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Keywords: automated reasoning, missing proofs, term-avoidance proofs1 Challenging Problems, Unaided Researchers, and Auto-mated Reasoning ProgramsKnown to many, and especially to researchers, is the continual seeking by mathematiciansand logicians of sound and rigorous proofs. Although success is frequently the result, some-times the quarry eludes even great minds such as Hilbert and Ackermann, Tarski andBernays, Lukasiewicz, and Rose and Rosser. Indeed, rather than the type of axiomaticproof in focus in this article, often such masters have recourse to equality, to substitution,and to other means. In such cases, one cannot say whether the desired axiomatic proof wasalways in hand. When that occurs, a challenging problem is presented|a desired proof ismissing.Less well known, but still vital, is access to sound proofs in the context of veri�cation,both of chips and circuits and of computer programs. Indeed, with the focus on chipsfree of bugs, such �rms as Intel and AMD currently (here in the year 2000) are mostconcerned with proofs of various theorems. The consideration of models is often foundlacking, which explains why such �rms are now seriously interested in theorem proving.When an appropriate proof is not in hand, again a desired proof is missing.Proofs come in many forms: constructive, forward, backward, direct, indirect, by con-tradiction, �rst-order, higher-order, and, preferred by many among the other types, ax-iomatic. In addition to their aesthetically pleasing properties, axiomatic proofs o�er variousadvantages, not the least of which is their clarity. We cannot say with certainty what wasthe primary appeal of such proofs for Hilbert, known to some as Mr. Axiom. However,where automated reasoning is involved, the very nature of axiomatic proofs makes themparticularly attractive, especially when one or more designated inference rules are to beused. (In this article, we are not concerned with disproving some conjecture by �nding anappropriate model; such a disproof can, of course, be considered a proof, a proof that aresult does not hold.) Therefore, when the hunt for a missing proof begins in earnest andan automated reasoning program (such as William McCune's OTTER [McCune1989]) ispart of the team, the target is indeed an axiomatic proof.In contrast to the unaided researcher (who has knowledge, experience, and intuition todraw upon), the mere decision to seek an axiomatic proof that is missing is in general of littleuse to a reasoning program; the problem is too broad. Indeed, in place of what a researcherbrings to a problem, the program must be given some guidelines to direct its attack, andthe researcher must select the methodology to be employed. (Su�cient for �nding variousproofs is OTTER's autonomous mode, which removes much of the decision making fromthe researcher; however, here we are concerned with the challenge of �nding proofs that2



have been missing for decades and with speci�c guidelines and diverse methodologies thatled to diverse successes.)The choice of the approach aimed at �nding a missing proof is often sharply in
uencedby the type of missing proof. In other words, the problem of seeking a missing proof isreplaced by a subproblem, in part delineated by the type of missing proof being sought. Inthis article we focus on various classes of missing proof (given in Section 2), and we discusshow some of the classes naturally suggest a feasible approach to take.The most familiar class of missing proofs is encountered when studying an open ques-tion o�ered by some mathematician or logician. Such was the case for more than six decadeswhere the question concerned the possibility that every Robbins algebra is a Boolean alge-bra. When that question was answered in the a�rmative by McCune [McCune1997] usingone of his reasoning programs, EQP, it marked a monumental success for automated rea-soning. For a second example, we turn to Epstein's recent book [Epstein1994, chapter 2],where he o�ers two open questions concerning the (in)dependence of two sets of axiomsfor classical propositional logic. Both of these open questions have been answered usingOTTER (unpublished). Indeed, several other open questions in Epstein's book have beenpartially resolved using OTTER as well. To prove that no dependency exists, one can sup-ply appropriate models. On the other hand, to show that one of the axioms is dependent onthe remaining, one can supply a proof that completes with the deduction of the dependentmember. OTTER serves well in either capacity. As long as a question is open, a proof ismissing. (For additional open questions to consider, see Chapter 11 of [Wos1999].)In addition to the area focusing on open questions, proofs may be missing for a varietyof other reasons. In the worst case, the purported theorem may not, in fact, be a theorem.Of a sharply di�erent nature and a case less highlighted than that for open questions, a proofmay exist based on metaargument, but the more preferred axiomatic proof remains missing,one, say, based on the use of the inference rule condensed detachment. (The proofs we featurehere all rely on that inference rule alone.) Then there is the case in which the proof maybe incomplete; indeed, such is often the case with proofs supplied by even well-respectedresearchers. Or, although various proofs exist, each may be considered unsatisfactory forone or more reasons. For example, one may desire a proof that totally avoids the use ofsome type of term or that is shorter than all of those o�ered by the literature.In this article, we show how missing proofs of diverse types (including those alreadycited) can be|and indeed have been|found. The key is reliance on McCune's automatedreasoning programOTTER. The proofs provided by OTTER have two important properties.First, the proofs are free of error. In mathematics and in logic, ideally, no doubt must existconcerning the accuracy of a proof; indeed, no question must remain concerning the assertionthat a given result has in fact been proved. Fortunately, OTTER's proofs are 
awless, atleast those many we have thoroughly proof checked. Second, the proofs o�ered by OTTERcan be completely veri�ed by using one of its features, set(build proof object), followed by3



the use of Ivy (written by McCune in the Boyer-Moore logic). In particular, the proofs canbe appropriately detailed (including history and term-substitution for variables) by usingthe option set(build proof object).This article shows that we have had considerable success in using OTTER to �ndproofs that had either eluded the great minds of some of the masters in logic, or at leasthad not been reported by them in the literature. In large part, our success rests with thereliance on diverse and powerful strategies this program o�ers and on the use of variousmethodologies. Although clearly not an algorithm|almost never for deep problems doesan algorithm exist|the methodologies we o�er can easily be applied by other researchers.Clearly, the �nding of missing proofs is of substantial interest to mathematicians andlogicians. Less obvious is the fact that proofs are of substantial interest to other disciplines,such as circuit design and computer programming. Indeed, an unexpectedly elegant con-structive proof can point the way to the design of a far more e�cient circuit or presentcomputer code far more e�ective than was already in hand. For example, a proof thatavoids the use of some type of term may provide the key to avoiding the use of an expensivecomponent or the key to sharply reducing the CPU time for a subroutine.To set the stage, we �rst brie
y discuss some of the types of missing proof OTTER�nds (in Section 2.1{2.12). We then (in Sections 3 and 4) provide much detail concerningstrategy and methodology, give actual successes, and focus on (what we believe are) startlingresults. We also include well-de�ned challenges for researchers to address.As this article proceeds, the sharp di�erence between researcher and reasoning programwill become evident, as will the power o�ered when researcher and program perform asa team. The unaided researcher attempting to �nd a missing proof in general has thelikelihood of success increased if few, if any, constraints are imposed. In sharp contrast,when an automated reasoning program is part of the research team, the imposition ofconstraints often adds to the likelihood of �nding a missing proof. Indeed, although perhapscounterintuitive because of (apparently) replacing one goal by a goal that is harder to reach,an added requirement can be the key to success, a requirement such as, say, that the sought-after proof be free of terms of the form n(n(t)) for any term t, where the function n denotesnegation. In other words, more freedom is good for the unaided researcher, and less freedomis good for an automated reasoning program. Here we show how this aphorism is appliedin the context of classifying types of missing proof and then �nding such proofs.2 Missing Proofs of Many TypesAn e�ective approach to attacking a challenging problem presenting wide scope is to replacethe general problem by a set of subproblems. By doing so, often a much higher probabilityexists for increasing understanding, adding to insight, and �nding a means to solve the4



