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2 J. Abate, S. Benson, L. Grignon, P. Hovland, L. McInnes, B. Norrisjects and object toolkits. Such toolkits enable developers to focus on asmall component of a complex system, rather than attempting to developand maintain a monolithic application. Furthermore, code reuse justi�esexpending signi�cant e�ort in the development of highly optimized objecttoolkits encapsulating expert knowledge.Many high-performance numerical toolkits include components designedto be combined with an application-speci�c nonlinear function. Examplesinclude optimization components, nonlinear equation solvers, and di�eren-tial algebraic equation solvers. Often the numerical methods implementedby these components also require �rst and possibly second derivatives ofthe function. Frequently, the toolkit is able to approximate these deriva-tives by using �nite di�erences (FD); however, the convergence rate androbustness are often improved if the derivatives are computed analytically.This represents an ideal situation for using automatic di�erentiation(AD) [Gri89, Gri00]. Developing correct parallel code for computing thederivatives of a complicated nonlinear function can be an onerous task,making an automated alternative quite attractive. Furthermore, the well-de�ned interfaces used by object toolkits simplify automatic di�erentiationby removing the need for the programmer to identify the independent anddependent variables and/or write code for the initialization of seed matri-ces.We examine the use of automatic di�erentiation to provide code for com-puting �rst and second derivatives in conjunction with two numerical toolk-its, the Portable, Extensible Toolkit for Scienti�c Computing (PETSc) andthe Toolkit for Advanced Optimization (TAO).We describe how AD can beused with these toolkits to generate the code for computing the derivativesautomatically. We present results demonstrating the suitability of AD andPETSc for the parallel solution of nonlinear PDEs and mention preliminaryresults from the use of AD with TAO.2 Portable, Extensible Toolkit for Scienti�cComputingPETSc [BGMS97, BGMS00] is a suite of data structures and routines forthe scalable solution of scienti�c applications modeled by partial di�er-ential equations. The software integrates a hierarchy of components thatrange from low-level distributed data structures for vectors and matricesthrough high-level linear, nonlinear, and timestepping solvers. The algo-rithmic source code is written in high-level abstractions so that it can beeasily understood and modi�ed. This approach promotes code reuse andexibility and, in many cases, helps to decouple issues of parallelism fromalgorithm choices.Newton-based methods (see, e.g., [NW99]), which o�er the advantage of



