorem that hadresisted automation. Whether the theorem has already been proved or simply conjecturedto be true is not the crucial element, although the latter case produces more excitement.One danger always exists: The new approach may be consciously or unconsciouslytailored to the theorem under consideration. To be of interest and to o�er the strongpossibility that an advance has occurred, such tailoring must be absent. Therefore, thesupposed advance must be put to the test of applying it to similar theorems or, even better,to some not so similar. A number of the weapons now o�ered by a program such as OTTERcan trace their birth to the study of a theorem whose proof was already in hand.3 The Key FactorsFour factors appear to account for the success to be reported here in some detail. First,directly at the suggestion of my colleague Branden Fitelson, the heat parameter was assignedthe value 8. Second, a series of lemmas (whose choice is in no way based on the theoremunder attack) was included as targets that, when proved, were then added to the initial set ofsupport for the next run, and the process was repeated until a proof of the desired theoremwas obtained. Third, at some point, all of the proof steps of the already-proved lemmas,even those thought to be irrelevant to the task, were adjoined as resonators. Fourth|andindeed counterintuitive|the goal of �nding a proof was replaced by the goal of �nding aproof totally free of double negation. From what I know and from what Fitelson has found,prior to the study reported here, no such proof for the Meredith single axiom had beeno�ered.Before turning to the details of the methodology, I �rst o�er a fuller treatment of eachof the four factors. 3



3.1 Turning up the HeatThe �rst factor focuses on the use of the hot list strategy [Wos1999b]. My usual approachis to set the input heat parameter to a value no greater than 3. When the theorem underattack relies on a single axiom, however, a value of 8 or even greater is recommended.Indeed, as my colleague Fitelson pointed out, if you examine a proof of a theorem of thetype under discussion, you often �nd a large number of its steps have as a hypotheses thesingle axiom. (He was studying the use of condensed detachment, with a heavy emphasison the 41-step proof of the Meredith single axiom.) Moreover, you also frequently �nd thata sequence of such steps occurs consecutively, with the second based on the �rst, the thirdon the second, and the like. The two observations taken together suggested to him that anunusually high value assigned to the input heat parameter, coupled with the placement ofthe single axiom in the initial hot list, might enable OTTER to �nd such tightly connectedsequences of steps.For example, if a retained clause C1 has heat = 1, if the input value is 8, and ifthe initial hot list contains both the clause corresponding to the single axiom and thatcorresponding to condensed detachment, then (before leaving the scene) C1 would be usedwith condensed detachment and the single axiom to yield C2. Similarly, C2 would be usedto deduce C3 (assuming that C2 was retained), and the process could continue until C8was deduced and retained.I have found that Fitelson's analysis exhibits excellent insight. Therefore, I recommendassigning a value of 8 or greater to the (input) heat parameter when the theorem underattack focuses on a single axiom.3.2 Adding to the Initial Set of SupportThe second factor concerns amending the initial set of support for a subsequent run. Youmight (as I did) puzzle over the value of such a move if the resonance strategy were alreadyin use and the resonators corresponding to the set of target lemmas were already present.Indeed, on the surface, if one of the target lemmas was deduced (say, in the �rst run) and itsresonator was already present, then it would quite quickly become the focus of attention toinitiate applications of the inference rules in use. Therefore, how could the program's attackbe enhanced in the so-called second run by having such a lemma included in the input setof support? In particular, the two approaches would seem to be essentially equivalent.As Fitelson and I hazarded in a phone conversation, here is the probable di�erence(by example). If the target lemma is deduced and retained (rather than being present atthe beginning of the run) at, say, clause 1000 and used to deduce a complex clause that isretained and given, say, the number 20,000, then the clause numbered 20,000 might neverbe chosen as the focus of attention for inference-rule initiation. Even with the presence of4



the ratio strategy and a value of 4 assigned to the pick given ratio, OTTER might never(or almost never) choose clause 20,000 as the focus of attention.On the other hand, in a run in which the clause corresponding to the target lemma(numbered 1000 in the preceding comments) is included in the initial set of support, theclause that would have been numbered 20,000 might now be numbered 500 or less, andhence will be chosen as the focus of attention far sooner. In other words, the search spacehas been perturbed, and perturbed in a most pro�table fashion.The discussion also sheds some light on the di�erence between lemma inclusion andlemma adjunction. Of particular interest is the contrast between the way a researcher worksand the way a program works in the context of inclusion versus adjunction. A person willuse the lemma when convenient, regardless of its so-called number in memory; a programmight never use it because of its being assigned a large conclusion number (see [Wos1999c]for further discussion of this point).You now might be ready for a new strategy (not o�ered by any program known tome), one somewhat in the spirit of learning. In the context of OTTER, it works this way.Place on the passive list the negations of various target lemmas that might merit proof. Aseach is proved, immediately add the (positive form of the) lemma to the remainder of theinitial set of support. Of course, if you have used set(input sos �rst), then most likely allof those clauses will have been already chosen as the focus of attention. In that case, takethe (positive) form of the lemma (where its negation is on the passive list) and immediatelychoose it as the focus of attention.Related to the given strategy is another strategy. The crux is the immediate adjunctionto the hot list of such a proved lemma. Also related is the strategy that immediately adds tothe resonators the correspondent of the just-proved lemma. In such an event, the programmight bene�t from then changing all of the weights of the clauses remaining on the set ofsupport list, changing the weights commensurate with the new resonator. (Neither of thetwo just-cited strategies is o�ered by any program with which I am familiar.)As for the now key question concerning where to obtain the target lemmas for thepassive list, I suggest any book, any paper, or any research of which you know that con-cerns a theorem related to that under study. For example, part of my success with theMeredith theorem resulted from using as targets 68 theses (proved by Lukasiewicz andnumbered 4 through 71) in his study of his three-axiom system for two-valued sentential(or propositional) calculus.3.3 Adjoining ResonatorsThe third factor leading to the successes reported in this special issue concerns adding asresonators all proof steps of proved target lemmas. The notion is that, if such steps were5



useful in proving a target lemma, then a step of the same pattern might be of use in reachingthe main objective. To emphasize the point, I am not suggesting that the actual proof stepsmight prove useful; rather, I am talking about the symbol pattern in the resonator sense,where all variables are treated as indistinguishable.3.4 Avoiding Double NegationThe last of the four factors is, without question, the most startling and therefore the onedeserving the most comment. When you are asked to �nd a proof, but also requested tosatisfy additional constraints, intuition strongly and correctly suggests that in general thetask becomes more di�cult. For example, rather than seeking any proof, you are asked toseek one in forty or fewer applications of some given inference rule. For a second example,you are asked to �nd a proof that avoids the use of some speci�ed lemma. For a thirdexample (directly pertinent to this article), you are asked to �nd a proof in which noterm in any proof step has the form n(n(t)) for some term t. A proof within an addedgiven constraint may not even exist. Therefore, seeking a proof that avoids the use ofdouble negation would naturally seem harder than completing a proof not satisfying sucha constraint. Indeed, a glance at the pertinent literature shows that the use of doublenegation abounds.But, in fact, adding such a constraint appears to have helped to �nd a proof. I con-jecture that the space of conclusions for the automated reasoning program OTTER tobrowse in has been markedly reduced in size. Perhaps the presence of conclusions contain-ing n(n(t)) terms is not so loathsome in itself, but (perhaps) such conclusions spawn anintractable space of retainable conclusions. In other words, perhaps the density of goodinformation within the total information deduced and retained is far greater even thoughthe added constraint clearly guarantees that the number of acceptable proofs is sharplyreduced.This conjecture is in part based on my repeated attempts (with no success) to obtaina fully automated proof of any type (for the Meredith single axiom), before adding theconstraint of avoiding double negation. As a result, I suggest the following aphorism, atleast if you are using a reasoning program such as OTTER.� If you are meeting apparently unconquerable resistance, then replace the question bya harder question, or replace the goal by one that appears to be more unreachable!You might wonder why I chose to focus speci�cally on term avoidance. The main im-petus was my success several years ago in �nding a proof in many-valued sentential calculuswith such a constraint (Chapter 11 of [Wos1996],) a proof conjectured to be nonexistent.Since then, when studying some problem in a logic calculus, I frequently have attempted6