basic problem. In this section, we adopt such an approach. Indeed, rather than focusingon speci�c properties and studying the general problem of �nding proofs missing from theliterature, we instead study a set of subproblems, where each subproblem is concerned witha type of missing proof.2.1 Term-Avoidance ProofsA glance at the literature of formal logic shows that, when negation (denoted by n) is part ofthe theory, terms of the form n(n(t)) for some term t are omnipresent in the various proofsthat are o�ered. Is it correct to assume that such double-negation terms are in generalindispensable? Put a bit more formally, if T of the form P implies Q is a theorem such thatall known proofs of T rely on the use of double-negation, and if both P and Q are free ofdouble negation terms, does there exist a proof of T none of whose deduced steps contains adouble-negation term? If so, a type of missing proof can be sought, a proof in the class thatcan be termed term avoidance. The preceding suggests a deep question in logic that meritsconsideration. Under what conditions, satis�ed by P , Q, and the logical system L (thatis relevant to the theorem under study) is there guaranteed to exist a double-negation-freeproof of Q from P in L, where some of the members of P focus on negation and where allof the members of P participate in the deduction of Q?A second example of a term-avoidance proof is that in which no deduced step containsas a subterm a term of the form i(t; t) for any term t, where i denotes implication.OTTER o�ers via the procedure demodulation and the subtautology strategy just whatis needed to seek, respectively, either example of a term-avoidance proof; see Section 3.1for further discussion and for a set of the appropriate demodulators. Where the parallelfor circuit design is the seeking of a circuit in which no logical or gates are used, OTTERwould thus prove useful. A similar observation holds for program synthesis.If one takes a much harder look at the literature, one can get the impression that termavoidance in the context of double negation is out of reach, especially for deep theorems. Inthis article, we focus on proofs that are free of double negation, and we conjecture that oursuccesses (in that regard) may refute an implicit view shared by various logicians concerninghow proofs must proceed. In other words, we refute the implicit conjecture (if such is thecase) that the reason double-negation-free proofs are frequently missing is that they cannotbe completed, that they do not exist.For the key example that refutes the cited implicit conjecture, we focus heavily inthis article on a theorem from in�nite-valued (or many-valued) sentential calculus. (Manyother examples, as well as numerous proofs that are new, will be o�ered in the plannedbook Automated Reasoning and Finding Missing and Elegant Proofs in Formal Logic.) Thespeci�c theorem of interest focuses on the Lukasiewicz �ve-axiom system for this area of5



logic [Lukasiewicz1970]. Intriguing and perhaps most unexpected, not all �ve axioms arerequired; indeed, Meredith proves [Meredith1958] that the axiom we call MV 5 is dependenton the other four.The literature suggests that, to prove the cited dependence, one must rely on doublenegation. For example, Meredith's (in e�ect) 37-step proof (concerning axiom dependence)contains two steps with a term of the form n(n(t)) for some term t: (We may have beengenerous in citing the Meredith proof to be of length 37; indeed, he relies on various lemmas,proved by Rose and Rosser [Rose1958], and we have deliberately assumed that elegant proofsof such lemmas were in hand, which may not have been the case.) Later in this article, weo�er a proof that is not only shorter than Meredith's, but that is also free of double negationand that depends on only one of the three key lemmas his proof relies upon. Whether thatlemma, denoted by (2.22), is indispensable for a proof of MV 5 from MV 1 through MV 4is currently unknown to us; it may indeed be an open question.Incidentally, the fact that just two of Meredith's proof steps involve double negationdoes not imply that their removal is trivial. For a numerically more impressive result, theoriginal (in e�ect) 41-step proof showing that Meredith's single axiom axiomatizes all oftwo-valued sentential calculus contains 17 steps relying on double negation. In contrast,the use of OTTER, its strategies, and various methodologies yielded a proof totally free ofdouble negation.The proof OTTER found|with the term-avoidance property|establishing MV 5 tobe dependent is of impressively small length and formula complexity. Its length is 32(applications of condensed detachment), and its formula complexity is 17, meaning thatthe longest formula in the proof consists of 17 symbols (not counting predicate symbol,parentheses, and commas). By way of comparison, the Meredith proof has length 37 andformula complexity 23. The levels of the 32-step and 37-step proofs are, respectively, 20 and19, where the level measures the depth of the proof tree. Later in this article, we providesome clues about how the 32-step proof was obtained; far more detail is provided in thealready-cited planned book.2.2 Lemma-Avoidance ProofsIn contrast to the avoidance of some type of term (such as double negation), one might wishto avoid the use of entire formulas or equations. The analogue for programming might bethat of avoiding the use of an entire subroutine. If one examines the appropriate literature,for example, that of Rose and Rosser and that of Meredith, one gains the impression thatcertain lemmas play a key role, that such lemmas may in fact be indispensable. If one couldshow that such lemmas are in fact not needed, then one would have an illustration of whatmight be termed a lemma-avoidance proof. Just as missing term-avoidance proofs can besought, so also can one seek missing proofs of the lemma-avoidance type. Indeed, for a �ne6



example of such lemma-avoidance proofs, one can seek a circle of pure proofs, say, in thecontext of a set of equivalent properties. By way of illustration, there exist four de�ningequations for Moufang loops, each one of which is su�cient, and all four are equivalent. Acircle of pure proofs in this context [Wos1996] consists of four proofs for some ordering ofthe four equations (1 through 4) such that the �rst proof shows that 1 implies 2 withoutreliance on 3 or 4, the second shows that 2 implies 3 without reliance on 1 or 4, and similarlyfor the remaining two proofs.Such proofs, in the case we study, were missing implicitly, so it appears. Indeed, theliterature that we searched repeatedly relies on certain lemmas (such as (2.22), (3.5), and(3.51) [Rose1958].) Lemma-avoidance proofs are also in focus in this article, and we showhow (in some interesting cases) an automated reasoning program was used to complete suchproofs. Again, one of the keys is demodulation, but the weighting strategy can also be used.Lemma-avoidance proofs may serve well the circuit designer or the computer programmer.2.3 Metaargument ProofsHilbert strongly advocated axiomatic proofs. In his book with Ackermann [Hilbert1950],one �nds various proofs in which condensed detachment plays the role of inference rule.However, in that book, two associative laws for the (de�ned) conjunction and disjunctionconnectives of two-valued sentential logic are proved, neither via a purely axiomatic ap-proach. Instead, metaarguments are used. In particular, metatheorems concerning thesubstitutivity of various classes of formulas were proved, and then equality reasoning wasused (in addition to the use of detachment). Therefore, we chose to have OTTER assist usin �nding the desired axiomatic proofs.Browsing in the literature sometimes leads to the discovery that many axiomatic proofsare explicitly missing. For example, in [Rose1958], Rose and Rosser (as is true of Hilbertand Ackermann) occasionally resort to metaarguments rather than the explicit use of theaxioms. More generally, a paper (such as that cited) can contain proofs that depend solelyon condensed detachment, but also contain proofs that depend on that inference rule coupledwith metaarguments or depend solely on metaarguments. Far more satisfying, depending onthe area of study, are axiomatic proofs that rely on one or more speci�c inference rules. Forexample, proofs that rely on condensed detachment alone are usually easier to follow andoften far more informative (although, more than occasionally, more di�cult to complete).In this article, we focus on certain laws that play a crucial role in various areas of logic,lemmas whose proof is via metaargument, implying that a condensed detachment proof waspossibly unknown and perhaps absent from the literature. We show how OTTER was usedto produce the preferred proof. Among the more satisfying, we give such proofs for twocited associative laws of Hilbert and Ackermann. Access to such condensed-detachmentproofs may be of especial interest to researchers in logic who are familiar with the fact that,7



