
Runtime Checking of Datatype Signatures inMPI?William D. GroppMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439Abstract. The MPI standard provides a way to send and receive com-plex combinations of datatypes (e.g., integers and doubles) with a singlecommunication operation. The MPI standard speci�es that the type sig-nature, that is, the basic datatypes (language-de�ned types such as intor DOUBLE PRECISION), must match in communication operations suchas send/receive or broadcast. Because datatypes may be de�ned by theuser in MPI, there is a limitless collection of possible type signatures.Detecting the programmer error of mismatched datatypes is di�cult inthis case; detecting all errors essentially requires sending a complete de-scription of the type signature with a message. This paper discusses analternative: send the value of a function of the type signature so that (a)identical type signatures always give the same function value, (b) dif-ferent type signatures often give di�erent values, and (c) common cases(e.g., prede�ned datatypes) are handled exactly. Thus, erroneous pro-grams are often (but not always) detected; correct programs never are
agged as erroneous. The method described is relatively inexpensive tocompute and uses a small (and �xed, independent of the complexity ofthe datatype) amount of space in the message envelope.1 IntroductionThe Message Passing Interface (MPI) [3, 2] provides a standard and portableway of communicating data from one process to another, even for heteroge-neous collections of computers. A key part of MPI's support for moving datais the description of data not as a series of undi�erentiated bytes but as typeddata corresponding to the datatypes natural to the programming language beingused with MPI. Thus, when sending C ints, the programmer speci�es that themessage is made up of type MPI INT (because MPI is a library rather than alanguage extension, MPI cannot use the same names for the types as the pro-gramming language). MPI further requires that the type of the data sent matchthe type of the data received; that is, if the user sends MPI INTs, the user must? This work was supported by the Mathematical, Information, and ComputationalSciences Division subprogram of the O�ce of Advanced Scienti�c Computing, U.S.Department of Energy, under Contract W-31-109-Eng-38.



receive MPI INTs.1 MPI also allows the de�nition of new MPI datatypes, calledderived types, by combining datatypes with routines such as MPI TYPE VECTOR,MPI TYPE STRUCT, and MPI TYPE HINDEXED. Because the matching of basic typesis required for a correct program, a high-quality development environment shoulddetect when the user violates this rule. This paper describes an e�cient methodfor checking that datatype signatures match in MPI communication.One of the reasons such error checking is important for MPI programs isthat MPI allows messages containing collections of di�erent datatypes to becommunicated in a single message. Further, the sender and receiver are often indi�erent parts of the program, possibly in di�erent routines (or even programs).User errors in the use of MPI datatypes are thus di�cult to �nd; adding thisinformation can catch errors (such as using the same message tag for two di�erentkinds of messages) that are di�cult for the user to identify by looking at thecode.An additional complexity is that MPI requires only that the basic types ofthe data communicated match for example, that ints match ints and charsmatch chars. This ordered set of basic datatypes (i.e., types that correspond tobasic types supported by the programming language) is called the type signature.The type signature is a tuple of the basic MPI datatypes. For example, threeints followed by a double is(MPI INT; MPI INT; MPI INT; MPI DOUBLE):A type signature has as many types as there are elements in the message. Thismakes it impractical to send the type signature with the message.MPI also de�nes a type map; for each datatype, a displacement in memoryis given. While the type map speci�es both what and where data is moved,a type signature speci�es only what is moved. Only the signatures need tomatch; this allows scatter/gather-like operations in MPI communication. Forexample, it is legal to send 10 MPI INTs but receive a single vector (created withMPI TYPE VECTOR) that contains at least 10 MPI INTs. Communicating with dif-ferent type maps is legal as long as the type signatures are the same. Thus, itisn't correct to check that the datatypes match; only the type signatures mustmatch.Note that when looking at the type signature, the comparison is made withthe basic types, even if the type was de�ned using a combination of deriveddatatypes. Thus, when looking at the type signature, any consecutive subse-quence may have come from a derived datatype.Consider the derived type t2 de�ned by the following MPI code fragment:1 Two exceptions to this rule are mentioned in Section 4. A third, mentioned in the MPIstandard, is for the MPI implementation to cast the type; for example, if MPI INTis sent but MPI FLOAT is speci�ed for the receive, an implementation is permittedto convert the integer to a 
oat, following the rules of the language. As this is notrequired, it is nonportable. Further, no MPI implementation performs this conver-sion, and because it silently corrects for what is more likely a programming error,no implementation is ever likely to implement this choice.