to �nd a proof free of double negation. And so I made such an attempt in my most re-cent study of the Meredith single axiom (completing with the deduction of the three-axiomsystem of Lukasiewicz).4 A Methodology Is BornThe use of a methodology based on the four cited factors did, in fact, yield a fully automatedproof that the Meredith single axiom implies each of the three Lukasiewicz axioms, L1, L2,and L3. Only four runs (experiments) were required.For the �rst experiment, as is typical when I conduct a sequence of tightly coupledexperiments, intuition was the main source for the values assigned to the various parameters.My experiences with OTTER have taught me about tendencies, but I can o�er no �rm rulesfor accurately making choices guaranteed to bring reward. (Some guidelines for the use ofOTTER are provided in Chapter 9 of [Wos1999a], and some tendencies are discussed in[Wos1998].) In general, a �rst experiment provides useful information, both positive andnegative, regarding how to proceed in later experiments. Here are values I assigned forExperiment 1, with comments to follow; the full input �le is presented in the Appendix.(Far fewer details will be given for the second through the fourth experiments.)assign(max_weight,32).assign(change_limit_after,2000).assign(new_max_weight,24).assign(max_proofs,-1).assign(max_distinct_vars,6).assign(pick_given_ratio,4).assign(max_mem,480000).assign(report,3600).assign(heat,8).% assign(dynamic_heat_weight,0).With virtually no exception, I �nd it wise to place an upper bound on the complexityof newly retained conclusions (whether measured in terms of symbol count or based onincluded weight templates); without such a bound, the program may quickly drown. Inpart inuenced by the fact that the Meredith axiom is expressed with 22 symbols (countingits predicate symbol) and in part by experiments in two-valued sentential calculus thatsuggested room must be given for formulas longer than the hypothesis, I chose the value32 for the value to assign to max weight (the upper bound just cited). Especially becausebut one axiom is present from which to reason, a fair amount of room must be given forretaining new conclusions. However, being almost certain that memory would be consumedtoo quickly if no action was taken, I reduced the max weight to 24 after 2000 clauses were7



chosen to initiate applications of condensed detachment, the inference rule in use. As shown,OTTER was assigned the value 480000 for max mem, enabling it to rely on 480 megabytesfor its search.To permit the program to occasionally focus on a retained conclusion of much complex-ity (possibly 32), I assigned the value 4 to the pick given ratio. As it turned out, twenty-oneof the conclusions chosen to initiate inference-rule application had a weight (complexity) of32. By assigning the value 4, the program was instructed to choose 4 clauses by complexity,then 1 by �rst-come �rst-served, then 4, then 1, and the like.To complete as many proofs as memory would allow, I assigned the value �1 (in�nity)to the max proofs parameter. To follow the activity of OTTER, I asked for a statisticalreport every 3600 CPU-seconds.Regarding the assignment of the value 6 to max distinct vars|preventing the programfrom retaining any new conclusion if it relied upon 7 or more distinct variables|I regret tonote that prior knowledge was used. However, such reliance was not necessary. Indeed, ifthe value 4 is assigned, OTTER quickly informs the researcher that nothing of value willresult. If the value 5 is assigned, again nothing of consequence occurs; but two clauses arededuced, and none are retained.The last assignment (inuenced by my joint attack with Fitelson on diverse questionsfrom mathematics and logic) was the value 8 to the heat parameter. Again, prior knowledgecame into play. Speci�cally, he noted the occurrence of sequences of steps (in proofs insystems relying on a single axiom) all of which had as a parent the single axiom and, as theother parent, the preceding step. Access to such sequences is made far, far easier by useof the hot list strategy with a moderately high value assigned to heat and with the singleaxiom placed in the (initial) hot list. As it turned out (in Experiment 1), only three clauseswith heat=8 were chosen as inference-rule initiator, two with heat=7, two with heat=6,and six with heat=5.Were any of those clauses crucial for proof completion? A glance at the correspondingoutput �le showed that one of the clauses with heat=6 was used in six di�erent proofs;therefore, although the value 8 often does serve well, the value 6 would have su�ced at thispoint, which can only be known after the fact. Evidence was thus present for the value ofassigning a (for me) unusually high value to heat; seldom do I rely on a value greater than3. Indeed, the �rst of the four key factors came into play.As for the \set" options, hyperresolution was set because of reliance on condenseddetachment. The option order history was set to permit the user to see which items werepaired with the major premiss and which with the minor premiss in the three-literal clausefor condensed detachment. Finally, out of habit, input sos �rst was set to cause OTTER tochoose for inference-rule initiators all clauses in the input set of support before choosing anydeduced clause. (Of course, since only one clause was included in the initial set of support,8



that for Meredith's axiom, the command was unneeded.)By assigning the value 8 to the heat parameter and by placing the Meredith axiomwith the clause for condensed detachment in the input hot list, I provided a means forthe program to emphasize the role of the Meredith axiom. OTTER was thus encouragedto seek a proof that shared with Meredith's proof (found in the Appendix) what mightbe termed the recursive emphasis on the single axiom. However, previous failures withattempts to �nd (in a fully automated fashion) a proof more or less emulating that ofMeredith, coupled with previous successes with other theorems when term-avoidance wasimposed, strongly suggested that the program should be prevented from relying on doublenegation (which Meredith's proof relies upon). Of the forty-one steps of what amounts tohis proof, seventeen rely on the use of a term of the form n(n(t)) for some term t. Thefollowing set of demodulators was used to achieve the cited term avoidance.list(demodulators).(n(n(x)) = junk).(i(x,junk) = junk).(i(junk,x) = junk).(n(junk) = junk).(P(junk) = $T).end_of_list.The fourth of the four factors was thus brought into play.With the program's reasoning restricted by blocking the use of double negation, Iturned next to directing its reasoning. (Of course, the set of support strategy was beingused to restrict the program's reasoning, but, because of the focus on a single axiom and oncondensed detachment, in the obvious sense, its use added little to the program's power.)Resonance was the choice for directing the reasoning. But which resonators were appealing,resonators that must be chosen without knowledge of Meredith's original proof? I chosethe Lukasiewicz's sixty-eight theses (which he numbered 4 through 71). A resonator cor-responding to each of the sixty-eight was placed in the pick and purge weight list with anassignment of the value 2. The only other resonator that was included was that correspond-ing to the Meredith axiom, assigned a value of 1. As evidence that the deck was not beingstacked, I note that only three of the sixty-eight theses are among the forty-one steps of theMeredith proof.In the context of eventual lemma enrichment, the same sixty-eight theses (as well asa few other lemmas), each negated, were placed in the passive list with the intention ofadjoining in a later run any that were proved. Although far less important, the program'ssuccess in proving such theses was also used by me as a sign of progress; indeed, I ofteninclude negations of various lemmas in the passive list to evaluate and monitor the program'sattack. The second of the four cited factors was thus in evidence.9



Experiment 1 was encouraging, proving sixteen lemmas. Of the three Lukasiewiczlemmas of which the target consists, L3 was proved. Regarding members of the otherknown axiom systems for two-valued sentential calculus whose negations were placed in theusable list, theses 18 and 19 were also proved. Something else also occurred that I had notanticipated: some lemmas were proved more than once. Indeed, in this �rst experiment,thesis 10 was proved in four di�erent ways; four di�erent conclusions were drawn such thateach provided unit conict with the negation of thesis 10.The stage was thus set for the second experiment, di�ering from the �rst in that themax weight was increased from 32 to 36, the max distinct vars was increased from 6 to7, and the lemmas proved in Experiment 1 were adjoined to the initial set of support forExperiment 2.Experiment 2 was even more encouraging, proving �fteen more lemmas including L2and (regarding members of the included known axiom systems) theses 30, 37, 49, and 54,as well as proving MV 5 (which is one of the �ve axioms Lukasiewicz originally o�ered fora weaker area of logic, many-valued sentential calculus). Similar to Experiment 1|andeven more to my surprise|MV 5 was proved twice, each proof terminating in a conclusionmore general thanMV 5. Although the target was still the Lukasiewicz three-axiom system,OTTER and the methodology were getting quite close to proving other axiom systems, anyof which would have been acceptable.In Experiment 3, the third of the cited four factors now came into play, namely, theaddition of 242 resonators (removing duplicates) corresponding to proof steps of lemmasproved in Experiments 1 and 2. Each was assigned the value 1 to instruct OTTER to giveany matching and retained new conclusion very high preference for initiating inference-ruleapplication. Also, the initial set of support used for Experiment 2 was extended by adjoining�fteen lemmas. This third experiment proved L1, and it also noted that the entire three-axiom system of Lukasiewicz had been proved. As evidence of how hard OTTER had towork, the proof of L1 completed with the retention of clause 968418.Elation was certainly my reaction, coupled with being startled because the 480megabytesof memory allotted for the experiment were exhausted almost immediately after L1 was de-duced. Of course, the task was not �nished; indeed, a stand-alone proof had not yet beenproduced. In particular, what was available at the completion of Experiment 3 was a proofresting on the use of lemmas proved in that experiment and on lemmas proved in each ofthe two preceding experiments. Also, in the spirit of recursion, some of the used lemmasfrom Experiment 2 rested on lemmas proved in Experiment 1. I strongly preferred to �nda means to produce the stand-alone proof without untangling the cited dependencies.I thus tried Experiment 4 in which I commented out all of the items in the initial set ofsupport of Experiment 3 other than the Meredith single axiom. That move was required toenable OTTER to attempt to �nd a stand-alone proof. I also added two sets of resonators,with the intention of aiding the program, based on my success in Experiment 3. The �rst10