until now, such proofs have been missing.An excellent example of what we have in mind is Wajsberg's proof by inductive metaar-gument [Wajsberg1977] of a generalization of the Tarski-Bernays axioms for the implica-tional fragment for two-valued sentential calculus. In contrast, we have, because of OTTER,an axiomatic proof relying solely on condensed detachment. One of its charming propertiesis its length, merely twelve applications of condensed detachment.2.4 More General ProofsOne of the powerful features of the typical automated reasoning program is its emphasis ongenerality. The procedure uni�cation (which underlies its reasoning and other procedures)seeks the most general substitution for variables to make two expressions share a commondomain. Also promoting generality is the use of subsumption, a procedure that discards in-stances of retained information. Because of this generality, the proofs it yields often containsteps that are more general, and often more powerful, than found in the corresponding proofin the literature. Indeed, depending on the signi�cance of the step, a more general stepmay correspond to a more general lemma that might have been unknown; see the next sub-section. By emphasizing generality of deductions, an automated reasoning program greatlyenhances its performance.When all of the proofs of some speci�c lemma or theorem that are known fail to containsuch more-general steps, but such a proof is completable, then, implicitly, a proof is missing.We give examples of this occurrence and note its relevance to the next subsection.2.5 More General Lemmas, Laws, and TheoremsBecause of the generality of the basic mechanism (uni�cation) relied upon by an automatedreasoning program (fully detailed in the book [Wos1999]), OTTER occasionally proves morethan is expected. In particular, sometimes when the assignment is to prove a speci�c lemma,OTTER proves a more powerful result. If that result cannot be found in the literature,another type of missing proof is encountered.In that regard, we present our attack on an associative law, proved by Hilbert andAckermann, and show how our program proved this law. However, rather than simply�nding the desired proof, OTTER proved a more general result. We cannot say at thistime (here in the year 2000) whether this more general result is signi�cant in the contextof logic. 8



2.6 Proofs of Unsatisfying Formula ComplexityWhen a paper contains extremely complex formulas or equations, warranted is the conclu-sion that a type of proof may be missing. That type is a proof with (perhaps sharply)reduced formula complexity, one that relies on steps that are less complex than o�ered bythe proof in hand.For our example, we turn to Meredith [Meredith1953]. Meredith presents a shortsingle axiom for the (C,O) representation of two-valued sentential calculus, and he reportsa completeness proof. We present (at the close of Section 4) a proof that is considerablyless complex|in many quanti�able respects|than the proof he reports. In particular, ourOTTER proof illustrates how a reasoning program can be used to �nd proofs of lesserformula complexity.2.7 Proofs of Unsatisfying LengthWhen one encounters a proof of moderate to great length, the natural suspicion is that afar shorter proof may exist, that (perhaps) a proof is missing. The question to be answeredconcerns how to �nd shorter proofs. In this article, we give various methods for reachingthat objective. We also give some (to us) startling examples of far shorter proofs thanfound in the literature. (The �nding of shorter proofs sometimes directly correlates to the�nding of a simpler circuit or more e�ective bit of computer code, which suggests that thecorresponding methodology may be of interest in either context.)2.8 Omitted ProofsAuthors often omit proofs, for a variety of reasons. Sometimes, the proof is consideredobvious; sometimes, the reason for the omission is obscure to the reader. Of course theproof is missing explicitly, missing because the author preferred not to include it.In any case, one should not conclude (for such missing proofs) that the theorem inquestion is of little interest or lacks depth. Quite the contrary, as one �nds by browsingin the literature of logic [Lukasiewic1970,Meredith1963,Prior1960,Wajsberg1977] and in theliterature of mathematics, sometimes with a statement to the e�ect that various earlierlemmas o�er most of what is needed.In this article, we focus on this class of missing proofs, give examples of proofs wehave found (where the proof was omitted), and supply the methodology that was usedto �ll the void. In that regard, a theorem focusing on a single axiom (of Lukasiewicz)for all of two-valued sentential calculus provides a �ne example. As part of this speci�ctopic, we also discuss completing proofs that are far from complete, that contain gaps9



in their presentation. A theorem of Lukasiewicz (in which he derives the Tarski-Bernayssystem from the shortest possible single axiom for the implicational fragment of two-valuedsentential calculus) provides an excellent example, one in which steps relying on condenseddetachment are missing [Lukasiewicz1970].2.9 Valid but Unproved ResultsIn various areas of logic, the establishment of validity (truth in all models) for some resultimplies that the result is provable. However, without an explicit proof, one is often left withdisappointment and, sometimes, curiosity about the missing proof.Such is the case for two distributive laws of in�nite-valued logic that we study. Eachhas been shown to be valid, but for neither did a proof exist|or so it was the case until weattacked the two theorems with OTTER.2.10 Distinct-Variable ComplexityAnother measure of the complexity of a proof is that focusing on the number of distinctvariables required to complete the proof. If a proof is supplied by a master in the �eld,one might naturally conjecture that its distinct-variable complexity is the best that can befound. If the conjecture has not been proved, then perhaps a type of missing proof has beenencountered.In this article, we give examples of such missing proofs, proofs that, in the context ofdistinct variables, are better than found in the literature.2.11 Level ComplexityA still di�erent measure of complexity is that concerned with the level of a proof. The levelof a proof step is 0 if the step is taken from the input (from the hypotheses) and is n greaterthan 0 when one of its parents has level n� 1. The level of a proof is the maximum of thelevels of its proof steps. The unaided researcher naturally and understandably gravitatestoward consideration of lower levels in preference to higher. However, occasionally, theproofs of a given theorem o�ered by the literature all have a level higher than need be.When such is the case, or suspected to be the case, another type of missing proof has beenidenti�ed.In this article, we discuss means that can be used to (sometimes) seek proofs of minimallevel. 10



2.12 Proofs Not Fully AutomatedThe type of missing proof in focus in this section is missing because of considerationsgermane only to automated reasoning. Nevertheless, such missing proofs merit study. Inparticular, when the only proofs of a given theorem that have been completed by a reasoningprogram required guidance from the researcher, then a fully automated proof is missing.The pursuit of such a missing proof is merited because, occasionally, the result is theformulation of a new and useful methodology for �nding missing proofs of other types.Sometimes, directly or indirectly, the hunt yields a new proof of the theorem in focus. Wehave indeed experienced this phenomenon. For example, Deepak Kapur used the Meredithproof of his single axiom (for two-valued sentential calculus) to �nd a six-variable proof,and we in turn used his proof to �nd an even shorter six-variable proof.3 Strategy and Methodology for Finding Missing ProofsRather than a narrative even vaguely resembling a historical account, here we presentapproaches that o�er a high probability of reaching the objective. We in fact apply theseapproaches in our current research, relying on OTTER's arsenal of weapons. We shall, inthis section, discuss the classes of missing proof in the order found in the preceding section,beginning with term-avoidance proofs that were missing and found with the use of OTTER.Note that common to our attack on various classes of missing proof is an emphasis on aninstance of term avoidance, namely, the avoidance of double-negation terms, those of theform n(n(t)) for some term t, where the function n denotes logical negation. This move,though counterintuitive, is just the type of action that bene�ts a reasoning program butthat (most likely) hinders an unaided researcher. Brie
y (for the curious), we conjecturethat the bene�t derives from the side e�ect of increasing the density of useful conclusionsamong the total that are retained.For us, the seeking of a missing proof di�ers little from an attempt to answer an openquestion. For example, if we �nd a proof shorter than any that had been known, we treatthe result in the spirit that we do when answering an open question that was so classi�edin the literature.. When we are unable to show that no shorter proof exists than the newproof we have found, (in e�ect) a new open question has been posed. Of course, someopen questions are far more signi�cant than others and are far more di�cult to answer.Nevertheless, in general, open questions merit study both for the possibility of �nding ananswer and for the possibility that the e�ort may yield an advance for the automation oflogical reasoning. The accrual of such advances has obvious practical consequences, notthe least of which is an increase in the arsenal of weapons for attacking problems frommathematics, logic, circuit design, program veri�cation, and other disciplines that rely on
awless reasoning. 11



