
Automating the Search for Answers to OpenQuestions?Larry Wos1 and Branden Fitelson1;21 Mathematics and Computer Science Division, Argonne National Laboratory,Argonne, IL 60439-4801,wos@mcs.anl.gov2 University of Wisconsin, Department of Philosophy, Madison, WI 53706,fitelson@facstaff.wisc.eduAbstract. This article provides evidence for the arrival of automatedreasoning. Indeed, one of its primary goals of the early 1960s has beenreached: The use of an automated reasoning program frequently leadsto signi�cant contributions to mathematics and to logic. In addition,although not clearly an original objective, the use of such a programnow plays an important role for chip design and for program veri�ca-tion. That importance can be sharply increased; indeed, in this articlewe discuss the possible value of automated reasoning to �nding betterdesigns of chips, circuits, and computer code. We also provide insightinto the mechanisms|in particular, strategy|that have led to numer-ous successes. To complement the evidence we present and to encouragefurther research, we o�er challenges and open questions for considera-tion. We include a glimpse of the future and some commentary on thepossibly unexpected bene�ts of automating the search for answers toopen questions.1 An Unlikely but Realized DreamIn the late 1940s, researchers (including the logician Luukasiewicz) consideredthe possibility of mechanically checking a proof to be within reach. At the otherend of the spectrum, some thought mechanical proof �nding to be out of thequestion. For many, that view was still extant in the early 1960s, when an auda-cious e�ort seriously commenced whose objective was the design of a computerprogram that could make signi�cant contributions to mathematics and to logic.In other words, some researchers (brave or foolish) embarked on a journey whosedestination was proof �nding of interesting theorems|and, if gold was found,the automated answering of open questions.The search for answers to open questions is frequently thought to be thedominion of mathematics and logic. However, closely related are questions posedby the designers of circuits and chips and by the writers of computer programs.? This work was supported in part by the Mathematical, Information, and Computa-tional Sciences Division subprogram of the O�ce of Advanced Scienti�c ComputingResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.

Such questions take various forms. Does a given design of a chip or circuit meet itsspeci�cations|is it free of bugs? Given a bit of computer code (or a given design),can one �nd an alternative that o�ers far more e�ciency? In this article, wemake a case for using a program to �nd better designs, where the methodologiesare taken from our recent successful research in �nding shorter proofs; see theAppendix, which takes the form of a whitepaper.As for mathematics and logic, as the following list illustrates, open questionscome in an even greater variety of avors.1. Is every Robbins algebra a Boolean algebra?2. Is the formula XHN a single axiom for equivalential calculus?3. Does there exist a circle of pure proofs for the Moufang identities?4. Does a particular identity that holds in orthomodular lattices also hold inortholattices?5. Does the fragment of combinatory logic with basis consisting of B and Msatisfy the strong �xed point property?6. Is the formula XCB a single axiom for equivalential calculus?Answers to the cited questions|and to many, many more of diverse types|can often be found by relying heavily on an automated reasoning assistant.Indeed, the �rst four have already been answered with the help of Argonne'spowerful automated reasoning programs [3, 7, 6, 1]; for a discussion of the twoopen questions, 5 and 6, see Sect. 3. A delightful bonus: To enlist the aid of areasoning program in the search for answers, one need not be an expert. Today,various mathematicians only vaguely familiar with automated reasoning are us-ing WilliamMcCune's reasoning program OTTER [2]|the program featured inthis article|in their research. (If guidance is desired in the use of OTTER, if afuller understanding of the elements of automated reasoning is the objective, orif one seeks open questions to attack, each is easily within reach through con-sulting the new book A Fascinating Country in the World of Computing: YourGuide to Automated Reasoning [7]; its included CD-ROM is a gold mine. If onewishes to browse in a dense forest of once-open questions answered with the useof OTTER, the monograph by McCune and Padmanabhan [4] is the choice.)Complementing the use by mathematicians of automated reasoning and alsocontributing substantially to the realization of the dream of pro�tably using areasoning program is the use by �rms that include AMD and Intel. In particular,the cited �rms each employ people whose assignment is to prove theorems inthe context of correctness of various designs. The chief weapon is recourse toa reasoning program. Was part of the motivation the remarkable achievementof Boyer, Moore, and colleagues in their design and veri�cation of a chip andlanguage [5], a chip that was eventually manufactured and used?1.1 The Source of PowerAlthough for many years OTTER was the fastest reasoning program, programsnow exist that run faster. But (in our view), CPU speed is not the key. Indeed, an