MPI_Datatype t1, t2, types[2];int blen[2];MPI_Aint displ[2];types[0] = MPI_INT;types[1] = MPI_DOUBLE;blen[0] = 1;blen[1] = 1;displ[0] = ...;displ[1] = ...;MPI_Type_struct( 2, blen, displ, types, &t1 );types[0] = t1;types[1] = MPI_SHORT;blen[0] = 2;MPI_Type_struct( 2, blen, displ, types, &t2 );The derived type t2 has the type signature( (MPI_INT, MPI_DOUBLE), (MPI_INT, MPI_DOUBLE), MPI_SHORT ) =( MPI_INT, MPI_DOUBLE, MPI_INT, MPI_DOUBLE, MPI_SHORT ).The approach in this paper is to de�ne a hashing function that maps thetype signature to an integer tuple (the reason for the tuple is discussed in Sec-tion 3). The communication requirement is thus bounded independent of thecomplexity of the datatype; further, the function is chosen so that it can becomputed e�ciently; �nally, in most cases, the cost of computing and checkingthe datatype signature is a small constant cost for each communication opera-tion. Since this approach is a many-to-onemapping, it can fail to detect an error.However, the mapping is chosen so that it never erroneously reports failure. Fur-ther, for the important special case of communication with basic datatypes (e.g.,MPI DOUBLE), the test succeeds if and only if the type signatures match.Other approaches are possible. The datatype de�nitions (just enough to re-produce the signature, not the type map) could be sent, allowing sender andreceiver to agree on the datatypes. The de�nitions could be cached, allowinga datatype to be reused without resending its de�nition. The special case of(count,datatype) would reduce the amount of data that needed to be communi-cated in many common cases. Still, comparison of di�erent datatypes in generalwould be complex, even if common patterns were exploited. Another approach isto send the complete type signature; this is the only approach that will catch allfailures (various compression schemes can be used to reduce the amount of datathat must be sent to describe the type signature, of course). Such an approachcould be implemented over MPI by using the MPI-2 routines to extract datatypede�nitions, along with the MPI pro�ling interface. For systems with some kindof globally accessible memory, such as the Cray T3D, it is possible to make alldatatype de�nitions visible to all processes, as in [1].



2 Datatype Hashing FunctionWe are looking for a function f that converts a type signature into a smallbit range, such as a single integer or pair of integers. The cost of evaluatingf should be relatively small; in particular, the cost of evaluating f for a typesignature containing n copies of the same type (derived or basic) should be o(n);for example, logn. Because a type signature may contain an arbitrary numberof terms, the easiest way to de�ne f is by a binary operation applied to all ofthe elements of the type signature. That is, de�ne a binary operation � that canbe applied to a type signature (�1; : : : ; �n) as follows:f(�1) = �1f((�1; �2; : : : ; �n)) = nMi=1 �i:For example, f(int; double) = (int)� (double)and f(int; double; char) = (int)� (double)� (char):In order to make it inexpensive to compute the hash function for datatypesbuilt from an arbitrary combination of derived datatypes, the hash function mustbe associative. Since we want (int,double) to hash to a di�erent value from(double,int), we want the operation � to be noncommutative.For this approach to be useful, the hash functionmust hash di�erent datatypesto di�erent hash values, particularly in the case of \common" errors, such as mis-matched prede�ned datatypes.3 A Simple Datatype Hashing FunctionWe need an operation that is both associative and noncommutative. Our ap-proach is to de�ne a tuple (�; n) where � is a datatype (derived or basic) and nis the number of basic datatypes in �. The action of � is given by(�; n)� (�;m) � (� + (� << n); n+m);where the operators + and << are chosen to have the following properties:(� << n) << m = � << (n+m) (1)(�+ �) + 
 = �+ (� + 
) (2)(� << n) + (� << n) = (�+ �) << n: (3)One choice for these operators is bitwise exclusive or (xor) for + and circularleft shift for <<. These operations are often chosen for hash functions becausethey are very cheap to apply. They have the necessary properties, as can be



