
Appendix: Conjectures concerning Proof,Design, and Veri�cation?Larry WosMathematics and Computer Science Division, Argonne National Laborator y,Argonne, IL 60439-4801,wos@mcs.anl.gov1 Setting the StageThis article focuses on an esoteric but practical use of automated reasoning thatmay indeed be new to many, especially those concerned primarily with veri�ca-tion of both hardware and software. Speci�cally, featured are a discussion andsome methodology for taking an existing design|of a circuit, a chip, a pro-gram, or the like|and re�ning and improving it in various ways. (Althoughthe methodology is general and does not require the use of a speci�c program,McCune's program OTTER does o�er what is needed. OTTER has played andcontinues to play the key role in my research, and an interested person can gainaccess to this program in various ways, not the least of which is through theincluded CD-ROM in [3].) When success occurs, the result is a new design thatmay require fewer components, avoid the use of certain costly components, o�ermore reliability and ease of veri�cation, and, perhaps most important, be moree�cient in the contexts of speed and heat generation. Although I have mini-mal experience in circuit design, circuit validation, program synthesis, programveri�cation, and similar concerns, (at the encouragement of colleagues based onsuccesses to be cited) I present material that might indeed be of substantialinterest to manufacturers and programmers.I write this article in part prompted by the recent activities of chip design-ers that include Intel and AMD, activities heavily emphasizing the proving oftheorems. As for my research that appears to me to be relevant, I have made anintense and most pro�table study of �nding proofs that are shorter [2, 3], somethat avoid the use of various types of term, some that are far less complex thanpreviously known, and the like. Those results suggest to me a strong possibleconnection between more appealing proofs (in mathematics and in logic) andenhanced and improved design of both hardware and software. Here I explorediverse conjectures that elucidate some of the possibly fruitful connections.The strongest argument opposed to what I discuss in this article rests on thegreat amount of money, time, energy, and expertise that has been devoted to de-sign and related activities. Indeed, one might understandably suspect that such? This work was supported by the Mathematical, Information, and Computational Sci-ences Division subprogram of the O�ce of Advanced Scienti�c Computing Research,U.S. Department of Energy, under Contract W-31-109-Eng-38.



experts already know how to produce superb and often minimal design. (As acounterargument, I note that the proofs found by OTTER, applying the method-ology that has been developed as part of my research, often are startlingly unlikethose a person might �nd. Perhaps more important, many of the proofs that arefound are in various ways more appealing than the literature ofeers.) However,a test of what is featured here is inexpensive, and, if the result is positive, thereward might be immense. The test consists of some expert �rst supplying aset of graduated-in-complexity designs and the proofs that they meet speci�ca-tions. Perhaps the designs supplied would already have been maximized for goodproperties. Second, if I am to be involved, part of the test requires supplyingthe proofs in the clause notation, the notation used by OTTER. Perhaps Math-ematica could produce the needed translations. Then I would take the proofs (inclause notation) and attempt to shorten them or improve them in some otheraspect discussed here. If I found better proofs, which I have in Boolean algebra(quite related to circuit design), I would submit them for evaluation.If I were not involved, one might consult the book [3], which o�ers the pro-gram and much of what is needed to use it. Such has indeed been the case forareas of mathematics and of logic. Therefore, perhaps a new type of design wouldemerge. Your cost is that of producing an OTTER input �le, and it appears thatmight require but a few days of a person's time who knew about design; my costis research time devoted to an attempt to improve a given design. Sometimessuch research time and e�ort lead to a set of solutions, each of which could beevaluated by an expert for its properties.Also addressed in this article is the concern of design from scratch, that casein which no design exists to be modi�ed, extended, and improved upon. I conjec-ture that my research and that of colleagues that has culminated in answers todiverse open questions will prove pertinent. After all, producing a design fromscratch answers the corresponding open question concerning its existence. In-deed, quite di�erent from the task of �nding \nicer" and more desirable proofsis the task of answering open questions.I shall review without technical details various approaches I and colleaguestake for �nding \better" proofs and answering open questions, and I claim thatmany of the approaches will prove useful to manufacturing, at least eventually.The explicit and implicit claims and conjectures should be viewed most critically,in view of my lack of expertise in design and synthesis. I will be content withmerely sketching diverse ideas. I will also include observations that might seemtoo obvious to state, but are included to remove ambiguity.To complete the stage setting, I give a foretaste of what is to come. Considerthe following circuit-design problem (known as the two-inverter puzzle) [3], onethat I myself would not have solved, but McCune's program OTTER did solve.Using as many AND and OR gates as you like, but using only two NOTgates, can you design a circuit according to the following speci�cation?There are three inputs, i1, i2, and i3, and three outputs, o1, o2, and o3.The outputs are related to the inputs in the following simple way:o1 = not(i1) o2 = not(i2) o3 = not(i3).



