
Interior-Point MethodsFlorian A. Potra and Stephen J. WrightMarch 15, 2000AbstractThe modern era of interior-point methods dates to 1984, when Karmarkar proposed his algorithmfor linear programming. In the years since then, algorithms and software for linear programming havebecome quite sophisticated, while extensions to more general classes of problems, such as convex quadraticprogramming, semide�nite programming, and nonconvex and nonlinear problems, have reached varyinglevels of maturity. We review some of the key developments in the area, including comments on both thecomplexity theory and practical algorithms for linear programming, semide�nite programming, monotonelinear complementarity, and convex programming over sets that can be characterized by self-concordantbarrier functions.1 IntroductionIn their survey article [6], Freund and Mizuno wroteInterior-point methods in mathematical programming have been the largest and most dramaticarea of research in optimization since the development of the simplex method: : : Interior-pointmethods have permanently changed the landscape of mathematical programming theory, practiceand computation: : :.Although most research in the area was devoted to linear programming, the authors claimed thatsemide�nite programming is the most exciting development in mathematical programming in1990s.Although various interior-point methods had been considered one way or another from the 1950's, and in-vestigated quite extensively during the 1960s (Fiacco and McCormick [5]), it was the publication of theseminal paper of Karmarkar [11] that placed interior-point methods at the top of the agenda for many re-searchers. On the theoretical side, subsequent research led to improved computational complexity bounds forlinear programming (LP), quadratic programming (QP), linear complementarity problems (LCP) semidef-inite programming (SDP) and some classes of convex programming problems. On the computational side,high-quality software was eventually produced, much of it freely available. The general performance of com-putational tools for linear programming improved greatly, as the sudden appearance of credible competitionspurred signi�cant improvements in implementations of the simplex method.In the �rst years after Karmarkar's initial paper, work in linear programming focused on algorithmsthat worked with the primal problem, but were more amenable to implementation than the original methodor that had better complexity bounds. A particularly notable contribution from this period was Renegar's1



algorithm [21], which used upper bounds on the optimal objective value to form successively smaller subsets ofthe feasible set, each containing the solution, and used Newton's method to follow the analytic centers of thesesubsets to the primal optimum. A new era was inaugurated with Megiddo's paper [13], originally presentedin 1987, which described a framework for primal-dual framework algorithms. The primal-dual viewpointproved to be extremely productive. It yielded new algorithms with interesting theoretical properties, formedthe basis of the best practical algorithms, and allowed for transparent extensions to convex programmingand linear complementarity. In 1989, Mehrotra described a practical algorithm for linear programmingthat remains the basis of most current software; his work appeared in 1992 [14]. Meanwhile, Nesterovand Nemirovskii [16] were developing the theory of self-concordant functions, which allowed algorithmsbased on the primal log-barrier function for linear programming to be extended to wider classes of convexproblems, particularly semide�nite programming and second-order cone programming (SOCP). Nesterovand Todd [17, 18] extended the primal-dual approach along similar lines to a more restricted class of convexproblems that still included SDP and SOCP. Other work on interior-point algorithms for SDPs, which havea wide variety of applications in such areas as control and structural optimization, was already well advancedby this point. Work on these algorithms gained additional impetus when it was recognized that approximatesolutions of NP-hard problems could thereby be obtained in polynomial time.We now outline the remainder of the paper. Section 2 discusses linear programming, outlining the pedigreeof the most important algorithms and various computational issues. In Section 3, we discuss extensions toquadratic programming and linear complementarity problems, and compare the resulting algorithms withactive-set methods. Semide�nite programming is the topic of Section 4. Section 5 contains some elementsof the theory of self-concordant functions and self-scaled cones. Finally, we present some conclusions inSection 6.There are many other areas of optimization in which areas in which interior-point approaches have madean impact, though in general the state of the art is less mature than for the areas mentioned above. Generalconvex programming problems of the formminx f(x) s.t. gi(x) � 0; i = 1; 2; : : : ;m;(where f and gi, i = 1; 2; : : : ;m, are convex functions) can be solved by extensions of the primal-dual approachof Section 3. Interestingly, it is possible to prove superlinear convergence of these primal-dual algorithmswithout assuming linear independence of the active constraints at the solution. This observation promptedrecent work on improving the convergence properties of other algorithms, notably sequential quadraticprogramming. A number of researchers have used interior-point methods in algorithms for combinatorial andinteger programmingproblems. (In some cases, the interior-point method is used to �nd an inexact solution ofrelated problems in which the integrality constraints are relaxed.) In decomposition methods for large linearand convex problems, such as Dantzig-Wolfe/column generation and Benders' decomposition, interior-pointmethods have been used to �nd inexact solutions of the large master problems, or to approximately solveanalytic center subproblems to generate test points. Additionally, application of interior-point methodologyto nonconvex nonlinear programming has occupied many researchers for some time now. The methodsthat have been proposed to date contain many ingredients, including primal-dual steps, barrier and meritfunctions, and scaled trust regions.For references to work mentioned in the previous paragraph, and for many other results discussed butnot cited in this paper, please see the bibliography of the technical report by Wright [28].A great deal of literature is available to the reader interested in learning more about interior-pointmethods. A number of recent books [27], [29], [23] give overviews of the area, from �rst principles tonew results and practical considerations. Theoretical background on self-concordant functionals and related2