proven by writing the � and so forth as bit vectors and then applying the op-erations xor and circular shift to those bit vectors. Another choice of operatorsis integer addition modulo 232 for + and circular left shift by 3 for << (that is,a << 1 is a, shifted left three bits).These properties allow us to prove that the operation � is associative:((�; n)� (�;m)) � (
; p) =((�+ (� << n); n+m)) � (
; p) =((�+ (� << n) + (
 << n+m); n +m + p) =((�+ ((� + (
 << m) << n)); (n+ (m + p)) =((�; n)� (� + (
 << m);m + p)) =((�; n)� ((�;m) � (
; p))):The operation � is not commutative:(�; n)� (�;m) =(�+ (� << n); n+m)(�;m) � (�; n) =(� + (� << m); n +m);but (�+ (� << n)) 6= (� + (� << m))except in special cases.Note that addition and xor by itself are commutative; the shift operationprovides a noncommutative operation.We will use this operation to build f . Speci�cally, we will apply � to a typesignature where we have replaced every basic type with a tuple containing aninteger representing the type and a one, indicating a single basic type. That is,(int; double; char)becomes ((int; 1); (double; 1); (char; 1))and f((int; double; char)) = (int; 1)� (double; 1)� (char; 1):3.1 Cost of Evaluating fSeveral identities can be used to reduce the cost of computing f . One importantcase is a type signature containing a large number of the same basic type. Thisis the signature that represents the most common MPI usage: a send with abasic datatype and a count that is greater than one. Using a method that isvery similar to the approach for evaluating integer powers of matrices, we can



compute Lmi=1(�; n) in O(log(m)) time by induction. Let m be 2k for some k.Then mMi=1(�; n) = 0@m=2Mi=1(�; n)1A�0@m=2Mi=1 (�; n)1A ;the terms on the right are evaluated by inducation. This can be evaluated withlog2m evaluations. The generalization to arbitrary m is left to the reader.Further, note that v << n = v << (n+wordsize) = v << (n mod wordsize);this can be used to reduce the cost of evaluating f .Finally, by exploiting the associative property of �, evaluating f for a newderived datatype involves only the values of f for the datatypes that make upthe new datatype (with the exception of those containing types MPI PACKED orMPI BYTE). Thus, computing f for a datatype has cost proportional only to thenumber of di�erent datatypes (either user-de�ned or basic) used in the de�nitionand proportional to the log of the number of instances of each datatype.3.2 Hash Function QualityFor the hash function to be useful, collisions should be rare. Since in a typi-cal program, MPI type signatures are not randomly distributed, it makes themost sense to experimentally evaluate some common datatype patterns. Fur-ther, while there are 13 distinct basic MPI datatypes in the C binding, mostprograms use only a few types, such as MPI INT and MPI DOUBLE. Types suchas MPI UNSIGNED CHAR are rarely used. Thus, for most applications, only a fewbasic datatypes will appear. To see how likely a collision in the hash functionmight be, we tested the following patterns:n : �i (4)m : (1 : �i; (n� 1) : �j) (5)1 : �i; m : (1 : �i; (n � 1) : �j); (6)where n : x means n copies of x. These correspond to the cases of count (n) ofa basic datatype (4), count m of a structure containing n members (5), and astructure containing count m of another structure (6). Various values of n andm were used.Table 1 shows the results of the tests. Clearly, only the choice of integeraddition with medium-sized integers provides an e�ective hash function; withthis choice, only one in one hundred di�erent type signatures hashed to thesame value. Further experiments may identify improved hash functions.3.3 Improving the Type Signature TestOne modi�cation of the approach is to optimize for the special case of countcopies of a datatype (basic or otherwise), since this is the fundamental unit inMPI (all MPI communication operations send count copies of a given datatype).