Remember, you can use only two NOT gates!The fact that an automated reasoning program was able to design the desiredcircuit hints at what might be possible in the context of synthesizing circuitsfrom scratch; see Section 3.In the context of �nding better circuits (see Section 2), imagine that a personor a program succeeds in solving the two-inverter puzzle, but the solution ab-surdly contains as a subexpression the OR of i1 and i1. In other words, assumethat the cited subexpression is not needed, that an unneeded OR gate is present.The methodology presented in this article might quickly enable a program, giventhe unwanted solution, to �nd a better one, omitting the extra OR gate.Still with the focus on the two-inverter puzzle, in the context of term avoid-ance (see Section 4), imagine that the �rst solution that is o�ered containsNOT(NOT(i3)). Of course, a canonicalization rule could be applied to replacethe apparently unnecessary cited expression with i3. Far better and in the spiritof the corresponding methodology to be touched upon, the program could beinstructed to avoid retention of all expressions containing NOT(NOT(t)) for anyterm t. Possibly not obvious, such avoidance can contribute markedly to programe�ectiveness; indeed, unwanted conclusions can lead to much wandering|for aprogram, or for a person.In contrast to the discussion focusing on combinational circuits, clearly afocus on sequential design in which time and delay are factors presents distinctlydi�erent and di�cult problems to solve. Although I can at this moment o�erlittle advice in that regard, in that my research has never dealt with this aspect,I nevertheless conjecture that the preceding discussion will, for some, suggestwhat is more than conceivable and perhaps promising.2 Shorter Proofs in Relation to Improved DesignAlthough by no means does a one-to-one correspondence exist, it seems patentlyclear that (in the following sense) a strong correlation does exist between prooflength and simplicity of design. Consider two proofs A and B, source unspeci�ed,each intended to construct the same object (such as a circuit). Assume (in thishypothetical case) that the length of A is moderately to sharply less than thelength ofB. Finally, assume that the (automated reasoning) program in use o�ersan ANSWER literal (to display the constructed object) and that the program�nds both proofs.Quite often, although certainly not always, the object displayed when A iscompleted is preferable to that displayed when B is completed in the sense thatit relies on fewer components. Therefore, it seems quite reasonable to conjecturethat a methodology for �nding shorter proofs might indeed be of interest in thedesign of circuits or chips or the synthesis of programs. Moreover, a simpler (inthe sense under discussion) object in general is easier to verify, less di�cult toshow that the speci�cations are met. My research has produced such a method-ology, one that has been applied successfully again and again in mathematicsand in logic (although quite often no shorter proof is yielded). (Section 6.7 of



[3] discusses the latest methodology I have formulated for systematically seekingshorter proofs.)In the context of �nding shorter proofs in my own research, one of the moresatisfying concerned �nding a 100-step proof, where I was presented for a startwith an 816-step proof. The theorem in focus was one from Boolean algebra, a�eld relevant in various ways to circuit design. The approach I took did indeed,at the beginning, rely on the supplied 816-step proof. Further, at each stage inthe process aimed at �nding a shorter and then still shorter proof, the programkeyed on the completed proof at an earlier stage.The notion I suggest that might be of interest asserts that a program couldbe given a design (circuit, chip, program) whose corresponding proof that thespeci�cations were met was in hand. The cited approach emphasizes the role ofthe steps of the proof in hand, preferring formulas or equations that are similarto one of the steps. Indeed, with a strategy known as the resonance strategy, theproofs that are found along the way|shorter and shorter, if all is going well|play a vital role. Another aspect of the approach concerns blocking the use ofvarious steps of a given proof with the intention that, not only will such blockedsteps be absent, but a shorter proof will emerge. (My preferred approach toblocking the use of a step rests on the use of demodulation, a procedure normallyused for simpli�cation and canonicalization.)Also of interest and quite curious is the fact that, occasionally, a