set (of �fty-eight) corresponded to the claimed proof of the target axiom system; the secondset corresponded to proof steps (sorted) from Experiment 4 not already used. The value 0was assigned to the members of the �rst set, and the value 1 was assigned to the membersof the second set.The hard work paid o�: Experiment 4 yielded the sought-after proof of the Lukasiewiczthree-axiom system in less than 90 CPU-seconds, a proof of length 160 (applications ofcondensed detachment) and level 74. That proof was followed by proofs of the Hilbertsystem, the Church system, the alternate system of Lukasiewicz, and my axiom system.Virtually required at this point is a pause to consider the claim that the 160-step proofwas obtained in a fully automated manner. Stated di�erently, how much did I cheat? First,of the 160 steps, only 5 are among the theses 4 through 71, which were the key resonatorsfor the �rst experiment; the 41-step Lukasiewicz proof contains but three of the cited 68theses. This evidence nicely addresses the question of cheating. Nevertheless, there remainsthe question of how closely tied the 160-step proof is to Meredith's proof. Of the 24 stepsof the Meredith proof that are free of double negation, 21 are among the 160 steps of theproof yielded by the methodology. A natural question immediately arises concerning howcrucial are the 21 steps, viewed as lemmas, a question that perhaps is answered in Section5. The primary objective had been reached|a fully automated proof that Meredith'saxiom is su�cient for the study of two-valued sentential (or propositional) calculus. Nev-ertheless, two additional objectives remained. First and foremost, the newly formulatedmethodology demanded to be tested on another theorem, in part to demonstrate that thedice were not loaded to take advantage of the case just presented, and in part to gain someinsight into the power of the methodology. Second, as I so often do, I wished to make aserious attempt to �nd a proof substantially shorter than the 160-step proof, still avoidingthe use of double negation.5 An Algorithm for Finding Shorter ProofsThe focus in this section is on the second of the two cited objectives (proof shortening),delaying the best for last. The forces that lead to seeking a proof shorter than that in handare many and diverse, ranging from the intellectual to the practical. At one end of thespectrum, the curiosity of researchers is at stake. Can a proof be found that avoids the useof one or more speci�ed lemmas? All being equal, the shorter the proof, the more likelythat unwanted lemmas can be dispensed with. Can it be proved that the shortest possibleproof has been produced? At the other end of the spectrum, in contrast to simple curiosity,economics comes into play. For example, if the shorter proof is completed in the context ofcircuit design, then a correspondingly more e�cient circuit may have been constructed.11



OTTER already has an approach to �nding shorter proofs, namely, the use of ancestorsubsumption, which works in the following manner. First note that the clause A properlysubsumes the clause B if and only if A subsumes B but B does not subsume A. Second notethat the derivation length of the clause A is the number of distinct steps in the deduction ofA, not including those that are among the input; thus the derivation length is equal to thenumber of applications of the inference rule or rules used to deduce A. Finally, by de�nition,the clause A ancestor-subsumes the clause B if and only if (1) A properly subsumes B or(2) A and B are alphabetic variants and the derivation length of A is less than or equal tothat of B. If ancestor subsumption is in use and if the length of a derivation (of a clause) isstrictly less than that of an already-retained copy of that clause, then, if back subsumptionis in use (which is strongly recommended), the copy is retained in the set of support list,with the original copy of the clause purged from the database (used for reasoning) and\hidden" to be recalled in the event it occurs in a completed proof.While ancestor subsumption is often e�ective in �nding shorter proofs, researchersquite naturally prefer an algorithm. The algorithm I developed (�rst discussed in printin [Wos1999a] has exhibited unanticipated power. Although its use does not guaranteethe return of a strictly shorter proof, at least the �rst few applications typically are quiterewarding. (Interesting, although perhaps not obvious, is the fact that the use of ancestorsubsumption can result in a program completing a longer proof than it does in its absence, asoccurred in one of my experiments with the Meredith single axiom. Briey, the explanationrests with the possible exclusion of intermediate steps that, if present, would have beenrepeatedly used later.) The algorithm works in the following way.The algorithm requires access to a proof. Let the proof length be k, the numberof deduced steps (not counting those in the input). For the �rst step of the algorithm,the program is asked to make k runs. In each run, one of the k deduced proof steps isprevented from being used. Although weighting su�ces, I prefer to rely upon demodulation,demodulating the unwanted conclusion to junk. (The use of weighting can block items thatare similar, are cousins, where all variables are treated as indistinguishable; the use ofdemodulation will not have this e�ect and, instead, blocks items that are subsumed bythe item being blocked.) In the second step, all of the proofs completed in the k runs areexamined to see whether a shorter proof has been completed. A run may yield more thanone proof, for example, if ancestor subsumption is used. Let j be the length of the shortestproof found with the k runs. If j is greater than or equal to k, cease the attack. If suchis the case, because the algorithm is usually applied repeatedly, a shorter proof may havealready been found, shorter than the one that initiated the investigation. If j is strictly lessthan k, then apply the third step. For the third step, the focus in on a proof of length j,with the objective of �nding a still shorter proof. Two choices exist: (1) the program canbe asked to avoid the use of each of the j steps of the proof in focus, and (2) the programcan be asked to avoid the use of each of the k steps of the initiating proof.A variation on the algorithm that I have found quite e�ective is to ask the program12



to attempt to complete a proof when all of the steps that individually produced a proofof length j, with j strictly less than k, are simultaneously prevented from being used. Analternative stop condition has also proved of use. Speci�cally, if say at least ten di�erentsteps when blocked yield a proof of length j with j strictly less than k, terminate the attack.By using this algorithm (which began by focusing on the 160-step proof yielded byapplying the methodology presented earlier) coupled with frequent use of ancestor sub-sumption, I was able to �nd a far more attractive proof for the Meredith single axiom, onefree of double negation. The length of that proof is 98.However, earlier experiments had yielded a 90-step proof|which I shall call proof 1|a proof found with the algorithm and with other techniques, beginning with a 181-stepproof (one whose origin may have been the methodology, but perhaps not). Therefore, Ipressed on, but with no progress. (Sometimes, in a later run, I include more than one newdemodulator, choosing to add those that indicate the use of each would produce a proof oflength j with j strictly less than k.)To seek a breakthrough, I chose to block an entire set of formulas, all of those matchingone of the resonators present in the 98-step proof. A few experiments su�ced, resulting inthe �nding of another 90-step proof|which I shall call proof 2. But again a stone wall wasencountered, which led me to one more move.After the set of resonators corresponding to proof 2, I included as resonators the stepscorresponding to proof 1. I was not hopeful, suspecting that proof 2 would simply bereproduced. Fortunately, my conjecture was in error: A 76-step proof of level 48 was foundinstead; see the Appendix. The most likely explanation for this sharp advance was thatclauses that would otherwise have been discarded because of being assigned a weight strictlygreater than 2 (the assigned max weight) were retained and used to initiate inference-ruleapplication. Their use almost certainly was intermingled with the use of clauses matchingone of the 90 steps of proof 2. In other words, the program was given more latitude regardingthis one aspect, which in turn resulted in a severe perturbation of the space of conclusionsbeing examined.Piquant, however, is the fact that the methodology for �nding the �rst proof in generalrelies on giving the program more and more latitude, in contrast to giving the program ingeneral less latitude when the objective is to �nd a far shorter proof based on the �rst proof.Adding elements to the set of support for a succeeding run (as is part of the methodologyfor �nding a �rst proof) is in a sense the 1's complement to blocking the use of items bymeans of demodulation when seeking to improve upon an existing proof.In the context of �nding short proofs, a sharp contrast exists between blocking theuse of an unwanted step with demodulation and using a resonator for that purpose. Theformer blocks the use of the item being demodulated to junk and also all instances of it,but has no e�ect on items that are merely similar in functional shape. The latter blocks13



