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2 Steven L. Lee, Paul D. Hovlandsensitivity information for ODE systems.In computing sensitivities for ODEs, one is interested in solvingy0(t) = f(t; y; p); y(t0) = y0; y 2 Rn; p 2 Rm; (1.1)where the solution vector y(t) depends upon an additional vector of pa-rameters p, and the sensitivities are de�ned assi(t) = @y(t; p)@pi ; i = 1; � � � ;m:One approach for computing these sensitivities is to apply AD techniques tothe entire PVODE solver. However, PVODE is a variable-stepsize, variable-order solver, a situation that Eberhard and Bischof [EB99] have demon-strated can cause AD to compute unexpected derivative values. An oftensuperior approach is to use some insight into the computational require-ments of the problem. To do this, we formally di�erentiate the originalODE (1.1) with respect to each component pi of p. Thus, we obtain thesensitivity ODEss0i(t) = @f@y si(t) + @f@pi ; si(t0) = 0; i = 1; � � � ;m: (1.2)The time integration of y0(t) and each s0i(t) can be accomplished by solvingan ODE system of size n(m+ 1), whereY = 0BBB@ y(t)s1(t)...sm(t) 1CCCA and F (t; Y; p) = 0BBB@ f(t; y; p)@f@y s1(t) + @f@p1...@f@y sm(t) + @f@pm 1CCCA :The new ODE-sensitivity IVP to be solved is simplyY 0(t) = F (t; Y; p); Y (t0) = Y0; (1.3)and each s0i(t) can be approximated via �nite di�erences or AD techniques.SensPVODE [LHB] is a variant of PVODE that computes sensitivitiesusing this approach of solving an augmented ODE system for the solu-tion and the sensitivities. This formulation has many special features thatcan be exploited. In particular, for many large-scale applications, implicittime integration methods are required; and several papers describe how tomodify Newton's method for e�ciently solving the nonlinear systems thatarise at each time step [FTB97, MP96]. Also, we note that the sensitivityODEs (1.2) are linear in si(t), even if the original ODE (1.1) is nonlinear.This observation is signi�cant in the next section as we discuss the need toproperly scale the sensitivities that we compute.



1. Sensitivity Analysis With Parallel ODE Solvers and AD 32 Scaled Sensitivities Using Finite Di�erencesSeveral observations motivate our modi�cations to the sensitivity ODEs(1.2). First, the units for the ODE solution y(t) and the sensitivity vectorssi(t) do not match. This mismatch in units can lead to scaling problems,especially when using �nite di�erence methods. Fortunately, the issue iseasily remedied. In particular, we note that the sensitivity vectors will haveunits of [y]=[pi]. For y(t) and the sensitivities to share the same units, thelinearity of the sensitivity ODEs (1.2) allows us to multiply the sensitivitiesby their respective parameter values to obtain the scaled sensitivity ODEsw0i(t) = @f@y wi(t) + pi @f@pi (2.4)where wi(t) = pisi(t);and pi is a nonzero scale factor. Typically pi = pi. (However, if pi is zero,we set pi to a nonzero constant dimensionally consistent with pi.) In gen-eral, the scale factor pi can be any nonzero multiple of pi and this cansometimes be used to create a well-scaled problem for the ODE variablesand sensitivities.To improve the accuracy of estimating the scaled sensitivity derivativesin (2.4), SensPVODE has an option that applies centered di�erences toeach term separately:@f@y wi � f(t; y + �ywi; p)� f(t; y � �ywi; p)2 �y (2.5)and pi @f@pi � f(t; y; p+ �ipiei)� f(t; y; p � �ipiei)2 �i : (2.6)As is typical for �nite di�erences, the proper choice of perturbations �y and�i is a delicate matter. Our recommended value for �y and �i takes intoaccount several problem-related features: the relative ODE error toleranceRTOL, the machine unit roundo� �machine, and the weighted root-mean-square (RMS) norm of the scaled sensitivity jjwijj. We then de�ne�i =pmax(RTOL; �machine) and �y = 1max(kwik; 1=�i) : (2.7)The terms �machine and 1=�i are included as divide-by-zero safeguards incase RTOL = 0 or jjwijj = 0. Roughly speaking (i.e., if the safeguard termsare ignored), �i gives a pRTOL relative perturbation to parameter i, and�y gives a unit weighted RMS norm perturbation to y. Of course, the maindrawback of this approach is that it requires four function evaluations off(t; y; p).