shorter proofhas the property that all of its steps are among those of the somewhat longerproof being used by the resonance strategy. The explanation rests with the factthat the program �nds new ways of connecting already-used items, ignoring oth-ers totally, and succeeding in completing a proof. For example, sometimes theprogram can use the �fth step with the twelfth step to deduce the twentieth step,which in the longer proof was obtained from the eighteenth and nineteenth, anddiscover that the eighteenth and nineteenth steps can be ignored. The corre-spondence for design would be the use of some, but not all, of the componentsof an existing design with (so to speak) a rewiring, without the introduction ofnew components.3 New Proofs in Relation to Radically New DesignsIn contrast to the preceding section in which the object is to take an existingdesign and improve upon it, here the focus is on �nding the desired objectfrom scratch. In such a case, often, no clue exists concerning the nature of thecorresponding proof whose ANSWER literal, if successful, will display the object.Starting from scratch, no surprise, is far more di�cult than beginning with anexisting object and its corresponding proof. Nevertheless, I and my colleagueBranden Fitelson are very encouraged by our various successes with �nding aproof where no clue concerning its nature was available [1].As for the word \radically" occurring in the title of this section, it was notused lightly. The proofs yielded by applying the various methodologies relyingon OTTER's arsenal of weapons are (so it strongly appears) sharply unlike what



a person might produce. For example, in �elds of logic, the literature steadfastlyo�ers numerous proofs relying heavily on the use of terms of the form n(n(t)) forvarious terms t, where the function n denotes negation (not). In contrast to theliterature and the implicit view that such double-negation terms are virtuallyrequired, I have found (through heavy use of OTTER) numerous proofs avoidingsuch terms. More important, the methodology is general|not tuned to anyspeci�c type of term, such as that involving negation.For a second example, where a researcher might understandably shy awayfrom considering a messy and complex formula, equation, or expression, a rea-soning program �nds little discomfort in its consideration. Indeed, equationswith more than 700 symbols present no problem for OTTER. Simply put andwithout explanation, the attack taken by a powerful automated reasoning pro-gram often resembles that taken by an unaided researcher in few if any ways.Rather than a disadvantage, (it seems to me) this divergence in attack accountsfor many marked successes. I conjecture (with some trepidation) that, if the goalwere a radically new design, an expert might be greatly rewarded by adding asan assistant a program such as OTTEROne key aspect of the methodology OTTER applies when seeking a proofwhere none is in hand is reliance on the already-cited resonance strategy, butreliance in a slightly di�erent manner. Speci�cally, what amounts to patternscorresponding to steps that proved useful in related proofs are included in theinput. Often very few of those correspondents (resonators) are present in theproof that results when successful, and often not many more of its steps matchone of the resonators. Naturally, the question then arises concerning how suchinclusions help. With a new proof, I suspect that those few of its steps thatare either one of the actual patterns or match a resonator (in a manner wherevariables are treated as indistinguishable) provide the keys to getting aroundnarrow corners, over wide plateaus, and the like (speaking metaphorically). Inother words, without the guidance o�ered by the included resonators, successwould not occur. The idea is similar to the case in which a colleague provides afew vital hints, even if that colleague cannot solve the actual problem.4 Term-Avoidance Proofs in Relation to DesignThe avoidance of terms, such as those in the double-negation class, is somewhatreminiscent of avoiding the use of some component. Sometimes the desire is forminimal but nonzero use of some type of component|as was the case in thetwo-inverter puzzle|but, often, the intent is to never have present some typeof term or component. For example, OR gates might come into play in somefashion during the exploration by person or by program, and yet their actualuse might be unwanted. As commented earlier, a program such as OTTER can beinstructed to completely avoid retaining any unwanted conclusion, thus reectingthe intent of the user.