Regarding the various strategies and methodologies pertinent to our successes, thefollowing reminders, comments, and examples nicely set the stage and may provide someuseful hints for other researchers. First, for the set of support strategy, we typically placethe axiom or axioms of the logic under study in the corresponding list and place the clausefor condensed detachment in list(usable). After all, typically the theorem under attack inthe studies reported here o�ers no special hypothesis, and its denial is best used only todetect proof completion.Second, regarding the hot list strategy (whose use enables the program to visit andrevisit certain chosen items repeatedly before resuming the main attack), we typically placein the corresponding list the axiom or axioms and the clause for condensed detachment.When the research concerns a single axiom, we frequently assign the heat parameter a valueof 6 or greater, choosing to do so to cause the program to heavily emphasize and recursively(to the level of 6) visit the single axiom. The use of the hot list strategy can, unfortunately,hinder as well as aid the discovery of a sought-after proof. We currently can o�er littleevidence as to which will occur.Third, in the context of the resonance strategy (whose use provides an opportunity forthe researcher to suggest formulas or equations that, by their respective patterns, direct theprogram's attack), we give two illustrations taken from our studies. In the �rst, where noproof was available (as was the case with the Lukasiewicz 23-letter single axiom), we foundpro�table for the choice of resonators (patterns to direct the search) formulas correspondingto lemmas (theses) that Lukasiewicz proved in his various publications. If such are not inhand, we recommend for resonators the correspondents of lemmas from a study somewhatrelated to that from which the theorem under consideration is taken. For our attemptto �nd the missing proof for the 23-letter single axiom, we included 68 resonators, thosecorresponding to theses 4 through 71 (cited by Lukasiewicz). In contrast and as a secondillustration, we focus on our study of associativity in in�nite-valued sentential calculus. Twoformulas were to be deduced, whose respective negations are given with the following twoclauses.-P(i(i(i(a,i(i(b,c),c)),i(i(b,c),c)),i(i(i(i(a,b),b),c),c))).-P(i(i(i(i(i(a,b),b),c),c),i(i(a,i(i(b,c),c)),i(i(b,c),c)))).The second target was reached in less than 6 CPU-hours of OTTER's time, on a Solarisworkstation (Ultra-2 Enterprise Server). The �rst target, however, was not reached in morethan 10 CPU-hours, with the exhaustion of 240 megabytes of memory. No resonators wereused in either attempt. In a second try at reaching the �rst target, resonators were adjoined,those corresponding to the proof steps that OTTER supplied in reaching the second target,and success was ours (in less than 3 CPU-minutes).12



3.1 Seeking Term-Avoidance ProofsIn addition to reliance on the set of support strategy, the hot list strategy, the resonancestrategy, and other strategies, the seeking of term-avoidance proofs emphasizes (in ourattack) the use of demodulation and, rarely, that of weighting. That emphasis is explainedby the fact that, although we know of no way to avoid the deduction of conclusions withsome type of unwanted term, OTTER does o�er the means for avoiding their retention.Indeed, the approach we take for �nding term-avoidance proofs is simply that of discardingconclusions that are deemed undesirable. Depending on the type of term to be avoided,we choose a subset of the following demodulators, with possible modi�cations based on thenature of the problem to be solved.% (n(n(n(x))) = junk).(n(n(x)) = junk).% (i(i(x,x),y) = junk).% (i(y,i(x,x)) = junk).% (i(n(i(x,x)),y) = junk).% (i(y,n(i(x,x))) = junk).(i(x,junk) = junk).(i(junk,x) = junk).(n(junk) = junk).(P(junk) = $T).The use of the appropriate demodulators immediately enables the program to discardconclusions that contain an unwanted term. As an important side e�ect, (we are fairlycertain that) the density of signi�cant conclusions within the total set that are retained issharply increased.3.2 Seeking Lemma-Avoidance ProofsWhen the goal is to avoid the use of some given lemma to show that a missing proof can infact be found, a proof in which the lemma is not needed, demodulation again is our choice.For example, if we wish to avoid a lemma, such as that called (3.51) by Rose and Rosser,we include the following demodulator, as well as the appropriate members of the set givenin the preceding section.(P(i(i(i(x,y),i(x,z)),i(i(y,x),i(y,z)))) = junk).If OTTER deduces the unwanted lemma, the corresponding demodulator immediatelyrewrites it to \junk", and almost immediately (with the aid of other demodulators), it is13



purged. Because of the nature of demodulation, not only is the unwanted lemma avoided,but also avoided are instances of it (obtainable by instantiation).3.3 Replacing Metaargument ProofsProofs based on metaargument or metatheory are for us and various others before us (suchas Hilbert) not the most satisfying. Rather, axiomatic proofs are the choice. The verynature of automated reasoning makes its use a �ne weapon for seeking such proofs; indeed,proofs based on metaargument are often out of reach of a reasoning program of the type infocus.Therefore, when the proof that is missing is of the axiomatic type, our approach is (atthe simplest) to submit the corresponding question to OTTER. We in general do not consultthe proof based on metaargument, if such is available, relying instead on the fact that areasoning program of the type under discussion necessarily seeks axiomatic proofs. Moreprecisely, we heavily rely on various strategies o�ered by this program, prominent amongwhich are the set of support strategy, the resonance strategy, and the hot list strategy.3.4 Seeking More General ProofsMathematics and logic often, but not always, prefer proofs that rely on most general steps,some that are classed as lemmas. Although hardly obvious, the reason that generality is notalways preferred rests with the ease of understanding and the (in some cases) unnaturalnessof the more general step. If one browses in the literature, one can learn that the approachtaken by an unaided researcher often di�ers sharply from that taken by an automatedreasoning program|the latter does not rely on, for example, instantiation.Further, the nature of uni�cation (which is at the heart of so much of automatedreasoning), as well as the nature of subsumption, emphasizes generality. In fact, perhapsamusing and sometimes startling, an attempt at what might be thought of as a straight-forward proofchecking assignment often fails because one or more of the steps of the proofunder scrutiny is too speci�c. In place of the too-speci�c step, the program deduces amore general conclusion due to the nature of uni�cation. When such happens (one or moretimes), rather than a duplication of the proof in hand, a missing proof can be found, onethat relies on more general conclusions.3.5 Seeking More General ResultsThe �nding of a more general result|law, lemma, or theorem|than that o�ered by theliterature is often most rewarding. Such an occurrence can result from accident or from14