the formula or equation in the corresponding resonator, has no e�ect on proper instancesof it, but prevents the use of formulas or equations that are similar in functional shape(that match the item in the resonator sense). In other words, demodulation restricts theprogram's reasoning by blocking the use of one set of conclusions, whereas resonance blocksthe use of a quite di�erent set of conclusions. When a given demodulator is shown toprevent the use of two conclusions, a subsumption relation exists between them. When aresonator does so, no subsumption relation exists between the two items. (To complete thisaspect of the discussion, if none of the related subsumption options are exercised, use of ahint [Vero�1996] focuses on a formula rather than on a set of formulas as resonance does.)Now, I turn to data relevant to the observations and the question raised near the endof Section 4. First, the 76-step proof relies on but four of the 68 theses (4 through 71) usedto �nd the 160-step proof. Therefore, are the 68 theses needed at all, or, instead, is theirpresence the key to focusing on crucial steps? Second|and fascinating to me because ofwhat it seems to imply about Meredith|of the 76 steps, 23 are present in the Meredith41-step proof, 23 of its 24 that do not rely on double negation. Are those 24 steps, at leastalmost all of them, so crucial to �nding a proof, especially in the context of �nding a \short"proof? Therefore, to �nd a proof shorter than length 76, does it mean that the cited 23 (oralmost all of them) must be present? Answers to questions of this type are pertinent to thelarger questions: Can a proof of minimal length be found, and what is that length? Third,regarding the two 90-step proofs, perhaps the fact that they di�er by 38 steps played a keyrole in breaking through to a 76-step proof. Fourth, only four of the 76 steps require theuse of seven distinct variables. In view of the fact that this proof is free of double negation,does it contain the keys to completing a double-negation-free proof none of whose formulasrequires the use of more than six distinct variables?6 Validating the MethodologyTo return to the �rst objective, all agree that a methodology requires testing and evaluating.In this section, the focus is on one of the �ner tests that could be applied. The test removesall doubt that some form of dice-loading occurred in the conquest of the Meredith singleaxiom, in turn removing all doubt that prior knowledge, even if implicit or hidden from theresearcher, is required.Speci�cally, to test the methodology, a theorem other than that concerned with Mered-ith's single axiom was required. Even better, if success were to occur, would be a purportedtheorem or a theorem whose proof was unavailable, absent entirely from the literature andfrom the researcher's knowledge. The target for testing was (in e�ect) supplied by my col-league Fitelson roughly �ve months before the methodology was formulated. That targetwas a 23-letter single axiom o�ered by Lukasiewicz for two-valued sentential (or proposi-tional) calculus, the following. 14



% Following is Lukasiewicz's 23-letter single axiom.P(i(i(i(x,y),i(i(i(n(z),n(u)),v),z)),i(w,i(i(z,x),i(u,x))))).I was told that no proof was given and that (apparently) Meredith knew of none; butpresumably Lukasiewicz did, and so the game was on. A condensed detachment proof mustexist, if only it could be discovered. What would be a reasonable choice for establishingthat the given axiom su�ces? I chose the three-axiom system (cited earlier in Section 1) ofLukasiewicz.With but four runs, as if already scripted, the methodology prevailed. Indeed, inthe third experiment, OTTER completed an 82-step proof of level 26 of the three-axiomLukasiewicz system. However, as with Meredith|since lemmas proved in preceding runswere relied upon|there remained the task of producing a proof dependent solely on theLukasiewicz 23-letter single axiom. Adhering to the methodology, I then ran a fourthexperiment and obtained the desired proof, one of length 200 and level 68. As a point ofinterest (and perhaps suggestive of future research), the 200-step proof relies on but eightof the 68 theses 4-71, and seven of the 200 steps require the use of six distinct variables.If max distinct vars is assigned the value 5, no new conclusions are produced, correctlyimplying that 6 is the minimum.The unavailability in the literature of any proof for the Lukasiewicz 23-letter singleaxiom strongly suggests that OTTER's success is indeed singular. I do view the resultas startling and as satisfying evidence that the methodology provides a powerful aid foranswering open questions and for �nding missing proofs. Also of note is the absence ofdouble negation in the proof.As might be expected, I next sought a far, far shorter proof. I turned to the couplingof ancestor subsumption and the algorithm of Section 4. The result was the completion ofa 70-step proof of level 51. Three of its steps require the use of six distinct variables; of the70 steps, 44 are present in the initiating 200-step proof; eight steps are among theses 4-71.When the information about the 200-step proof and the 70-step proof was conveyed toa colleague of mine, she asked the following interesting question. Should the 70-step proofbe considered a proof with far less depth when compared with the 200-step proof? Quite thecontrary; the 70-step proof most likely would have remained hidden for decades were it notfor access to the 200-step proof. Most likely, from the viewpoint of CPU time, an attemptto �nd the 70-step proof without knowledge of the longer proof would have occupied a veryfast computer for years|if a short proof ever would have been completed. An unassistedresearcher sometimes approaches a problem in a manner quite similar to that taken by aresearcher assisted by an automated reasoning program.15



7 Future ResearchResearch that succeeds can produce a type of excitement and exhilaration that de�es de-scription and that is di�cult to equal. Research can also produce much frustration andeven be addictive. For example, I myself �nd tantalizing, and even maddening, the still-unsuccessful search for a proof shorter than Meredith's 41-step proof of his single axiom.But|as was the case with the Lukasiewicz 23-letter single axiom|when a theorem is an-nounced without proof and research yields that proof, little doubt remains concerning thebalance of pain versus pleasure.In this concluding section, I present research suggestions and observations. Some ofthe suggestions may aid a person who has (wisely) chosen to team with an automatedreasoning program such as OTTER to �nd a proof that resists completion or �nd a shorterproof than that in hand. Some, focusing on intriguing problems, may instead provide newareas of research. Of a more general nature, the observations may stimulate research byproviding insight into the contrast between the attack of a reasoning program and that ofa researcher. The observations are paraphrasings from an e-mail note received from mycolleague Fitelson.My �rst suggestion for the researcher seeking a more elegant (shorter) proof than o�eredby the literature is to beware of the cited proof length. Indeed, for the following reasons,the cited length may be misleading. First, logicians (such as Lukasiewicz and Meredith)often do not apply a most general uni�er, being content instead with less generality andthe use of instantiation. Care, therefore, must be exercised in simply accepting quotedproof length. Second, sometimes the implication that condensed detachment is the onlyrule of inference in use is not accurate. Third, sometimes researchers rely on metatheoremsand identities not part of the object-level theory, such as the equivalence of n(n(t)) andt. Such moves are (apparently) designed to avoid examination of deep levels within thetree of possible conclusions. Such moves also reduce the complexity of the expressions thatmust be considered; indeed, proofs often become more readable. Chess masters often relyon similar so-called tricks. In contrast, a program such as OTTER does not shy away fromexamining deep levels or focusing on complex expressions.Nevertheless, to succeed, an automated reasoning program also requires moves thatsharply reduce the size of the search space; strategies are an excellent example. Blockingthe retention of formulas in which double negation is present is such a move|although itseems to be counterintuitive, one that an unaided researcher would not make. Restrictingthe number of distinct variables is yet another counterintuitive move, as is turning up theheat|but these actions often are surprisingly e�ective.Once the target is established, experimentation is essential|whether the maddeninghunt is for a new data structure to sharply increase program performance, a new strategyto restrict or direct reasoning in general, a new methodology, or a new proof. Admittedly,16



experimentation can be frustrating, and progress slow and di�cult to measure. However,I suggest that the researcher who �nds a new proof|even if its length is disappointing|carefully examine the result. Indeed, examination of the new proof can produce questionsof the following type, questions whose answers can in turn lead to further advances. If thenew proof is shorter than that of the original, are there steps from the original proof thatare used in a di�erent way to cover for the steps that have been removed? Is there a chainof inferences in the original proof that is absent in the new proof? Are there steps in bothproofs that are essential for any proof, are indispensable lemmas? In the case in which asingle axiom is being studied with condensed detachment, the �rst condensed detachmentmust focus on two copies of the axiom and, therefore, the result must be present in allproofs of all theorems that can be proved. A glance at this �rst step establishes a lowerbound on the number of distinct variables as well as a lower bound on the length of formulasappearing in a proof.And now, for the curious who are ready eager for a challenge, I o�er several researchproblems. The �rst involves the Meredith single axiom. Like Meredith's 41-step proof, my160-step proof, both 90-step proofs, the 181-step proof, and the 76-step proof all require theuse of formulas relying on seven distinct variables. Formulas in seven distinct variables arenot required to derive the Lukasiewicz three-axiom system from the Meredith single axiom.Indeed, by extending the research of my colleague Deepak Kapur (who found a proof oflength 63 requiring no more than six distinct variables in any formula), I was able to �nd a54-step proof with that property, and still later with a di�erent approach I found a 51-stepproof of the same type. However, the six-variable proofs known to me all rely on the useof double negation. Whether there exists a proof requiring no more than six variables butthat is free of double negation is at this time (in mid-1999) an open question.A quite di�erent research question focuses on the application of the algorithm presented,coupled with the use of ancestor subsumption, to yield a proof of length strictly less than 76(beginning with the 160-step proof). Also of interest is the application of the methodologyto the case in which the Lukasiewicz three-axiom system (or that of Church, for example)is taken as the starting point with the objective being the Meredith single axiom or theLukasiewicz 23-letter single axiom.Turning to many-valued sentential calculus, one may apply the methodology featuredhere to �nd proofs of key theorems. Examples include the �fty lemmas found in Rose andRosser [Rose1958] and theorems concerned with associativity and distributivity and possiblegeneralizations of these laws.Also merited is research that leads to a generalization of the methodology (central tothis article) to problems in which equality plays a key role.Welcome are theorems coupled with a proof with the objective of �nding a shorterproof. Finally, of paramount interest is a proof depending solely on condensed detachment,of length less than or equal to 40, and showing that the Meredith single axiom implies the17