increase in CPU power of a factor of 4 (we conjecture) brings very few theoremsin range that were previously out of range. The obstacle rests with the incrediblesize of the space of deducible conclusions.And here is where the power resides that has led to so many recent successes:OTTER o�ers a variety of powerful strategies, some to restrict its reasoning,some to direct its reasoning, and some to permit the program to emphasizethe role of certain designated information. We strongly conjecture that withoutaccess to various types of strategy, the vast majority of the successes of the pastfew years would not have been reached. For a glimpse of how all has changed,we note that, in contrast to two decades ago, our submission to OTTER ofproblems taken from various areas of logic is almost always met with a proof.(We intend to present many new proofs in print and on an included CD-ROM ina planned book entitled Automated Reasoning and the Finding of Missing andElegant Proofs in Formal Logic.)Rather than formal de�nitions, we give the following examples of strategy interms of their objective.1. The set of support strategy typically restricts a program from exploring thespace of conclusions that follow from the axioms.2. The expression complexity strategy restricts a program from consideringterms, formulas, or equations conjectured to interfere with e�ectiveness be-cause of their complexity.3. The variable richness strategy restricts the program from considering formu-las or equations whose number of distinct variables appears to make themunattractive.4. The term-avoidance strategy prevents the program from retaining any newlydeduced conclusion that contains a term in the class of those designated asunwanted; see Sect. 4 for a fuller discussion.In contrast to the preceding four strategies that restrict a program's reason-ing, the following useful strategies direct its reasoning.5. The resonance strategy instructs a program to focus on conclusions thatresemble any of a set designated by the researcher as appealing, in preferenceto all other available conclusions.6. The ratio strategy instructs a program to choose k conclusions by complexity,1 by �rst come �rst serve, then k, then 1, and the like, where k is assignedby the researcher.7. The weighting strategy directs a program to focus on items whose complexityis smallest, where the complexity is in part determined by user-assignedvalues.Among other factors, additional power is derived from a mechanism to sim-plify and canonicalize information and from a variety of inference rules, one ofwhich treats equality as \understood". However, in contrast to so many rea-soning programs, (we maintain that) OTTER's o�ering a veritable arsenal ofstrategies is the key.

2 Open Questions DetailedAt this point, we provide the promised details concerning questions 5 and 6posed in Sect. 1. Each, as noted, remains open.For the �rst of the two questions (5), we give the de�nitions of the com-binators B and M and that of a �xed point combinator F. (Expressions incombinatory logic are assumed to be left associated unless otherwise indicated.)Bxyz = x(yz)Mx = xxFx = x(Fx)Does there exist a �xed point combinator F expressed purely in terms of thecombinators B and M such that Fx = x(Fx)? To provide a small taste of thenature of this question, we note that BML is a �xed point combinator for thefragment whose basis consists solely of B, M , and L, where Lxy = x(yy).For the second question (6) that remains open, we give two de�nitions, thesecond of which is included for pedagogical reasons.e(x,e(e(e(x,y),e(z,y)),z)) % XCBe(x,e(e(y,z),e(e(z,x),y))) % XHNIs the formulaXCB a single axiom for all of equivalential calculus? The formulaXHN is a single axiom. If one were able to deduce some known single axiom,such as XHN , starting with XCB, then one would have established that XCBis also a single axiom. On the other hand, if the goal is to disprove the impliedtheorem, then an obvious approach is to �nd an appropriate counterexample inthe form of a model.3 From Mathematics and Logic to DesignAstounding to us, many researchers in the �eld do not share our enthusiasm forattacking open questions via automated reasoning. Our eagerness is of coursebased in part on the desire to know the answer: Is there a proof, or is therea counterexample in the form of a model? A glance at our research clearlyestablishes our preference for areas of mathematics and logic.In addition to contributing to mathematics and to logic, however, our studiesof the automation of an attack on open questions have two important bene�ts.First, because sometimes we fail in our early attempts, we are forced to formulateand then implement new approaches, methodologies, and strategies. We alwaysaim at generality. Therefore, independent of �nding an answer to an open ques-tion, we produce mechanisms that increase (in a signi�cant manner) the powerof reasoning programs. That increase in turn brings into range additional openquestions, and the loop continues.A second bene�t is that some of the new approaches, methodologies, andstrategies appear to o�er much for design and veri�cation. To show how thismight be true, we note that another class of open questions exists, outside of the