1. Integrating Automatic Di�erentiation with Object-Oriented Toolkits 3rapid convergence when an iterate is near to a problem's solution, form thealgorithmic core of the nonlinear solvers within PETSc. The methods em-ploy line search, trust region, and pseudo-transient continuation strategiesto extend the radius of convergence of the Newton techniques, and oftensolve the linearized systems inexactly with preconditioned Krylov meth-ods. The basic Newton method requires the Jacobian matrix, J = F 0(u),of a nonlinear function F (u). Matrix-free Newton-Krylov methods requireJacobian-vector products, F 0(u)v, and may require an approximate Jaco-bian for preconditioning.3 Toolkit for Advanced OptimizationTAO [BMM99, BMM00] focuses on scalable optimization software, includ-ing nonlinear least squares, unconstrained minimization, bound constrainedoptimization, and general nonlinear optimization. The TAO optimizationalgorithms use high-level abstractions for matrices and vectors and empha-size the reuse of external tools where appropriate, including support forusing the linear algebra components provided by PETSc and related tools.Many of the algorithms employed by TAO require �rst and sometimessecond derivatives. For example, unconstrained minimization solvers thatrequire the gradient, f 0(u), of an objective function, f(u), include a limited-memory variable metric method and a conjugate gradient method, whilesolvers that require both the gradient, f 0(u), and Hessian, f 00(u), (or Hes-sian-vector products) include line search and trust region variants of New-ton methods. In addition, algorithms for nonlinear least squares and con-strained optimization often require the Jacobian of the constraint functionsor at least the computation of Jacobian-vector and Jacobian-transpose-vector products.4 Using Automatic Di�erentiationThe automatic di�erentiation tools used in this research are the ADI-FOR (Automatic Di�erentiation of Fortran) [BCKM96] and ADIC (ADof C) [BRM97] systems. Given code for a function f(u) in Fortran 77 orANSI C, these tools generate code for the computation of f 0(u) and, ifdesired, f 00(u).5 Experimental ResultsOther work [LP99, FMM98, Ger00, LH00] has demonstrated the bene�ts ofwell-de�ned interfaces for automating the AD process. The object-oriented
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computationFIGURE 1. Schematic diagram of the use of automatic di�erentiation tools togenerate the Jacobian routine for a nonlinear PDE computation.designs of PETSc and TAO lead to such well-speci�ed interfaces. However,rather than exploit this feature directly, we have chosen to take advantageof the structure of a typical PETSc/TAO nonlinear function evaluation tosimplify the AD process. The parallel nonlinear function code usually in-cludes several calls to PETSc/TAO routines for generalized vector scattersbefore and after the actual local function computation. These calls takecare of data structure setup and communication, enabling a completelylocal function computation. In the current semi-automatic approach, il-lustrated in Figure 1, we di�erentiate this local function using AD. Thisproduces code for local derivative computation, which is coupled with codefor assembling the gradient, Jacobian, or Hessian. While in principle itis possible to di�erentiate through the parallel scatter and assembly rou-tines [Car, FD99, Hov97, HB98], currently the corresponding seed-matrixinitialization and assembly code are generated manually. Future develop-ment will automate this process.We present experimental results for nonlinear PDEs and unconstrainedminimization problems that demonstrate the utility of AD in conjunctionwith parallel numerical libraries. These computations were run on an IBMSP with 120 MHz P2SC nodes with two 128 MB memory cards each and aTB3 switch. We have observed analogous qualitative behavior on a rangeof other current parallel architectures.5.1 Using AD and PETSc for Nonlinear PDEsWe used AD and PETSc to solve the steady-state, three-dimensional com-pressible Euler equations on mapped, structured meshes using a second-
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FD w=1.e−6   FIGURE 2. Comparison of convergence using matrix-free Newton-Krylov--Schwarz methods with �nite di�erencing (FD), automatic di�erentiation (AD),and hybrid variants (FD/AD) with various switching parameters, s. Iterations(left) and time (right).order, Roe-type, �nite-volume discretization. In particular, we solved inparallel a system of the form F (u) = 0, where F : <n ! <n, usingmatrix-free Newton-Krylov-Schwarz algorithms with pseudo-transient con-tinuation to model transonic ow over an ONERA M6 airplane wing. See[GKMT98] for details about the problem formulation and algorithmic ap-proach. The linearized Newton correction equations were solved by us-ing restarted GMRES preconditioned with the restricted additive Schwarzmethod with one degree of overlap.As discussed in depth in [HM00] and summarized in Figure 2, our resultsindicate that, within the context of matrix-free Newton-Krylov methods,AD o�ers signi�cantly greater robustness and converges in fewer iterationsthan FD. This �gure plots convergence rate in terms of the residual normkF (u)k2 versus both nonlinear iteration number and computation time onfour processors for a model problem of dimension 158,760. The runtime forAD is slightly higher than for FD (when an appropriate di�erencing stepsizeis used), due to the higher cost of computing Jacobian-vector productsusing AD. However, coupling AD with FD in a hybrid scheme provides therobustness of AD with the lower computation time of FD, without needingto identify the proper stepsize for FD. Additional experiments show thatthis hybrid technique scales well for various problem sizes and processorcon�gurations [HM00].5.2 Using AD and TAO for Unconstrained MinimizationWe evaluated the preliminary performance of automatic di�erentiation inconjunction with TAO using a two-dimensional elastic-plastic torsion modelfrom the MINPACK-2 test problem collection [ACMX92]. This model usesa �nite element discretization to compute the stress �eld on an in�nitelylong cylindrical bar to which a �xed angle of twist per unit length has



6 J. Abate, S. Benson, L. Grignon, P. Hovland, L. McInnes, B. NorrisTABLE 1.1. Execution times (sec) for various stages of the elastic-plastic torsionminimization problem.Number of Processors 1 16 32Number of Vertices 10,000 160,000 320,000Hessian Computation Method FD AD FD AD FD ADLinear System Solution 1.19 1.20 7.10 7.04 9.16 9.04Compute Function 0.01 0.01 0.04 0.02 0.04 0.02Compute Gradient 0.21 0.20 0.22 0.24 0.23 0.24Compute Hessian 1.89 1.48 3.86 1.58 6.11 1.65Total Time 5.20 4.86 14.13 11.87 18.73 14.32
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FD, Block Jacobi     FIGURE 3. Comparison of total execution times for the elastic-plastic torsionminimization problem using a line search Newton method. Fixed local (left) and�xed global (right) problem sizes.been applied. The resulting unconstrained minimization problem can beexpressed as min f(u), where f : <n� > <. All of the following numer-ical experiments use a line search Newton method with a preconditionedconjugate gradient linear solver.We compared two approaches for computing the full Hessian of f(u).First, we applied AD to the hand-coded routine computing the analyticgradient of f(u). Second, we used FD to approximate the Hessian, againusing the analytic gradient of f(u). In both cases we employed graph col-oring techniques in order to exploit the sparsity of the Hessian computa-tion [CM83, GT84]. The graphs in Figure 3 show the scaling of the completeminimization problem using either no preconditioning or a block Jacobipreconditioner. The block Jacobi preconditioner uses a subdomain solverof ILU(0) on each block, with one block per processor. For this relativelysimple problem, both AD and FD exhibit rapid convergence in terms ofnumber of iterations. However, AD outperforms FD in terms of total timeto solution, mainly because of the good scalability of the AD Hessian com-putation. Overall, the results for a �xed local 100� 100 mesh size indicatethat the problem does not scale well for either AD or FD (although us-



1. Integrating Automatic Di�erentiation with Object-Oriented Toolkits 7ing a block Jacobi preconditioner helps somewhat). This situation is duein part to the poor performance scaling of the linear system solution (seeTable 1.1). We are currently exploring the causes of this poor scalability.
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