three-axiom system of Lukasiewicz.Appendix Input File for Experiment 1% Trying for an automated proof of Meredith's single axiom.set(hyper_res).assign(max_weight,32).assign(change_limit_after,2000).assign(new_max_weight,24).assign(max_proofs,-1).clear(print_kept).% set(process_input).% set(ancestor_subsume).clear(back_sub).clear(print_back_sub).assign(max_distinct_vars,6).assign(pick_given_ratio,4).assign(max_mem,480000).assign(report,3600).set(order_history).set(input_sos_first).assign(heat,8).% assign(dynamic_heat_weight,0).weight_list(pick_and_purge).% Following are theses 4 through 71.weight(P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))),2).weight(P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))),2).weight(P(i(i(x,y),i(i(i(x,z),u),i(i(y,z),u)))),2).weight(P(i(i(x,i(i(y,z),u)),i(i(y,v),i(x,i(i(v,z),u))))),2).weight(P(i(i(x,y),i(i(z,x),i(i(y,u),i(z,u))))),2).weight(P(i(i(i(n(x),y),z),i(x,z))),2).weight(P(i(x,i(i(i(n(x),x),x),i(i(y,x),x)))),2).weight(P(i(i(x,i(i(n(y),y),y)),i(i(n(y),y),y))),2).weight(P(i(x,i(i(n(y),y),y))),2).weight(P(i(i(n(x),y),i(z,i(i(y,x),x)))),2).weight(P(i(i(i(x,i(i(y,z),z)),u),i(i(n(z),y),u))),2).weight(P(i(i(n(x),y),i(i(y,x),x))),2).weight(P(i(x,x)),2).weight(P(i(x,i(i(y,x),x))),2).weight(P(i(x,i(y,x))),2).weight(P(i(i(i(x,y),z),i(y,z))),2).weight(P(i(x,i(i(x,y),y))),2).weight(P(i(i(x,i(y,z)),i(y,i(x,z)))),2).weight(P(i(i(x,y),i(i(z,x),i(z,y)))),2).weight(P(i(i(i(x,i(y,z)),u),i(i(y,i(x,z)),u))),2).weight(P(i(i(i(x,y),x),x)),2).weight(P(i(i(i(x,y),z),i(i(x,u),i(i(u,y),z)))),2).weight(P(i(i(i(x,y),z),i(i(z,x),x))),2).weight(P(i(i(i(x,y),y),i(i(y,x),x))),2).weight(P(i(i(i(i(x,y),y),z),i(i(i(y,u),x),z))),2).18



weight(P(i(i(i(x,y),z),i(i(x,z),z))),2).weight(P(i(i(x,i(x,y)),i(x,y))),2).weight(P(i(i(x,y),i(i(i(x,z),u),i(i(y,u),u)))),2).weight(P(i(i(i(x,y),z),i(i(x,u),i(i(u,z),z)))),2).weight(P(i(i(x,y),i(i(y,i(z,i(x,u))),i(z,i(x,u))))),2).weight(P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))),2).weight(P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))),2).weight(P(i(n(x),i(x,y))),2).weight(P(i(i(i(x,y),z),i(n(x),z))),2).weight(P(i(i(x,n(x)),n(x))),2).weight(P(i(n(n(x)),x)),2).weight(P(i(x,n(n(x)))),2).weight(P(i(i(x,y),i(n(n(x)),y))),2).weight(P(i(i(i(n(n(x)),y),z),i(i(x,y),z))),2).weight(P(i(i(x,y),i(i(y,n(x)),n(x)))),2).weight(P(i(i(x,i(y,n(z))),i(i(z,y),i(x,n(z))))),2).weight(P(i(i(x,i(y,z)),i(i(n(z),y),i(x,z)))),2).weight(P(i(i(x,y),i(n(y),n(x)))),2).weight(P(i(i(x,n(y)),i(y,n(x)))),2).weight(P(i(i(n(x),y),i(n(y),x))),2).weight(P(i(i(n(x),n(y)),i(y,x))),2).weight(P(i(i(i(n(x),y),z),i(i(n(y),x),z))),2).weight(P(i(i(x,i(y,z)),i(x,i(n(z),n(y))))),2).weight(P(i(i(x,i(y,n(z))),i(x,i(z,n(y))))),2).weight(P(i(i(n(x),y),i(i(x,y),y))),2).weight(P(i(i(x,y),i(i(n(x),y),y))),2).weight(P(i(i(x,y),i(i(x,n(y)),n(x)))),2).weight(P(i(i(i(i(x,y),y),z),i(i(n(x),y),z))),2).weight(P(i(i(n(x),y),i(i(x,z),i(i(z,y),y)))),2).weight(P(i(i(i(i(x,y),i(i(y,z),z)),u),i(i(n(x),z),u))),2).weight(P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))),2).weight(P(i(i(x,i(n(y),z)),i(x,i(i(u,z),i(i(y,u),z))))),2).weight(P(i(i(x,y),i(i(z,y),i(i(n(x),z),y)))),2).weight(P(i(i(n(n(x)),y),i(x,y))),2).weight(P(i(x,i(y,y))),2).weight(P(i(n(i(x,x)),y)),2).weight(P(i(i(n(x),n(i(y,y))),x)),2).weight(P(i(n(i(x,y)),x)),2).weight(P(i(n(i(x,y)),n(y))),2).weight(P(i(n(i(x,n(y))),y)),2).weight(P(i(x,i(n(y),n(i(x,y))))),2).weight(P(i(x,i(y,n(i(x,n(y)))))),2).weight(P(n(i(i(x,x),n(i(y,y))))),2).% Following is Meredith's axiom.weight(P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))),1).% % Following is recursive tail strategy.% weight(i($(1),$(2)),1).end_of_list.list(usable).% condensed detachment-P(i(x,y)) | -P(x) | P(y).% The following disjunctions are known axiom systems.-P(i(q,i(p,q))) | -P(i(i(p,i(q,r)),i(i(p,q),i(p,r)))) | -P(i(n(n(p)),p)) | -P(i(p,n(n(p))))| -P(i(i(p,q),i(n(q),n(p)))) | -P(i(i(p,i(q,r)),i(q,i(p,r))))| $ANS(step_allFrege_18_35_39_40_46_21). % 21 is dependent.-P(i(q,i(p,q))) | -P(i(i(p,i(q,r)),i(q,i(p,r)))) | -P(i(i(q,r),i(i(p,q),i(p,r))))| -P(i(p,i(n(p),q))) | -P(i(i(p,q),i(i(n(p),q),q))) | -P(i(i(p,i(p,q)),i(p,q)))| $ANS(step_allHilbert_18_21_22_3_54_30). % 30 is dependent.-P(i(q,i(p,q))) | -P(i(i(p,i(q,r)),i(i(p,q),i(p,r)))) | -P(i(i(n(p),n(q)),i(q,p)))19