a deliberate attempt to do so. The use of an automated reasoning program as a memberof the research team increases the likelihood of such a discovery, in part because of theprogram's emphasis (through reliance on uni�cation) on generality.We in fact did �nd a generalization of one half of the associativity law in in�nite-valuedsentential calculus by accident. The discovery was made indirectly because of our seeking ofa shorter proof than we had in hand. Our fortune naturally led us to the deliberate searchfor the corresponding generalization of the other half of associativity, which proved far moredi�cult. When we succeeded, we had a pleasing examples of both occurrences of the use ofa reasoning program to �nd a more general result, one by accident, one by intention.We found the more general form of the other half of associativity (which we then proveddoes hold) simply by inspection. In particular, we compared the more general form of thesecond half with the original form and posited its correspondent for the �rst half.3.6 Seeking Proofs of Lesser Formula-Length ComplexityThe measure of complexity in this section focuses on the number of symbols (excludingparentheses and commas) that occur in the deduced formulas (or equations) of the proofunder discussion. If the goal is that of �nding a missing proof whose complexity is lessthan that of the proofs in hand, where the concern is the longest deduced step, OTTERo�ers precisely what is needed. Speci�cally, one can instruct the program to \weigh" eachdeduced conclusion and discard those that exceed a user-assigned value. The weighing canbe solely in terms of symbol count, or it can be in terms of weight templates supplied bythe researcher. The researcher can assign a value to max weight to prevent the retentionof any new conclusions whose weight exceeds the max weight, and the max weight can bechosen to be strictly less than that of any proof known to the researcher.Failure to �nd such a missing proof does not preclude its existence. Various reasonsaccount for this misfortune, including the fact that a reduction in formula complexity mayforce the newer proof to be much longer, which may result in the needed search to beimpractical with respect to CPU time.3.7 Seeking Shorter ProofsThe path to �nding shorter proofs than those available is far more complex than it might ap-pear. Indeed, although OTTER o�ers a mechanism (ancestor subsumption) that comparesderivation paths that end with the same conclusion and prefers the copy of the conclusionthat is reached by the strictly shorter path, its use (not obviously) does not guarantee thatshorter proofs will be found. The pitfall and subtlety rest with the simple fact that theshorter proof of an intermediate step may in fact, when relied upon, lead to a longer proof15



of the desired �nal result. Brie
y, the explanation is that often the steps of the shortersubproof are of little or no use later in the total proof. In other words, shorter subproofs donot necessarily a shorter total proof make. Nevertheless, the use of ancestor subsumptionis one of the arsenal of weapons we typically use when seeking shorter proofs.Those who hazard that a breadth-�rst search will solve the problem should be warnedthat such is not practical. If such a search is made without the use of subsumption to discardtypes of redundant information, the program will ordinarily drown in new conclusions. Ifsubsumption is employed (as we always do, at least in regard to forward subsumption), thena shorter proof can be missed with a breadth-�rst search.We have developed a rather complicated methodology (technically, a set of methodolo-gies) for �nding shorter proofs, one in which demodulation, the resonance strategy, and thehot list strategy, among other mechanisms, are relied upon.By way of the smallest taste of one of the methodologies, note that we take the stepsof a proof in hand and use their correspondents as resonators. With demodulation, we thenblock the use of each, one step at a time. This action forces the program to seek a proofdi�erent from that which is known. When we reach a cul de sac, where no shorter proofis yielded, we often relax the constraints, relying on a more generous value for max weightand for max distinct vars and even avoid the use of those demodulators that led to ourcurrent best proof.3.8 Seeking Omitted ProofsWhen (in a paper or book) a result of particular signi�cance is announced without proof,the problem of �nding the missing proof is especially appealing. The appeal rests in partwith the contrast with other types of missing proof, for example, with the class concernedwith �nding a shorter proof. Indeed, when asked to �nd, say, a shorter proof, one canuse the steps of a known proof as resonators, as patterns to guide the program's search.This aspect applies to many other classes of missing proof. However, when the proof to befound is such that no clue exists, for example, regarding the target, which axioms are to beused, and which lemmas merit attention, the resulting total darkness sharply increases thedi�culty but also the intrigue.In Section 4 of an earlier paper in this special issue [Wos2000], a methodology waspresented for seeking hard-to-�nd proofs. Although the cited methodology was developedto address the type of missing proof discussed in Section 2.12 of this article, it has proveduseful in the context in focus in this section. Among its key aspects are the use of theresonance strategy|even though no steps are available to be borrowed from an existingproof|use of lemma adjunction, the set of support strategy, and the hot list strategy. Forresonators, we sometimes simply use the correspondents of the proof of some distantly16



related result or the correspondents of lemmas proved by the author in question.3.9 Replacing Proofs Based on a Validity ArgumentThe knowledge that a result holds because of establishing it to be valid (to be true in allmodels) in general o�ers no insight concerning a possible axiomatic proof and not muchsatisfaction. If a validity argument is all there is, then again (as in the preceding section)no clue exists concerning how to proceed to �nd the missing proof. However, as beautifullydemonstrated in the paper [Harris2000] found in this special issue, a program such asOTTER can provide invaluable assistance.By way of a minute taste of which of OTTER's features proved key, note that paramod-ulation (an inference rule for building in equality-oriented reasoning) was heavily reliedupon. (As touched on in Section 1, equality-based metaarguments are often relied uponrather than relying solely on condensed detachment.) Since Harris and Fitelson intendedto produce a proof based solely on condensed detachment, a means was required to convertparamodulation proofs. In that regard, Robert Vero� and William McCune each made vitalcontributions.3.10 Seeking Proofs of Lesser Distinct-Variable ComplexityFor each proof P in hand of a given result, let k(P) be the greatest number of distinctvariables in any of its deduced steps. Among the k(P), let k be the maximum value. Ifone decides to seek a proof (that is missing) of the given result such that the maximumnumber of distinct variables in any deduced step is strictly less than k, (similar to Section3.6) OTTER o�ers precisely what is needed to commence the attack.With the following command, the program can be instructed to purge any new conclu-sion with, say, more than four distinct variables.assign(max_distinct_vars,4).Again, as in Section 3.6, an unaided researcher could do the same. However, a program suchas OTTER does not su�er fatigue or annoyance at making deductions that are promptlydiscarded. Neither the researcher in general nor the program can look ahead and simplyavoid making such unwanted deductions. 17