Table 1. Results of tests of the hash function. Collisions is the percentage of typesignatures whose hash value was the same as a di�erent type signature. Duplicatesgives the percentage of hash values that were duplicated. Operand indicates whetherthe representation for a basic datatype is a small integer (less than 32) or a largerinteger (less than 216). We tested 4625 di�erent type signatures.Operator1 Operator2 Operand Collisions Duplicatesxor rotate 1 small 57.4 13.4xor rotate 3 small 48.9 10.5+ rotate 1 small 24.9 11.5+ rotate 3 small 29.4 10.3xor rotate 1 medium 45.6 9.8+ rotate 1 medium 1.2 0.58if (�send != �recv) thenif (�send and �recv is basic) then errorelse if (Lcountsendi=1 (�send; nsend) !=Lcountrecvi=1 (�recv; nrecv)) then errorendifendifFig. 1. Modi�cation to test to provide exact handling of the most common case.In this case, we send (count; �; n). The modi�ed test is shown in Figure 1.Note that the count applied in the receive case is the actual count, not themaximumcount that is provided by user in the MPI RECV call. In addition, we donot need to send the count separately; we can simply use a single bit to indicatethat the datatype is basic and the count can be computed, if necessary, from thelength of data sent. With this modi�cation, basic datatypes are handled exactly(all errors are detected).4 LimitationsMPI allows users to send partial datatypes. That is, the user can de�ne adatatype representing, for example, an int followed by ten doubles, and re-ceive this into a datatype of an int followed by �fty doubles, as long as thetype signature of the data that is sent matches the type signature at the receiverfor all of the types that are used. This allows the user to de�ne a maximum-sizeddatatype on the receive end but an actual sized datatype on the send end.In MPI, the user can detect this by examining the MPI Status value returnedby the receive. If the routine MPI GET COUNT returns MPI UNDEFINED, then theroutine MPI GET ELEMENTSmay be used to determine how many elementary (pre-de�ned) MPI datatypes were sent. In the case above, MPI GET ELEMENTS wouldreturn eleven (one int plus ten doubles).



Our test does not handle this. Thus, it must also test for MPI GET COUNTbeing MPI UNDEFINED; in that case, the test passes (even if the type signaturedo not, in fact match).In principle, a corresponding value of f could be constructed by using thesame process that is used in an MPI implementation to evaluate MPI GET ELEMENTS;by integrating the computation of f with this routine, this test can be performedwith low additional cost.The MPI datatype MPI PACKED and MPI BYTE also present special problems.MPI PACKED can be handled by exploiting the availability of a header in a packedbu�er. MPI BYTE explicitly turns o� type signature matching and is best handledwith a reserved hash value (e.g., 0xFFFFFFFF,-1).5 ConclusionWe have shown an e�cient way to catch many user errors caused by type sig-nature mismatch at run time in MPI programs. The cost is relatively small;consuming only an additional 32 to 64 bits (4 to 8 bytes) of message header andevaluation cost that is bounded by O(m logn) for derived datatypes containingm di�erent types with repeat count � n. The most common cases (count of abasic datatype) take constant time. We note that this approach can be used forany system that incrementally packs and unpacks data, such as XDR or PVM.AcknowledgmentsI thank Lloyd Lewins for the suggestion of using a hashing function to supporterror checking of derived datatypes, and Rusty Lusk for his valuable comments.References1. Jason Hunter. Datatype checking in Cray T3D native MPI. Technical ReportEPCC-SS95-07, Edinburgh Parallel Computing Centre, 1995.2. Message Passing Interface Forum. MPI: A message-passing interface standard.http://www.mpi-forum.org.3. Message Passing Interface Forum. MPI: A Message-Passing Interface standard.International Journal of Supercomputer Applications, 8(3/4):165{414, 1994.