| $ANS(step_allChurch_18_35_49).-P(i(i(i(p,q),r),i(q,r))) | -P(i(i(i(p,q),r),i(n(p),r))) | -P(i(i(n(p),r),i(i(q,r),i(i(p,q),r))))| $ANS(step_allLuka_19_37_59).-P(i(i(i(p,q),r),i(q,r))) | -P(i(i(i(p,q),r),i(n(p),r))) | -P(i(i(s,i(n(p),r)),i(s,i(i(q,r),i(i(p,q),r)))))| $ANS(step_allWos_19_37_60).-P(i(i(p,q),i(i(q,r),i(p,r)))) | -P(i(i(n(p),p),p)) | -P(i(p,i(n(p),q)))| $ANS(step_allLuka_1_2_3).end_of_list.list(sos).% Following is Meredith's axiom.P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).end_of_list.list(passive).% Following are the Lukasiewicz three axioms.-P(i(i(p,q),i(i(q,r),i(p,r)))) | $ANS(step_L1).-P(i(i(n(p),p),p)) | $ANS(step_L2).-P(i(p,i(n(p),q))) | $ANS(step_L3).% Following are Desired associativity lemmas-P(i(i(i(a,i(i(b,c),c)),i(i(b,c),c)),i(i(i(i(a,b),b),c),c))) | $ANS(lemma_2_21a).-P(i(i(i(i(i(a,b),b),c),c),i(i(a,i(i(b,c),c)),i(i(b,c),c)))) | $ANS(lemma_2_21b).% Following are Four distributivity theorems for which proofs are already known-P(i(n(i(a,n(i(i(b,c),c)))),i(i(n(i(a,n(b))),n(i(a,n(c)))),n(i(a,n(c)))))) | $ANS(3_43a).-P(i(i(i(n(i(a,n(b))),n(i(a,n(c)))),n(i(a,n(c)))),n(i(a,n(i(i(b,c),c)))))) | $ANS(3_43b).-P(i(i(n(a),n(i(i(n(b),n(c)),n(c)))),n(i(i(n(i(n(a),b)),n(i(n(a),c))),n(i(n(a),c)))))) | $ANS(3_44a).-P(i(n(i(i(n(i(n(a),b)),n(i(n(a),c))),n(i(n(a),c)))),i(n(a),n(i(i(n(b),n(c)),n(c)))))) | $ANS(3_44b).% Two unproven (but provable!) distributivity theorems-P(i(n(i(i(n(a),n(i(i(b,c),c))),n(i(i(b,c),c)))),i(i(n(i(i(n(a),n(b)),n(b))),n(i(i(n(a),n(c)),n(c)))),n(i(i(n(a),n(c)),n(c)))))) | $ANS(K_A_dist_1).-P(i(i(i(n(i(i(n(a),n(b)),n(b))),n(i(i(n(a),n(c)),n(c)))), n(i(i(n(a),n(c)),n(c)))),n(i(i(n(a),n(i(i(b,c),c))), n(i(i(b,c),c)))))) | $ANS(K_A_dist_2).% three old favorites!-P(i(i(i(a,b),i(a,c)),i(i(b,a),i(b,c)))) | $ANS(3_51).-P(i(i(i(i(c,a),i(b,a)),i(b,c)),i(i(i(c,b),i(a,b)),i(a,c)))) | $ANS(star).-P(i(i(i(a,b),i(b,a)),i(b,a))) | $ANS(MV_5).% Following are negations of theses 4 through 71.-P(i(i(i(i(q,r),i(p,r)),s),i(i(p,q),s))) | $ANS(neg_th_04).-P(i(i(p,i(q,r)),i(i(s,q),i(p,i(s,r))))) | $ANS(neg_th_05).-P(i(i(p,q),i(i(i(p,r),s),i(i(q,r),s)))) | $ANS(neg_th_06).-P(i(i(t,i(i(p,r),s)),i(i(p,q),i(t,i(i(q,r),s))))) | $ANS(neg_th_07).-P(i(i(q,r),i(i(p,q),i(i(r,s),i(p,s))))) | $ANS(neg_th_08).-P(i(i(i(n(p),q),r),i(p,r))) | $ANS(neg_th_09).-P(i(p,i(i(i(n(p),p),p),i(i(q,p),p)))) | $ANS(neg_th_10).-P(i(i(q,i(i(n(p),p),p)),i(i(n(p),p),p))) | $ANS(neg_th_11).-P(i(t,i(i(n(p),p),p))) | $ANS(neg_th_12).-P(i(i(n(p),q),i(t,i(i(q,p),p)))) | $ANS(neg_th_13).-P(i(i(i(t,i(i(q,p),p)),r),i(i(n(p),q),r))) | $ANS(neg_th_14).-P(i(i(n(p),q),i(i(q,p),p))) | $ANS(neg_th_15).-P(i(p,p)) | $ANS(neg_th_16).-P(i(p,i(i(q,p),p))) | $ANS(neg_th_17).-P(i(q,i(p,q))) | $ANS(neg_th_18).-P(i(i(i(p,q),r),i(q,r))) | $ANS(neg_th_19).-P(i(p,i(i(p,q),q))) | $ANS(neg_th_20).-P(i(i(p,i(q,r)),i(q,i(p,r)))) | $ANS(neg_th_21).-P(i(i(q,r),i(i(p,q),i(p,r)))) | $ANS(neg_th_22).-P(i(i(i(q,i(p,r)),s),i(i(p,i(q,r)),s))) | $ANS(neg_th_23).-P(i(i(i(p,q),p),p)) | $ANS(neg_th_24).-P(i(i(i(p,r),s),i(i(p,q),i(i(q,r),s)))) | $ANS(neg_th_25).-P(i(i(i(p,q),r),i(i(r,p),p))) | $ANS(neg_th_26). 20



-P(i(i(i(p,q),q),i(i(q,p),p))) | $ANS(neg_th_27).-P(i(i(i(i(r,p),p),s),i(i(i(p,q),r),s))) | $ANS(neg_th_28).-P(i(i(i(p,q),r),i(i(p,r),r))) | $ANS(neg_th_29).-P(i(i(p,i(p,q)),i(p,q))) | $ANS(neg_th_30).-P(i(i(p,s),i(i(i(p,q),r),i(i(s,r),r)))) | $ANS(neg_th_31).-P(i(i(i(p,q),r),i(i(p,s),i(i(s,r),r)))) | $ANS(neg_th_32).-P(i(i(p,s),i(i(s,i(q,i(p,r))),i(q,i(p,r))))) | $ANS(neg_th_33).-P(i(i(s,i(q,i(p,r))),i(i(p,s),i(q,i(p,r))))) | $ANS(neg_th_34).-P(i(i(p,i(q,r)),i(i(p,q),i(p,r)))) | $ANS(neg_th_35).-P(i(n(p),i(p,q))) | $ANS(neg_th_36).-P(i(i(i(p,q),r),i(n(p),r))) | $ANS(neg_th_37).-P(i(i(p,n(p)),n(p))) | $ANS(neg_th_38).-P(i(n(n(p)),p)) | $ANS(neg_th_39).-P(i(p,n(n(p)))) | $ANS(neg_th_40).-P(i(i(p,q),i(n(n(p)),q))) | $ANS(neg_th_41).-P(i(i(i(n(n(p)),q),r),i(i(p,q),r))) | $ANS(neg_th_42).-P(i(i(p,q),i(i(q,n(p)),n(p)))) | $ANS(neg_th_43).-P(i(i(s,i(q,n(p))),i(i(p,q),i(s,n(p))))) | $ANS(neg_th_44).-P(i(i(s,i(q,p)),i(i(n(p),q),i(s,p)))) | $ANS(neg_th_45).-P(i(i(p,q),i(n(q),n(p)))) | $ANS(neg_th_46).-P(i(i(p,n(q)),i(q,n(p)))) | $ANS(neg_th_47).-P(i(i(n(p),q),i(n(q),p))) | $ANS(neg_th_48).-P(i(i(n(p),n(q)),i(q,p))) | $ANS(neg_th_49).-P(i(i(i(n(q),p),r),i(i(n(p),q),r))) | $ANS(neg_th_50).-P(i(i(p,i(q,r)),i(p,i(n(r),n(q))))) | $ANS(neg_th_51).-P(i(i(p,i(q,n(r))),i(p,i(r,n(q))))) | $ANS(neg_th_52).-P(i(i(n(p),q),i(i(p,q),q))) | $ANS(neg_th_53).-P(i(i(p,q),i(i(n(p),q),q))) | $ANS(neg_th_54).-P(i(i(p,q),i(i(p,n(q)),n(p)))) | $ANS(neg_th_55).-P(i(i(i(i(p,q),q),r),i(i(n(p),q),r))) | $ANS(neg_th_56).-P(i(i(n(p),r),i(i(p,q),i(i(q,r),r)))) | $ANS(neg_th_57).-P(i(i(i(i(p,q),i(i(q,r),r)),s),i(i(n(p),r),s))) | $ANS(neg_th_58).-P(i(i(n(p),r),i(i(q,r),i(i(p,q),r)))) | $ANS(neg_th_59).-P(i(i(s,i(n(p),r)),i(s,i(i(q,r),i(i(p,q),r))))) | $ANS(neg_th_60).-P(i(i(p,r),i(i(q,r),i(i(n(p),q),r)))) | $ANS(neg_th_61).-P(i(i(n(n(p)),q),i(p,q))) | $ANS(neg_th_62).-P(i(q,i(p,p))) | $ANS(neg_th_63).-P(i(n(i(p,p)),q)) | $ANS(neg_th_64).-P(i(i(n(q),n(i(p,p))),q)) | $ANS(neg_th_65).-P(i(n(i(p,q)),p)) | $ANS(neg_th_66).-P(i(n(i(p,q)),n(q))) | $ANS(neg_th_67).-P(i(n(i(p,n(q))),q)) | $ANS(neg_th_68).-P(i(p,i(n(q),n(i(p,q))))) | $ANS(neg_th_69).-P(i(p,i(q,n(i(p,n(q)))))) | $ANS(neg_th_70).-P(n(i(i(p,p),n(i(q,q))))) | $ANS(neg_th_71).end_of_list.list(demodulators).% (n(n(n(x))) = junk).(n(n(x)) = junk).% (i(i(x,x),y) = junk).% (i(y,i(x,x)) = junk).% (i(n(i(x,x)),y) = junk).% (i(y,n(i(x,x))) = junk).(i(x,junk) = junk).(i(junk,x) = junk).(n(junk) = junk).(P(junk) = $T).end_of_list. 21