5 Complexity of ProofsIn this section, in contrast to the preceding in which I was able to give hints abouta concrete relation between properties of proofs and improvements in design, Isimply discuss another aspect of my research concerned with proof betterment.In other words, I (at the moment) leave to the expert in design, veri�cation, andsynthesis the extrapolation to other areas.One of the sometimes annoying properties of all proofs in hand is unwantedcomplexity of various types. The most obvious type concerns the length of theformulas or equations of the deduced proof steps. Simply put, the proofs in handmay each be far messier than preferred. Such messiness is not merely an aestheticconsideration; indeed, its presence can make the proof harder to follow and maysuggest that key lemmas (that would reduce the complexity) have as yet notbeen discovered.OTTER o�ers what is needed in the context of deduced-step length, namely,a parameter called max weight. The user can assign a value to this parameter andcan instruct the program to measure deduced-step complexity purely in termsof symbol count. When a new conclusion is drawn whose complexity exceeds theuser-assigned value to max weight, the conclusion is immediately discarded.Further, by assigning a small value to max weight and by including as res-onators expressions corresponding to the steps of an existing proof with evensmaller assigned values, the user can attempt to force the program to �nd a sub-proof with an intriguing property (discussed earlier). Speci�cally, to complete aproof, the program (in the case under discussion) sometimes �nds a proof thatis shorter than the one in focus such that all of the deduced steps of the shorterproof are among those of the proof whose steps are being used to guide the pro-gram's attack. In e�ect, if successful, the original proof has been (so to speak)rewired in a manner that reduces the number of components needed to achievethe objective.Of a quite di�erent nature in the context of proof complexity is that con-cerned with the maximum number of distinct variables found in the deducedsteps. In particular, for each formula or equation from among the deduced steps,a number (integer) corresponding to it can be trivially computed that matchesthe corresponding number of distinct variables present. The formula P(i(x,x)),for example, has the number 1 associated with it, one distinct variable eventhough two variables (not distinct) are present. The maximum of the assignednumbers to the deduced steps (excluding those that correspond to the inputor hypotheses) is the number of maximum distinct variables for the proof. Isthat number (as a measure of complexity) in some important manner related tocomponent use or instruction use?Fortunately, OTTER o�ers the appropriate parameter, max distinct vars.The user can assign a value to this parameter. When a conclusion is deduced,before it is retained, the number of distinct variables in it is compared withthe max distinct vars and, if it is strictly greater, the new item is immediatelypurged.