3.11 Seeking Proofs of Lesser Level ComplexityWhere (by de�nition) the level of the clause C is 0 when c is an input clause, and, when Cis deduced, the level of C is one greater than the maximum of the levels of the clauses towhich the inference rule is applied to yield C, OTTER (with the following command) canbe instructed to deduce all of the clauses at level 1,2, 3, and the like and in that order.set (sos_queue).However, from a practical viewpoint, an unrestricted use of the given command is unwisefor the size of the levels grows far too rapidly. Indeed, among the restrictions, the use ofsubsumption is virtually required if the program is to be given a chance at reaching theassigned goal. Nevertheless, if the proof that may be missing is one of strictly smaller levelthan any in hand, often the proof can be found.3.12 Seeking Fully Automated ProofsAt one end of the spectrum is the activity of proofchecking, so vital to many areas ofveri�cation. Rather closely related is the activity of proof completion, for example, the casein which an outline of the proof is in hand or many of the steps of a known proof are inhand. Farther removed is the case in which, although proofs are in hand, no proof has beenfound by a reasoning program without reliance on a portion of one of the proofs. Indeed,if one has a reasoning program complete a proof by giving the program some or many ofthe steps of a known proof, then (for us) the resulting proof is not fully automated. On theother hand, if one includes resonators perhaps corresponding to the steps of a related proofor corresponding to lemmas or items considered to be of some interest in the underlyingtheory, and if the program then �nds a proof, the game has been played fairly in the sensethat the resulting proof is fully automated. For the class of fully automated proofs, wehave in mind that one or more proofs already are in hand and, usually, at least one of themis axiomatic. Although we are not permitted to rely on a portion of a proof in hand, weare permitted to rely on the knowledge of the target of the theorem or, perhaps, on someproperty such as an emphasis on double negation. The task of full atomation can indeedbe a challenging one, but far less di�cult in general than that in which no target is evenknown nor is it known that an axiomatic proof has ever been seen.A methodology now exists for �nding the type of missing proof in focus in this section;see [Wos2000]. The value of such a methodology is by no means limited to this class ofmissing proof, as discussed in the cited paper. The corresponding research correctly suggeststhat, when one is able (for example) to have a reasoning program proofcheck a given resultand is interested in bigger game, namely, that of �nding a fully automated proof, far morethan the immediate objective may result. Indeed, piquant to us, the proof that is found18



via total automation is often quite unlike any that one �nds in the literature, yet anotherbonus in some cases.4 Successes for the Various Classes of Missing ProofIn contrast to Sections 2 and 3 in which the various classes were discussed each in a separatesubsection, in this section we intermingle the classes. In fact, we sometimes give a successthat is relevant to more than one class.A rapid review of our successes immediately shows how much e�ort we have devoted tothe class of term-avoidance proofs. That emphasis was no doubt triggered by the success afew years ago in �nding a proof in in�nite-valued sentential calculus in which the dependenceof one of Lukasiewicz's �ve axioms on the other for was proved without requiring the use ofdouble negation. Indeed, except for the proof of a distributive law for in�nite-valued logicthat Rose and Rosser call (3.44), we have always been able to �nd a double-negation-freeproof of the theorem under consideration. The following clauses present the key aspects,for the person who wishes to attack either the dependence of the �fth axiom or to attackthe problem of �nding a double-negation-free proof of (3.44).% Following are the implicational axioms (MV1-MV3).P(i(x,i(y,x))).P(i(i(x,y),i(i(y,z),i(x,z)))).P(i(i(i(x,y),y),i(i(y,x),x))).% Following is the negation axiom MV4.P(i(i(n(x),n(y)),i(y,x))).% Following is the (dependent) implicational axiom MV5.P(i(i(i(x,y),i(y,x)),i(y,x))).% Following is the denial of the distributive law (3.44)-P(i(i(n(a),n(i(i(n(b),n(c)),n(c)))),n(i(i(n(i(n(a),b)),n(i(n(a),c))),n(i(n(a),c)))))) | $ANS(3_44).At this time (early in the year 2000), we have not attempted to prove the following metathe-orem: If double negation is absent from both the hypothesis and the conclusion and if thelogic under study is an interesting logic, a proof can always be found that is free of doublenegation. Whether the cited metatheorem is true is an open question. Further, we do notknow at this time whether deep consequences for logic follow from such a metatheorem.We in fact know only that, in all but one the cases we have studied, we have succeeded in�nding a double-negation-free proof under the given conditions.Regarding the class of proofs focusing on length, again the dependence of MV 5 is atheorem that su�ces. Our proof, the following, consists of 32 applications of condensed19



detachment. A Pleasing Proof of the Dependence of MV5----> UNIT CONFLICT at 9146.78 sec ----> 220818 [binary,220817.1,20.1]$ANS(MV_5).Length of proof is 32. Level of proof is 20.---------------- PROOF ----------------1 [] -P(i(x,y)) | -P(x) | P(y).2 [] P(i(x,i(y,x))).3 [] P(i(i(x,y),i(i(y,z),i(x,z)))).20 [] -P(i(i(i(a,b),i(b,a)),i(b,a))) | $ANS(MV_5).26 [] -P(i(x,y)) | -P(x) | P(y).27 [] P(i(x,i(y,x))).28 [] P(i(i(x,y),i(i(y,z),i(x,z)))).29 [] P(i(i(i(x,y),y),i(i(y,x),x))).30 [] P(i(i(n(x),n(y)),i(y,x))).40 [hyper,1,3,3] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).42 [hyper,1,3,2] P(i(i(i(x,y),z),i(y,z))).48 (heat=1) [hyper,26,42,30] P(i(n(x),i(x,y))).49 (heat=1) [hyper,26,42,29] P(i(x,i(i(x,y),y))).61 (heat=2) [hyper,26,28,48] P(i(i(i(x,y),z),i(n(x),z))).104 [hyper,1,40,40] P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))).105 (heat=1) [hyper,26,104,30] P(i(i(x,y),i(i(n(z),n(y)),i(x,z)))).112 (heat=2) [hyper,26,105,27] P(i(i(n(x),n(i(y,z))),i(z,x))).143 [hyper,1,3,61] P(i(i(i(n(x),y),z),i(i(i(x,u),y),z))).157 (heat=1) [hyper,26,143,30] P(i(i(i(x,y),n(z)),i(z,x))).227 [hyper,1,104,49] P(i(i(x,i(y,z)),i(y,i(x,z)))).234 (heat=1) [hyper,26,28,227] P(i(i(i(x,i(y,z)),u),i(i(y,i(x,z)),u))).269 [hyper,1,3,112] P(i(i(i(x,y),z),i(i(n(y),n(i(u,x))),z))).399 [hyper,1,234,104] P(i(i(x,i(y,z)),i(i(u,x),i(y,i(u,z))))).407 (heat=1) [hyper,26,399,29] P(i(i(x,i(i(y,z),z)),i(i(z,y),i(x,y)))).426 (heat=2) [hyper,26,407,30] P(i(i(x,y),i(i(n(x),n(i(y,x))),y))).561 [hyper,1,399,157] P(i(i(x,i(i(y,z),n(u))),i(u,i(x,y)))).615 [hyper,1,234,407] P(i(i(i(x,y),i(z,y)),i(i(y,x),i(z,x)))).129815 [hyper,1,561,426] P(i(x,i(i(y,n(x)),n(y)))).212221 [hyper,1,104,129815] P(i(i(x,i(y,n(z))),i(z,i(x,n(y))))).213082 [hyper,1,143,(2.22)21] P(i(i(i(x,y),i(z,n(u))),i(u,i(n(x),n(z))))).214897 [hyper,1,40,213082] P(i(i(x,y),i(z,i(n(y),n(x))))).20