list(hot).-P(i(x,y)) | -P(x) | P(y).% Following is Meredith's axiom.P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).end_of_list. Meredith's Proof-----> EMPTY CLAUSE at 0.17 sec ----> 54 [hyper,2,53,43,34] $ANSWER(Luka,[1,2,3]).Length of proof is 41. Level of proof is 30.---------------- PROOF ----------------1 [] -P(i(x,y)) | -P(x) | P(y).2 [] -P(i(i(p,q),i(i(q,r),i(p,r)))) | -P(i(i(n(p),p),p)) | -P(i(p,i(n(p),q))) |$ANSWER(Luka,[1,2,3]).3 [] P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).4 [hyper,1,3,3] P(i(i(i(i(x,y),i(z,y)),i(y,u)),i(v,i(y,u)))).5 [hyper,1,3,4] P(i(i(i(x,i(n(y),z)),u),i(y,u))).6 [hyper,1,3,5] P(i(i(i(x,x),y),i(z,y))).7 [hyper,1,6,6] P(i(x,i(y,i(z,z)))).9 [hyper,1,3,7] P(i(i(i(x,i(y,y)),z),i(u,z))).11 [hyper,1,3,9] P(i(i(i(x,y),z),i(y,z))).13 [hyper,1,11,3] P(i(x,i(i(x,y),i(z,y)))).14 [hyper,1,11,13] P(i(x,i(i(i(y,x),z),i(u,z)))).15 [hyper,1,13,5] P(i(i(i(i(i(x,i(n(y),z)),u),i(y,u)),v),i(w,v))).16 [hyper,1,3,14] P(i(i(i(i(i(x,i(i(i(y,z),i(n(u),n(v))),u)),w),i(v6,w)),y),i(v,y))).17 [hyper,1,3,15] P(i(i(i(x,y),i(z,i(n(n(y)),u))),i(v,i(z,i(n(n(y)),u))))).18 [hyper,1,3,16] P(i(i(i(x,y),i(z,i(i(i(y,u),i(n(v),n(x))),v))),i(w,i(z,i(i(i(y,u),i(n(v),n(x))),v))))).19 [hyper,1,17,3] P(i(x,i(i(y,z),i(n(n(y)),z)))).20 [hyper,1,18,13] P(i(x,i(i(i(y,z),u),i(i(i(z,v),i(n(u),n(y))),u)))).21 [hyper,1,19,19] P(i(i(x,y),i(n(n(x)),y))).22 [hyper,1,3,19] P(i(i(i(i(x,y),i(n(n(x)),y)),z),i(u,z))).23 [hyper,1,20,20] P(i(i(i(x,y),z),i(i(i(y,u),i(n(z),n(x))),z))).25 [hyper,1,6,21] P(i(x,i(n(n(y)),y))).26 [hyper,1,23,14] P(i(i(i(x,y),i(n(i(i(i(z,i(u,x)),v),i(w,v))),n(u))),i(i(i(z,i(u,x)),v),i(w,v)))).27 [hyper,1,13,25] P(i(i(i(x,i(n(n(y)),y)),z),i(u,z))).28 [hyper,1,3,26] P(i(i(i(i(i(x,i(y,i(z,u))),v),i(w,v)),z),i(v6,z))).29 [hyper,1,3,28] P(i(i(i(x,y),i(z,i(u,i(y,v)))),i(w,i(z,i(u,i(y,v)))))).30 [hyper,1,29,3] P(i(x,i(i(y,i(y,z)),i(u,i(y,z))))).31 [hyper,1,30,30] P(i(i(x,i(x,y)),i(z,i(x,y)))).32 [hyper,1,31,31] P(i(x,i(i(y,i(y,z)),i(y,z)))).33 [hyper,1,32,32] P(i(i(x,i(x,y)),i(x,y))).34 [hyper,1,5,33] P(i(x,i(n(x),y))).35 [hyper,1,33,27] P(i(i(i(x,i(n(n(y)),y)),z),z)).36 [hyper,1,33,22] P(i(i(i(i(x,y),i(n(n(x)),y)),z),z)).38 [hyper,1,21,35] P(i(n(n(i(i(x,i(n(n(y)),y)),z))),z)).39 [hyper,1,3,36] P(i(i(n(x),x),i(y,x))).42 [hyper,1,14,38] P(i(i(i(x,i(n(n(i(i(y,i(n(n(z)),z)),u))),u)),v),i(w,v))).43 [hyper,1,33,39] P(i(i(n(x),x),x)).44 [hyper,1,3,42] P(i(i(i(x,n(i(i(y,i(n(n(z)),z)),n(u)))),v),i(u,v))).45 [hyper,1,44,43] P(i(x,n(i(i(y,i(n(n(z)),z)),n(x))))).46 [hyper,1,14,45] P(i(i(i(x,i(y,n(i(i(z,i(n(n(u)),u)),n(y))))),v),i(w,v))).48 [hyper,1,33,46] P(i(i(i(x,i(y,n(i(i(z,i(n(n(u)),u)),n(y))))),v),v)).49 [hyper,1,3,48] P(i(i(x,y),i(i(i(z,i(n(n(u)),u)),n(n(x))),y))).50 [hyper,1,49,49] P(i(i(i(x,i(n(n(y)),y)),n(n(i(z,u)))),i(i(i(v,i(n(n(w)),w)),n(n(z))),u))).51 [hyper,1,3,50] P(i(i(i(i(i(x,i(n(n(y)),y)),n(n(z))),u),v),i(i(z,u),v))).22



53 [hyper,1,51,3] P(i(i(x,y),i(i(y,z),i(x,z)))).54 [hyper,2,53,43,34] $ANSWER(Luka,[1,2,3]).------------ end of proof -------------A 76-Step Proof, Free of Double Negation, for the Meredith Single Axiom-----> EMPTY CLAUSE at 10.09 sec ----> 354 [hyper,7,331,287,132]$ANS(step_allLuka_1_2_3).Length of proof is 76. Level of proof is 48.---------------- PROOF ----------------1 [] -P(i(x,y)) | -P(x) | P(y).7 [] -P(i(i(p,q),i(i(q,r),i(p,r)))) | -P(i(i(n(p),p),p)) | -P(i(p,i(n(p),q))) |$ANS(step_allLuka_1_2_3).8 [] P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).53 [] -P(i(x,y)) | -P(x) | P(y).54 [] P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).55 [hyper,1,8,8] P(i(i(i(i(x,y),i(z,y)),i(y,u)),i(v,i(y,u)))).56 (heat=1) [hyper,53,54,55] P(i(i(i(x,i(n(y),z)),u),i(y,u))).57 (heat=2) [hyper,53,54,56] P(i(i(i(x,x),y),i(z,y))).60 [hyper,1,57,57] P(i(x,i(y,i(z,z)))).61 (heat=1) [hyper,53,54,60] P(i(i(i(x,i(y,y)),z),i(u,z))).62 (heat=2) [hyper,53,54,61] P(i(i(i(x,y),z),i(y,z))).64 (heat=3) [hyper,53,62,54] P(i(x,i(i(x,y),i(z,y)))).66 [hyper,1,62,64] P(i(x,i(i(i(y,x),z),i(u,z)))).68 [hyper,1,56,64] P(i(x,i(i(i(y,i(n(x),z)),u),i(v,u)))).71 (heat=1) [hyper,53,54,66] P(i(i(i(i(i(x,i(i(i(y,z),i(n(u),n(v))),u)),w),i(v6,w)),y),i(v,y))).75 (heat=2) [hyper,53,54,71] P(i(i(i(x,y),i(z,i(i(i(y,u),i(n(v),n(x))),v))),i(w,i(z,i(i(i(y,u),i(n(v),n(x))),v))))).84 [hyper,1,75,64] P(i(x,i(i(i(y,z),u),i(i(i(z,v),i(n(u),n(y))),u)))).85 (heat=1) [hyper,53,84,54] P(i(i(i(x,y),z),i(i(i(y,u),i(n(z),n(x))),z))).86 (heat=2) [hyper,53,85,54] P(i(i(i(x,y),i(n(i(i(x,z),i(u,z))),n(i(i(i(z,v),i(n(w),n(u))),w)))),i(i(x,z),i(u,z)))).97 [hyper,1,85,66] P(i(i(i(x,y),i(n(i(i(i(z,i(u,x)),v),i(w,v))),n(u))),i(i(i(z,i(u,x)),v),i(w,v)))).98 [hyper,1,85,64] P(i(i(i(x,y),i(n(i(i(i(z,x),u),i(v,u))),n(z))),i(i(i(z,x),u),i(v,u)))).99 (heat=1) [hyper,53,54,97] P(i(i(i(i(i(x,i(y,i(z,u))),v),i(w,v)),z),i(v6,z))).100 (heat=1) [hyper,53,54,98] P(i(i(i(i(i(x,i(y,z)),u),i(v,u)),y),i(w,y))).101 (heat=2) [hyper,53,54,99] P(i(i(i(x,y),i(z,i(u,i(y,v)))),i(w,i(z,i(u,i(y,v)))))).102 (heat=2) [hyper,53,54,100] P(i(i(i(x,y),i(z,i(y,u))),i(v,i(z,i(y,u))))).103 (heat=3) [hyper,53,101,54] P(i(x,i(i(y,i(y,z)),i(u,i(y,z))))).105 (heat=4) [hyper,53,103,54] P(i(i(x,i(x,y)),i(z,i(x,y)))).106 [hyper,1,62,98] P(i(i(n(i(i(i(x,y),z),i(u,z))),n(x)),i(i(i(x,y),z),i(u,z)))).107 [hyper,1,102,68] P(i(x,i(i(i(y,i(n(i(z,u)),v)),w),i(u,w)))).108 [hyper,1,102,66] P(i(x,i(i(i(y,i(z,u)),v),i(u,v)))).109 (heat=1) [hyper,53,54,107] P(i(i(i(i(i(x,i(n(i(y,z)),u)),v),i(z,v)),w),i(v6,w))).111 (heat=1) [hyper,53,54,108] P(i(i(i(i(i(x,i(y,z)),u),i(z,u)),v),i(w,v))).113 (heat=2) [hyper,53,54,109] P(i(i(i(x,y),i(z,i(n(i(u,n(y))),v))),i(w,i(z,i(n(i(u,n(y))),v))))).117 (heat=3) [hyper,53,113,54] P(i(x,i(i(y,z),i(n(i(u,n(y))),z)))).119 (heat=4) [hyper,53,117,54] P(i(i(x,y),i(n(i(z,n(x))),y))).121 [hyper,1,105,105] P(i(x,i(i(y,i(y,z)),i(y,z)))).124 (heat=1) [hyper,53,121,54] P(i(i(x,i(x,y)),i(x,y))).125 [hyper,1,102,106] P(i(x,i(i(i(y,z),u),i(n(y),u)))).126 (heat=1) [hyper,53,125,54] P(i(i(i(x,y),z),i(n(x),z))).132 [hyper,1,56,124] P(i(x,i(n(x),y))).135 [hyper,1,124,61] P(i(i(i(x,i(y,y)),z),z)).148 [hyper,1,56,132] P(i(x,i(n(i(y,i(n(x),z))),u))).162 [hyper,1,86,148] P(i(i(x,y),i(n(i(x,z)),y))). 23