4 Steven L. Lee, Paul D. HovlandA less costly technique for estimating scaled sensitivity derivatives is alsobased on centered di�erences. However, it uses the formulaw0i = @f@y wi + pi @f@pi � f(t; y + �wi; p+ �piei)� f(t; y � �wi; p� �piei)2 � (2.8)in which � = min(�i; �y):With a little analysis, it can be shown that the sum (2.5){(2.6) and (2.8)are mathematically equivalent when �i = �y. However, the latter approachis half as costly, since it requires only two function evaluations of f(t; y; p).To take advantage of this savings, it may also be desirable to use the latterformula when �i � �y. In [LHB], we explore the possibility of allowingSensPVODE to select the �nite di�erence formula based on how closely �iand �y agree.In summary, the sensitivity version of PVODE is equipped with a varietyof �nite di�erence formulas for approximating the scaled sensitivity deriva-tives. However, for some problems, �nite di�erences do not work. Typically,di�culties arise in applications where the solution components are verybadly scaled. In addition to failure or accuracy problems, �nite di�erencesmay be ine�cient for functions f(t; y; p) that are expensive to evaluate.Such shortcomings motivate the need for an e�cient, exact, and automatedprocess for computing sensitivity derivatives within SensPVODE.3 Scaled Sensitivities Using ADAutomatic di�erentiation must be nearly as easy to use as �nite di�er-ences, or it will only be used when �nite di�erences fail, if at all. Previouswork [LP99, FMM98, ABG+00, Ger00] has demonstrated that it is possi-ble to automate the AD process by exploiting the existence of well-de�nedinterfaces for the user's function implementing f(t; y; p). This makes it easyto identify the independent and dependent variables and to initialize theseed matrices properly.Applying AD is complicated by the fact that the user's function is im-plemented in C with MPI parallelism [GLS94]. We are therefore addingsupport for MPI to the ADIC [BRM97] automatic di�erentiation tool,building on earlier work by Hovland [Hov97, HB98]. The use of C poseschallenges from the standpoint of automation. PVODE, like many othernumerical toolkits, allows the user to pass around application-speci�c datain a user-de�ned struct. As part of the AD process, it may be necessaryto associate derivatives with some of the variables in this structure. Toavoid aliasing problems, this generally implies changing the type of thesevariables [BRM97]. Thus, all code (not just the function) must be modi-�ed to use this new datatype. Our initial approach has been to circumvent



1. Sensitivity Analysis With Parallel ODE Solvers and AD 5this problem through the use of two data structures, one with derivativesand one without, copying data back and forth as necessary. To eliminatethe overhead of copying, in the future we plan to use a single data struc-ture, applying ADIC to modify the user code automatically to use the newdatatype.4 Experimental ResultsWe applied SensPVODE to a simple test case, a two-species diurnal kineticsadvection-di�usion PDE system in two space dimensions:dcidt = Kh d2cidx2 + V dcidx + ddy �Kv(y)dcidy �+Ri(c1; c2; t);for i = 1; 2;whereR1(c1; c2; t) = �q1 � c1 � c3 � q2 � c1 � c2 + 2 � q3(t) � c3 + q4(t) � c2;R2(c1; c2; t) = q1 � c1 � c3 � q2 � c1 � c2 � q4(t) � c2; andKv(y) = Kv0 � exp(y=5):Kh; V;Kv0; q1; q2; and c3 are constants, and q3(t) and q4(t) vary diurnally.The problem is posed on the square 0 � x � 20; 30 � y � 50 (all inkm), with homogeneous Neumann boundary conditions, and for time t in0 � t � 86400 sec (1 day). The PDE system is treated by central di�erenceson a uniform mesh, with simple polynomial initial pro�les. See [LHB] formore details.We solved the sensitivity equations for a range of 1 to 8 parameters,comparing several strategies for