215622 [hyper,1,407,214897] P(i(i(i(n(x),n(y)),z),i(i(y,x),z))).215623 [hyper,1,399,214897] P(i(i(x,i(y,z)),i(u,i(x,i(n(z),n(y)))))).216822 [hyper,1,215623,49] P(i(x,i(y,i(n(z),n(i(y,z)))))).217049 (heat=1) [hyper,26,216822,30] P(i(x,i(n(y),n(i(x,y))))).218806 [hyper,1,269,217049] P(i(i(n(x),n(i(y,z))),i(n(u),n(i(i(z,x),u))))).220019 [hyper,1,615,218806] P(i(i(n(i(i(x,y),x)),n(y)),i(n(x),n(y)))).220033 [hyper,1,21562(2.22)0019] P(i(i(x,i(i(y,x),y)),i(n(y),n(x)))).220471 [hyper,1,234,220033] P(i(i(i(x,y),i(y,x)),i(n(x),n(y)))).220591 (heat=1) [hyper,26,28,220471] P(i(i(i(n(x),n(y)),z),i(i(i(x,y),i(y,x)),z))).220817 (heat=2) [hyper,26,220591,30] P(i(i(i(x,y),i(y,x)),i(y,x))).Clause (220817) contradicts clause (20), and the proof is complete.In contrast, the shortest proof in the literature (known to us) is Meredith's, consisting of 37applications. We �nd the result quite signi�cant in that Meredith was known to emphasizeproof elegance.The cited double-negation-free 32-step proof (found by OTTER) that MV 5 is depen-dent on the set consisting of MV 1 through MV 4 provides a �ne example of the class oflemma-avoidance proofs. Indeed, a glance at the work of Rose and Rosser shows that theyrelied upon lemmas they call (2.22), (3.5), and (3.51), which seems to be the case for othersattacking the given theorem. However, of these three lemmas, only (2.22) is present in theOTTER proof. If open questions are appealing, in the given context, one might pursue thequestion of the existence of a proof of the dependence of MV 5 in which none of (2.22),(3.5), and (3.51) is present.Perhaps we can provide some aid by brie
y (as promised) touching on how we foundthe 32-step proof. We used ancestor subsumption, a procedure that compares path lengthsto the same conclusion, preferring the strictly shorter when such is found. We used demod-ulation to block the use of some formula when it was weakly conjectured that such blockingmight lead to a shorter proof. And, among other moves, we tried di�erent values of theheat parameter, a parameter that governs the amount of revisiting by the program to thelist known as the hot list.With a single example from among the various successes we have obtained with OT-TER, we can focus on three classes of missing proof: those where metaargument proofswere the only available type; those in which a less general proof was all that was o�ered;and those in which a less general lemma or result was involved. In in�nite-valued sen-tential calculus, using implication, logical or can be de�ned as i((x; y); y): With the givende�nition, one can prove that or is associative. Rather than proving the obvious equality,if the preference is to play the game solely in terms of condensed detachment, one thenproves two implications. Regarding the following clauses, the �rst two correspond to the21



two implications to be proved, and the second two correspond to generalizations of whatthe literature o�ers.% Following desired associativity lemmas-P(i(i(i(a,i(i(b,c),c)),i(i(b,c),c)),i(i(i(i(a,b),b),c),c))) |$ANS(lemma_2_21a).-P(i(i(i(i(i(a,b),b),c),c),i(i(a,i(i(b,c),c)),i(i(b,c),c)))) |$ANS(lemma_2_21b).% Following desired generalizations of associativity lemmas-P(i(i(i(a,i(i(b,c),c)),i(i(b,c),d)),i(i(i(i(a,b),b),c),d))) |$ANS(lemma_gen2_21a).-P(i(i(i(i(i(a,b),b),c),d),i(i(a,i(i(b,c),c)),i(i(b,c),d)))) |$ANS(lemma_gen2_21b).When OTTER was given the problem of proving associativity in the nongeneral form|we were unaware that the generalization held|it proved the �rst clause quite easily, but thesecond temporarily provided substantial resistance. That resistance was easily overcome byusing the steps of the proof of the �rst clause as resonators.Then, as is so typical of our research, we quickly turned to the objective of �ndingshorter and still shorter proofs of the two implications. That search eventually produced ageneralization of the second clause (the fourth clause). The other element of the more gen-eral pair o�ered what for a while appeared to be an impossible task to complete. However,Robert Vero� succeeded in �nding a proof for the more general form of the �rst clause,by devising a radically di�erent approach based on his use of sketches. Since the proofs ofthe more general theorems had been completed, obviously more general proofs (relying onmore general steps part of the time), we had satisfying examples for the three missing-proofclasses under discussion.For the promised example of a published proof in which various steps (of condenseddetachment) were missing and supplied by OTTER, we cite Lukasiewicz's proof of thecompleteness of his shortest possible single axiom for the implicational fragment of two-valued sentential calculus in which he gives but 28 steps. The object was to produce aproof that contains all 28 steps, but a proof depending solely on condensed detachmentsuch that no step is missing. OTTER succeeded, �nding a proof of length 36.For a �ne example of the �nding of a missing proof in the class of those not fullyautomated, two-valued sentential (or propositional) calculus comes into play. That area oflogic admits an axiomatization consisting of a single formula. Of the single axioms for thefull two-valued sentential logic, the shortest (21 symbols in length, not counting commasand parentheses) is due to Meredith [Meredith1953]. For years, all attempts to �nd a meansfor an automated reasoning program to prove without knowledge of an existing proof thathis formula provides a complete axiomatization failed. The e�ort in this regard was merited22



because (we assert) triumphs in fully automated proof search can lead to a methodologythat can be used to answer some deep open question or used to �nd an axiomatic proofwhere none was previously available or used in some other signi�cant way. Our targetthroughout our study was the Lukasiewicz three-axiom system consisting of (what he calls)theses 1, 2, and 3.Finally, we did develop the needed methodology, relying heavily on the use of theresonance strategy, on lemma adjunction, and on the avoidance of double-negation terms.That methodology, as will shortly be discussed, was soon put to good use in the context ofanother class of missing proofs. The Meredith proof consists of 41 applications of condenseddetachment. Although we have been able to �nd a slightly di�erent proof of length 41|hisand that we found both rely on double negation, 17 steps of the type|we have never founda shorter proof and do not know whether such exists. Therefore, we o�er for the interestedthe question focusing on the existence of a proof of length 40 or less.Meredith's single axiom serves yet another purpose, that focusing on the class of missingproofs in the context of reducing the number of distinct variables that occur in the deducedsteps. Both cited 41-step proofs rely on formulas in which seven distinct variables occur.Deepak Kapur found a 63-step proof (private communication) that Meredith implies thethree-axiom Lukasiewicz system such that no deduced step relies on more than six distinctvariables. When an attempt was made to �nd a shorter proof with the six-variable property,it succeeded, yielding a 54-step proof whose input �le can be found in [Wos1999].The cited methodology (that �nally yielded the �rst fully automated proof of theMeredith single axiom) played the key role when we turned to the class of proofs thatare missing because of being omitted. Speci�cally, Lukasiewicz (before Meredith) o�ered asingle axiom for two-valued sentential calculus, one of length 23 letters, where Meredith's isof length 21. Lukasiewicz, however, did not include a proof, and (from what we know) theliterature does not o�er a proof|it was missing. In part to test the new methodology andin part to (we hoped) �nd the missing proof, we proceeded as we did when success occurredin the context of Meredith's single axiom.Four runs and approximately 4 CPU-hours su�ced: OTTER found a 200-step proof.As predictable from what has been written in this article, the proof is free of double nega-tion. We strongly conjecture that Lukasiewicz's proof must not have shared this intriguingproperty.For an example of a proof that was missing in the context of the class concernedwith formula complexity, again two-valued sentential calculus su�ces, just the implica-tional fragment. Indeed, the Lukasiewicz proof for his (shortest possible) single axiom[Lukasiewicz1970] contains a formula of length 32 (in symbol count), whereas we have aproof whose longest deduced formula has length 24. Also of note, the Lukasiewicz proofrequires the use of formulas in which eight distinct variables occur; the cited 24-step proofrequires but �ve. 23