The use of this parameter can have some unexpected consequences for proofbetterment and, perhaps, for design enhancement. Indeed, if i is the minimumof the various values of the maximumnumber of distinct variables for the knownproofs, and if j is assigned to max distinct vars with j strictly less than i, thenthe program is forced to pursue a line of study that cannot produce, if successful,any of the known proofs. In other words, reminiscent of Section 3, the programmight complete a radically new proof, �nd a radically new design.Just as a note, other measures of complexity can be nicely and e�ectivelystudied with OTTER. For but one example, a measure of complexity concernsthe level of a proof. By de�nition, the level of the input items that characterizethe problem is 0, and the level of a deduced item is 1 greater than the maximumof the levels of the hypotheses from which it is deduced. This parameter ispertinent to tree depth, the tree of the proof.6 Veri�cationIn this article, I have begun to make a case for the use of automated reason-ing in the context of design and veri�cation. Mainly, I have focused on design(implicitly, of circuits, chips, and programs). However, all things being equal,the simpler the design, the greater the ease of veri�cation. Therefore, what hasbeen discussed has some relevance to veri�cation. Explicit is the position thatthe properties of a proof that constructs some object are reected in the na-ture of the object. For example, if the proof is strictly shorter than that in hand,then (quite often) the corresponding object rests on the use of fewer components(whatever they may be). For a second example, if the proof avoids the use ofsome type of term (such as double negation), then the constructed object avoidsthe use of some type of component.As for additional topics that appear to merit mention, perhaps the followingare among them. OTTER can be and has been used to show that one of a set ofaxioms is dependent on the remainder. For design, the parallel might be that ofshowing that some thought-to-be key property that must be studied, in additionto the rest, in fact is dependent on the rest. If the remaining properties are shownto hold, then the cited key property must, without verifying its presence. Fitelsonand I have also succeeded in proving that a weakening of some well-recognizedaxiom system does the trick, su�ces to axiomatize the area of discourse. Theanalogue might be that of showing that some key property can be replaced bya far weaker property, one that is easier to satisfy and easier to verify.7 Review and SummaryThe approach taken in this article is to merely sketch various notions, to providehints or clues as to what I conjecture to be more than feasible. Although I claimno expertise in design, synthesis, and veri�cation, my research has yielded somestartling results in mathematics and in logic. Some of those results concern theanswering of open questions, whose analogue might be the design of a radically



new nature. Some of the results focus on proof betterment: shorter, less com-plex, term-avoidance, and the like. The analogues of those have been discussed,although not in the greatest depth.The beauty of relying on a program such as McCune's OTTER is that itsproofs are most detailed. Another charming and useful aspect of its proofs isthat they very often di�er sharply from the type of proof an unaided researcher�nds. This program o�ers a veritable arsenal of weapons from which to choosewhen attacking a question or problem, as well as diverse mechanisms pertinentto powerful reasoning. The program runs with incredible speed and, in contrastto living creatures, tirelessly.As discussed here, through the use of the resonance strategy, the presence ofan actual design can be put to great use when the goal is to re�ne and improveit in some manner. However, if the various successes in answering open questionspoints in the right direction, the lack of a design does not prevent the �ndingof a desired object; indeed, one can start from scratch, as I and my colleagueBranden Fitelson have done in areas of logic. Of course, starting from scratchpresents a more di�cult problem to solve, especially when no clues are o�eredof any type regarding the nature of a possible proof.The material sketched here might be timely, in view of the current interestin theorem proving by members of industry that include Intel and AMD. I sus-pect that (perhaps) many of the items discussed here o�er a new notion, evento those familiar with automated reasoning. I cannot measure at this time thepracticality. Certainly, one obstacle is sequential design in contrast to combina-tional, that concerned with time and with delay, for example. Nevertheless, Iawait (with pleasure and anticipation) your examination of and comment on theideas presented here. I conjecture that a program such as OTTER will provide amost valuable automated reasoning assistant for design and synthesis|it clearlyhas for us in mathematics and in logic.References1. Fitelson, B., and Wos, L.: Missing Proofs Found, preprint ANL/MCS-P816-0500,Argonne National Laboratory, Argonne, Illinois (2000)2. Wos, L.: The Automation of Reasoning: An Experimenter's Notebook with OTTERTutorial. Academic Press, New York (1996)3. Wos, L., and Pieper, G. W.: A Fascinating Country in the World of Computing:Your Guide to Automated Reasoning. World Scienti�c Publishing, Singapore (1999)