usually cited classes. That class can be termed missing proofs. For one example,if the only proofs of a given theorem are by induction or by some other metaar-gument, then an axiomatic proof is missing. For a second example, if a theoremis announced without proof by a master (which removes any doubt about itstruth), then again a proof is missing. For a third example (of the many typeswe have identi�ed)|and an example that is pertinent to design|if a proof isin hand and the conjecture is that a rather shorter proof exists but has not yetbeen found, then again a proof is missing.In the past two years, we have devoted substantial e�ort to �nding missingproofs, heavily emphasizing the search for shorter proofs. The term-avoidancestrategy and the resonance strategy have played key roles in our numerous suc-cesses. Those studies, in our view, could be put to great use in design. Indeed,imagine that one has in hand a design of a chip, a circuit, or a computer program.Our approach would be to obtain a constructive proof with OTTER of the givendesign and then (in the context of the resonance strategy) use the deduced stepsof that proof in search of a better design. Then, as part of our e�ort and for atiny taste of what we would do next, we would instruct the program to avoidthe use of each of the deduced steps (one at a time) to see whether a shorterproof could be found.Although clearly nothing like an isomorphism or a guarantee, the shorter theproof, the simpler the constructed object|chip, circuit, or program. A simplerobject (everything being equal) is easier to verify, is more reliable, makes betteruse of energy, and produces less heat. In other words (with almost all of thedetails omitted), we suspect that design and veri�cation would bene�t fromadapting our recent research.Important to note is an easily overlooked subtlety when a shorter proof isthe goal. Imagine that the goal is to �nd a proof (shorter than that in hand) ofQ and R and S. As the attack proceeds, shorter and still shorter proofs maybe found of, say, S, which might lead one to the conclusion that ever-shorterproofs of the conjunction are in the making. Quite often, such is not the case.Indeed, a shorter proof of a member of the conjunction may be such that theomitted steps (from the longer proof) are useful in the total proof, where theirreplacements serve no other purpose than that of producing a shorter proof ofthe cited member. The situation in focus may be familiar to programmers orcircuit designers. Reliance on a subroutine with fewer instructions or reliance ona subcircuit with fewer components does not necessarily add e�ciency for thelarger program or circuit. This amusing subtlety makes the �nding of shorterproofs far more di�cult than it might at �rst appear.As part of our recent studies, we have also focused on term avoidance. Thedecision to employ the strategy might be based on mere curiosity (as so oftenoccurs in mathematics and in logic), or it might be based on practical consid-erations (as frequently occurs in design and veri�cation). Indeed, regarding theformer, one might wonder about the existence of a proof in which nested nega-tion is forbidden, a proof in which no deduced step contains a term of the formn(n(t)) for any term t where the function n denotes negation. As for the latter,

because of economy or e�ciency, one might wish to seek an object in whichsome type of component or instruction is absent. For example, one might wishto avoid the use of NOR gates.In contrast to the just-cited motivations for use of the term-avoidance strat-egy, we �nd that its use markedly increases the likelihood of success in the con-text of automating the search for answers to open questions. The explanationis quite subtle; indeed, adding a constraint might on the surface make �nding aproof much harder. Note that the space of deducible conclusions can grow expo-nentially as a program's attack proceeds. This property is directly addressed by(apparently arbitrarily) choosing a type of term to be avoided and then prevent-ing the program from venturing into the subspace of deducible conclusions eachof which contains one or more occurrences of such a term. Of course, depend-ing on the type of term to be avoided, one's intuition might balk. For example,in the case of avoiding nested negation, one might understandably doubt thatthe objective can be reached. However, we have almost always succeeded in thepresence of this constraint. Perhaps the explanation rests with (1) the existenceof many, many more proofs than one might expect and (2) the removal of (ap-parently) distracting information. Put another way, by avoiding conclusions of aspeci�ed type, it appears that the density of good information within that whichis retained is sharply increased.In view of our recent successes, we conjecture that those involved in designand veri�cation might bene�t from our various methodologies focusing on �ndingproofs in which some class of terms is absent.4 The FutureWe have focused on how our recent successes in �nding proofs with an auto-mated reasoning program are potentially valuable to design and validation. Inthe near-term future, perhaps some �rm will submit to us a design in the clauselanguage OTTER employs. Also required is the property that OTTER can pro-duce a constructive proof that the design meets the speci�cations. We wouldthen attempt to simplify the proof, fewer steps, less complex expressions, andperhaps the avoidance of certain classes of term. If success were to occur, the�rm might then have a better design.We also envision in the future a rather odd use of a type of parallelism.Speci�cally, the likelihood of success regardless of the goal (we conjecture) wouldbe sharply increased if one had access to a large network of computers. Whenthe objective was identi�ed, the set of computers (perhaps 10,000) would eachseparately attack the problem, each in a manner somewhat di�erent from therest. For example, each might employ a di�erent bound on the complexity ofretained information, a di�erent value for the parameter that governs the actionsof the ratio strategy, a di�erent set of resonators, and the like. All members of theset of assigned computers would simultaneously attack the problem. Currently,we rely on a miniscule version of this approach, sometimes resulting in success.

In summary, we estimate the current state of automated reasoning to be �ftyyears ahead of what an optimist might have predicted but twenty years ago. Theexplanation rests mainly with the formulation of new and diverse strategies. Fordramatically greater advances, we conjecture that strategy still holds the key.References1. McCune, W.: Automatic Proofs and Counterexamples for Some Ortholattice Iden-tities, Information Processing Letters 65 (1998), 285{2912. McCune, W.: Otter 3.0 Reference Manual and Guide. Technical report ANL-94/6.Argonne National Laboratory, Argonne, Illinois (1994)3. McCune, W.: Solution of the Robbins Problem, J. Automated Reasoning 19, no. 3(December 1997) 263{2764. McCune, M., and Padmanabhan, R.: Automated Deduction in Equational Logicand Cubic Curves. Lecture Notes in Computer Science, Vol. 1095. Springer-Verlag,New York (1996)5. Moore, J S.: System Veri�cation (special issue), J. Automated Reasoning 5, no. 4(December 1989) 409{5446. Wos, L.: Otter and the Moufang Identity Problem, J. Automated Reasoning 17, no.2 (1996) 215{2577. Wos, L., and Pieper, G. W.: A Fascinating Country in the World of Computing:Your Guide to Automated Reasoning. World Scienti�c, Singapore (1999)