As for �nding proofs of lesser level, again two-valued sentential calculus serves well:the (C,O) system [Meredith1953]. For one of his single axioms, Meredith gives a proof oflength 37, relying on 8 distinct variables, and level 30; the longest formula has length 32.OTTER found a proof for the same axiom, with length 26, relying on 6 distinct variables,and level 21; its longest formula has length 24. In other words, when compared with theMeredith proof (which we give immediately), the OTTER proof is strictly less complex inall four areas we discuss in this article.A Paradigmatic and Elegant ProofLength of proof is 26. Level of proof is 21.---------------- PROOF ----------------29 [] -P(i(x,y)) | -P(x) | P(y).32 [] P(i(i(i(i(i(x,y),i(z,O)),u),v),i(i(v,x),i(z,x)))).33 [hyper,29,32,32] P(i(i(i(i(x,y),i(z,y)),i(y,u)),i(v,i(y,u)))).35 [hyper,29,32,33] P(i(i(i(x,i(O,y)),z),i(u,z))).39 [hyper,29,35,32] P(i(x,i(i(i(O,y),z),i(u,z)))).40 [hyper,29,39,39] P(i(i(i(O,x),y),i(z,y))).42 [hyper,29,33,40] P(i(x,i(y,i(z,y)))).43 [hyper,29,42,42] P(i(x,i(y,x))).47 [hyper,29,32,43] P(i(i(i(x,i(i(i(y,z),i(u,O)),v)),y),i(u,y))).54 [hyper,29,32,47] P(i(i(i(x,y),z),i(i(i(y,u),i(x,O)),z))).55 [hyper,29,54,54] P(i(i(i(x,y),i(i(z,u),O)),i(i(i(u,v),i(z,O)),x))).57 [hyper,29,32,54] P(i(i(i(i(i(i(x,O),y),i(i(z,u),O)),v),z),i(x,z))).65 [hyper,29,54,55]P(i(i(i(i(i(x,y),O),z),i(i(u,v),O)),i(i(i(y,w),i(x,O)),u))).73 [hyper,29,54,57]P(i(i(i(x,y),i(i(i(i(i(z,O),u),i(i(x,v),O)),w),O)),i(z,x))).82 [hyper,29,32,65] P(i(i(i(i(i(x,y),i(z,O)),u),i(z,x)),i(v,i(z,x)))).87 [hyper,29,73,65] P(i(x,i(i(i(y,i(i(x,O),z)),O),u))).97 [hyper,29,54,87]P(i(i(i(x,y),i(z,O)),i(i(i(u,i(i(i(z,x),O),v)),O),w))).107 [hyper,29,82,97] P(i(x,i(i(i(y,i(i(i(z,i(u,v)),O),w)),O),u))).114 [hyper,29,107,107] P(i(i(i(x,i(i(i(y,i(z,u)),O),v)),O),z)).117 [hyper,29,32,114] P(i(i(x,y),i(i(i(z,i(x,u)),O),y))).118 [hyper,29,117,117] P(i(i(i(x,i(i(y,z),u)),O),i(i(i(v,i(y,w)),O),z))).132 [hyper,29,32,118] P(i(i(i(i(i(x,i(y,z)),O),u),v),i(i(y,u),v))).137 [hyper,29,132,82] P(i(i(x,i(x,y)),i(z,i(x,y)))).138 [hyper,29,132,57] P(i(i(i(x,y),x),i(z,x))).142 [hyper,29,132,32] P(i(i(x,y),i(i(y,z),i(x,z)))).24



154 [hyper,29,137,138] P(i(x,i(i(i(y,z),y),y))).180 [hyper,29,154,154] P(i(i(i(x,y),x),x)).198 [hyper,29,180,40] P(i(O,x)).5 Milestones ReachedFor decades, one of the goals of automated reasoning focused on the ability of a program toproduce one proof after another when asked to do so. That milestone has been reached, atleast in various areas of logic. Indeed, our submission to OTTER of one purported theoremafter another in a wide variety of sentential calculi is typically soon followed by OTTER'sreturn of a proof. Sometimes, relying on one of a set of new methodologies, a sequence ofruns is required, each building on the results of the preceding. Almost never does the e�ortfail to �nd a desired proof.A second objective of the �eld has been to add new proofs and new theorems tomathematics and to logic. McCune's remarkable success with the settling of the Robbinsalgebra question is but one of numerous such successes, successes that included results fromyears earlier in ternary Boolean algebra, �nite semigroups, and equivalential calculus. Thelist continues to grow, the latest concerning the answering of two open questions posed byEpstein.In our view, closely related to the preceding is the �nding of missing proofs, whichis the focus of this article. Successes in this context indeed add to mathematics and tologic, especially (in our view) when the proof that is found is axiomatic. In particular, thereplacement of a proof by induction by one that relies solely on a given inference rule (suchas condensed detachment) can lead by inspection to insights that in turn lead to answersto other open questions. In addition, from the viewpoint of automated reasoning, attemptsto produce axiomatic proofs to �ll a void in the literature can, as it has in our research,culminate in new and useful methodologies.More distantly related to the answering of questions posed by great minds (such asthat frequently asked by Tarski in the context of Robbins algebra) is the seeking of proofssatisfying some list of constraints on their structure. Obviously, as emphasized in this article(especially in Sections 2 and 4), when such proofs are not in hand, then types of missing proofcan be sought. Among our successes in this arena, we cite but two at this point. The �rstconcerns the �nding repeatedly of proofs in which double-negation terms are avoided eventhough the literature suggests that their use is required. Indeed, although their existencemight be counterintuitive, a program such as OTTER is impressively e�ective at �ndingproofs avoiding terms of the form n(n(t)) for some term t: The second example focuses on�nding proofs of deep theorems whose proof had clearly eluded some of the best minds.One of the �ner successes concerns the proving of distributivity in in�nite-valued sentential25



calculus.From the global perspective, we suggest that the �eld of automated reasoning has madegreat strides in but the past �ve years. For evidence, we cite the examples presented in thisarticle, as well as the material presented in the other articles o�ered by this special issue.References[Epstein1994] Epstein, R., The Semantic Foundations of Logic: Propositional Logics, 2nded., Oxford University Press, New York, 1994.[Harris2000] Harris, K., and Fitelson, B., \Distributivity in Lw and Other Sentential Log-ics", J. Automated Reasoning (this issue), 2000.[Hilbert1950] Hilbert, D., and Ackermann, W., Principles of Mathematical Logic, Chelsea,New York, 1950.[Lukasiewicz1970] Lukasiewicz, J., Selected Works, edited by L. Borokowski, North Holland,Amsterdam, 1970.[McCune1989] McCune, W., OTTER 1.0 users' guide, Tech. Report ANL-88/44, ArgonneNational Laboratory, Argonne, IL, January 1989.[McCune1997] McCune, W., \Solution of the Robbins Problem", J. Automated Reasoning19, no. 3 (1997), 263{276.[Meredith1953] Meredith, C. A., \Single Axioms for the Systems (C,N), (C,O), and (A,N) ofthe Two-Valued Propositional Calculus", J. Computing Systems 1, no. 3 (1953), 155{164.[Meredith1958] Meredith, C. A., \The Dependence of an Axiom of Lukasiewicz", Trans.AMS 87, no. 1 (1958), 54.[Meredith1963] Meredith, C. A. and Prior, A., \Notes on the Axiomatics of the PropositionalCalculus", Notre Dame J. Formal Logic 4, no. 3 (1963), 171{187.[Prior1960] Prior, A., Formal Logic, Clarendon, Oxford, 1960.26
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