computing the scaled sensitivity deriva-tives, w0i(t), of (2.4), including automatic di�erentiation (with appropriateseed matrices) and the �nite di�erence strategies described in Section 2.The results are summarized in Figures 4.1 and 4.2. Two centered di�erencestrategies were examined: computing the derivative terms separately, as in(2.5) and (2.6) and computing the sum of the derivative terms directly, asin (2.8). The forward di�erence method always computes the terms sepa-rately.Although the present framework for using AD includes some ine�cien-cies such as the copying of data, Figure 4.1 shows that AD is still markedlyfaster than the best �nite di�erence method, for every number of param-eters (note that each of the three methods is the best strategy for somenumber of parameters). This advantage can be attributed primarily to thereduced number of time steps, as shown in Figure 4.2; the increased accu-racy of the analytic derivatives provided by AD results in longer time stepsby the variable-stepsize, variable-order solver.
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FIGURE 4.1. Comparison of performance for various derivative-computationstrategies. Results are the average of three runs on 4 processors of an SGI Origin2000.
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FIGURE 4.2. Number of timesteps for various derivative-computation strategies.Results are the average of three runs on 4 processors of an SGI Origin 2000.



1. Sensitivity Analysis With Parallel ODE Solvers and AD 75 Conclusions and Future WorkSensPVODE provides an e�cient and easy-to-use mechanism for comput-ing the sensitivities for simulations that use the PVODE parallel ODEsolver. Results for a simple problem indicate that derivatives computed us-ing AD provide performance superior to �nite di�erence approximations.We plan to examine whether this performance advantage holds for morecomplex problems.Future work also includes developing a mechanism that eliminates theneed to copy data from one structure to another, while preserving theease of use of the current implementation. This issue is related to thosefaced in the use of AD with other numerical toolkits such as PETSc andTAO [ABG+00], and we therefore hope to bene�t from lessons learned inthose projects. In addition, the algorithms used by SensPVODE requirethe solution of linear systems with multiple right-hand side vectors [LHB,MP96]. A similar situation arises when one di�erentiates through a linearor nonlinear solver [Azm97, BB98, STG+94, HNRS98]. Thus, we expectto leverage other work [BBH00] in the development of block solvers forsystems with multiple right-hand sides. All of these developments shouldincrease the e�ciency of sensitivity computations using SensPVODE andADIC.AcknowledgmentsThis work was performed under the auspices of the U.S. Department of En-ergy by University of California Lawrence Livermore National Laboratoryunder contract No. W-7405-Eng-48 and was supported by the Mathemati-cal, Information, and Computational Sciences Division subprogram of theO�ce of Advanced Scienti�c Computing Research, U.S. Department of En-ergy, under Contract W-31-109-Eng-38.We thank Gail Pieper for proofreading a draft manuscript and PeterBrown, Alan Hindmarsh, and Linda Petzold for valuable advice regardingsensitivity analysis of ODEs and DAEs.6 References[ABG+00] Jason Abate, Steve Benson, Lisa Grignon, Paul Hovland, LoisMcInnes, and Boyana Norris. Integrating automatic di�erentia-tion with object-oriented toolkits for high-performance scienti�ccomputing. Technical Report ANL/MCS-P820-0500, Mathe-matics and Computer Science Division, Argonne National Lab-oratory, 2000. Submitted to AD2000.[Azm97] Yousry Azmy. Post-convergence automatic di�erentiation of
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