174 [hyper,1,119,162] P(i(n(i(x,n(i(y,z)))),i(n(i(y,u)),z))).186 [hyper,1,105,174] P(i(x,i(n(i(y,n(i(y,z)))),z))).204 [hyper,1,64,186] P(i(i(i(x,i(n(i(y,n(i(y,z)))),z)),u),i(v,u))).224 [hyper,1,124,204] P(i(i(i(x,i(n(i(y,n(i(y,z)))),z)),u),u)).225 (heat=1) [hyper,53,54,224] P(i(i(i(x,n(i(x,n(y)))),z),i(y,z))).227 [hyper,1,111,225] P(i(x,i(y,i(z,n(i(i(u,i(v,z)),n(y))))))).228 [hyper,1,57,225] P(i(x,i(y,i(z,n(i(z,n(y))))))).229 [hyper,1,225,126] P(i(x,i(n(y),n(i(i(y,z),n(x)))))).231 (heat=1) [hyper,53,54,227] P(i(i(i(x,i(y,n(i(i(z,i(u,y)),n(x))))),v),i(w,v))).232 (heat=1) [hyper,53,228,54] P(i(x,i(y,n(i(y,n(x)))))).233 (heat=2) [hyper,53,54,231] P(i(i(i(x,y),z),i(i(i(u,i(v,n(y))),n(i(z,w))),z))).234 (heat=3) [hyper,53,233,54] P(i(i(i(x,i(y,n(z))),n(i(i(i(z,u),i(v,u)),w))),i(i(z,u),i(v,u)))).235 (heat=4) [hyper,53,54,234] P(i(i(i(i(x,y),i(z,y)),u),i(x,u))).241 [hyper,1,57,232] P(i(x,i(y,n(i(y,n(i(z,z))))))).243 (heat=1) [hyper,53,241,54] P(i(x,n(i(x,n(i(y,y)))))).245 [hyper,1,233,64] P(i(i(i(x,i(y,n(z))),n(i(i(i(i(u,z),v),i(w,v)),v6))),i(i(i(u,z),v),i(w,v)))).246 (heat=1) [hyper,53,54,245] P(i(i(i(i(i(x,y),z),i(u,z)),v),i(y,v))).247 (heat=2) [hyper,53,246,54] P(i(i(n(x),n(y)),i(i(i(z,x),u),i(y,u)))).250 [hyper,1,235,124] P(i(x,i(i(x,y),y))).265 [hyper,1,250,241] P(i(i(i(x,i(y,n(i(y,n(i(z,z)))))),u),u)).267 [hyper,1,250,229] P(i(i(i(x,i(n(y),n(i(i(y,z),n(x))))),u),u)).268 (heat=1) [hyper,53,54,265] P(i(i(x,y),i(i(n(x),n(i(z,z))),y))).269 (heat=1) [hyper,53,54,267] P(i(i(x,y),i(i(i(x,z),n(i(y,u))),y))).279 [hyper,1,268,250] P(i(i(n(x),n(i(y,y))),i(i(x,z),z))).281 [hyper,1,269,279] P(i(i(i(i(n(x),n(i(y,y))),z),n(i(i(i(x,u),u),v))),i(i(x,u),u))).283 (heat=1) [hyper,53,54,281] P(i(i(i(i(x,y),y),n(x)),i(z,n(x)))).284 [hyper,1,124,283] P(i(i(i(i(x,y),y),n(x)),n(x))).285 (heat=1) [hyper,53,54,284] P(i(i(n(x),x),i(y,x))).286 [hyper,1,126,284] P(i(n(i(i(x,y),y)),n(x))).287 [hyper,1,124,285] P(i(i(n(x),x),x)).290 [hyper,1,247,286] P(i(i(i(x,i(i(y,z),z)),u),i(y,u))).295 [hyper,1,290,243] P(i(x,n(i(i(y,i(i(x,z),z)),n(i(u,u)))))).302 [hyper,1,234,295] P(i(i(x,y),i(i(i(z,i(u,n(x))),y),y))).315 [hyper,1,302,135] P(i(i(i(x,i(y,n(i(i(z,i(u,u)),v)))),v),v)).318 (heat=1) [hyper,53,54,315] P(i(i(x,y),i(i(i(z,i(u,u)),x),y))).326 [hyper,1,318,318] P(i(i(i(x,i(y,y)),i(z,u)),i(i(i(v,i(w,w)),z),u))).329 (heat=1) [hyper,53,54,326] P(i(i(i(i(i(x,i(y,y)),z),u),v),i(i(z,u),v))).331 (heat=2) [hyper,53,329,54] P(i(i(x,y),i(i(y,z),i(x,z)))).354 [hyper,7,331,287,132] $ANS(step_allLuka_1_2_3).------------ end of proof -------------References[McCune1989] McCune, W., OTTER: 1.0 users' guide, Tech. Report ANL-88/44, ArgonneNational Laboratory, Argonne, IL, January 1989.[Rose1958] Rose, A., and Rosser, J. B., \Fragments of many-valued statement calculi",Trans. AMS 87 (1958) 1{53.[Vero�1996] Vero�, R., \Using hints to increase the e�ectiveness of an automated reasoning24



program: Case studies", J. Automated Reasoning16, no. 3 (1996) 223{239.[Wos1996] Wos, L., The Automation of Reasoning: An Experimenter's Notebook with OT-TER Tutorial, Academic Press, New York, 1996.[Wos1998] Wos, L., \Automating the search for elegant proofs", J. Automated Reasoning21, no. 2 (1998) 135{175.[Wos1999a] Wos, L., with Pieper, G., A Fascinating Country in the World of Computing:Your Guide to Automated Reasoning, World Scienti�c, 1999.[Wos1999b] Wos, L., with Pieper, G., \The hot list strategy", J. Automated Reasoning 22,no. 1 (1999) 1{44.[Wos1999c]Wos, L., \Lemma inclusion versus lemma adjunction", AAR Newsletter 44, July1999 (http://www.mcs.anl.gov/AAR/issuejuly99/index.html).
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