developments is described in [16] and [22]. Technical reports from the past �ve years can be obtained fromthe Interior-Point Methods Online Web site at www.mcs.anl.gov/otc/InteriorPoint.2 Linear ProgrammingWe consider �rst the linear programming problem, which is undoubtedly the optimization problem solvedmost frequently in practice. Given a cost vector c 2 IRn, m linear equality constraints de�ned by a matrixA 2 IRm�n and a vector b 2 IRm, the linear programming problem can be stated in its standard form as:minx cTx s.t. Ax = b; x � 0: (2.1)The restriction x � 0 applies componentwise, that is, all components of the vector x 2 IRn are required tobe nonnegative.The simplex method developed by Dantzig between 1947 and 1951 has been the method of choice forlinear programming. While performing very well in practice, its worst case computational complexity isexponential, as shown by the example of Klee and Minty from 1972. The problem of existence of a (weakly)polynomial algorithm for solving linear programs with integer data was solved by Khachiyan in 1979. Heproved that the ellipsoid method solves such programs in O(n2L) iterations, requiring a total of O(n4L) bitoperations, where L is the length of a binary coding of the input data, that is,L = mXi=0 nXj=0dlog2(jaijj+ 1) + 1ewith ai0 = bi and a0j = cj.There are no known implementations of the ellipsoid method for linear programming that are remotelycompetitive with existing practical codes. The merit of the celebrated paper of Karmarkar [11] consisted notso much in lowering the bound on the computational complexity of LP to O(nL) iterations, requiring a totalof O(n3:5L) bit operations, as in the fact that it was possible to implement his algorithm with reasonablee�ciency. The theoretical computational complexity of interior-point methods for LP was eventually loweredto O(pnL) iterations, requiring a total of O(n3L) bit operations by a number of authors. Goldfarb and Todd[8] provide a good reference for these complexity results. By using fast matrix multiplication techniques,the complexity estimates can be reduced further. Quite recently, Anstreicher [2] proposed an interior-pointmethod, combining partial updating with a preconditioned gradient method, that has an overall complexityof O(n3= logn) bit operations. The paper [2] contains references to recent complexity results for LP.The best of these complexity results, all of which are of major theoretical importance, are obtained asa consequence of global linear convergence with factor 1 � c=pn. In what follows we will describe a simpleinterior algorithm that achieves this rate. We assume that the linear program (2.1) has a strict interior, thatis, the set F� def= fx jAx = b; x > 0gis nonempty, and that the objective function is bounded below on the set of feasible points. Under theseassumptions, (2.1) has a (not necessarily unique) solution.By using a logarithmic barrier function to account for the bounds x � 0, we obtain the parametrizedoptimization problem minx f(x;�) def= 1�cTx� nXi=1 logxi; s.t. Ax = b; (2.2)3



where log denotes the natural logarithm and � > 0 denotes the barrier parameter. Because the logarithmicfunction requires its arguments to be positive, the solution x(�) of (2.2) must belong to F�. It is well known(see, for example, [26, Theorem 5]) that for any sequence f�kg with �k # 0, all limit points of fx(�k)g aresolutions of (2.1).The traditional SUMT approach [5] accounts for equality constraints by including a quadratic penaltyterm in the objective. When the constraints are linear, as in (2.1), it is simpler and more appropriate tohandle them explicitly. By doing so, we devise a primal barrier algorithm in which a projected Newtonmethod is used to �nd an approximate solution of (2.2) for a certain value of �, and then � is decreased.Note that r2xxf(x;�) = �X�2; rxf(x;�) = (1=�)c+X�1e;where X = diag(x1; x2; : : : ; xn) and e = (1; 1; : : : ; 1)T . The projected Newton step �x from a point xsatis�es the following system:� ��X�2 ATA 0 � � �x�+ � = � � c+ �X�1eAx � b � ; (2.3)so that the equations (2.3) are the same as those that arise from a sequential quadratic programmingalgorithm applied to (2.2), modulo the scaling by � in the �rst line of (2.3). A line search can be performedalong �x to �nd a new iterate x+ ��x, where � > 0 is the step length.The prototype primal barrier algorithm can be speci�ed as follows:primal barrier algorithmGiven x0 2 F� and �0 > 0;Set k  0;repeatObtain xk+1 by performing one or more Newton steps (2.3),starting at x = xk, and �xing � = �k;Choose �k+1 2 (0; �k); k  k + 1;until some termination test is satis�ed.A short-step version of this algorithm takes a single Newton step at each iteration, with step length � = 1,and sets �k+1 = �k=�1 + 18pn� : (2.4)It is known (see, for instance, [22, Section 2.4]) that if the feasible region of (2.1) is bounded, and x0 issu�ciently close to x(�0) in a certain sense, then we obtain a point xk whose objective value cTxk is within� of the optimal value after O �pn log n�0� � iterations; (2.5)where the constant factor disguised by the O(�) depends on the properties of (2.1) but is independent of n and�. For integer data of bitlength L, it is known that if � � 2�2L then xk can be rounded to an exact solutionin O(n3) arithmetic operations. Moreover, provided we can choose the initial point such that �0 � 2�L forsome positive constant �, the iteration complexity will be O(pnL).The rate of decrease of � in short-step methods is too slow to allow good practical behavior, so long-stepvariants have been proposed that decrease � more rapidly, while possibly taking more than one Newton stepfor each �k and also using a line search. Although long-step algorithms have better practical behavior, the4



complexity estimates associated with them typically are no better than the estimate (2.5) for the short-stepapproach. In fact, a recurring theme of worst-case complexity estimates for linear programming algorithms isthat no useful relationship exists between the estimate and the practical behavior of the algorithm. Indeed,as we have seen above, the best known iteration complexity bound is obtained from a rather slow linearconvergence rate. Good practical performance is obtained by algorithms that are superlinearly convergent.Better practical algorithms are obtained from the primal-dual framework. These methods recognize theimportance of the path of solutions x(�) to (2.2) in the design of algorithms, but di�er from the approachabove in that they treat the dual variables explicitly in the problem, rather than as adjuncts to the calculationof the primal iterates. The dual problem for (2.1) ismax(�;s) bT� s.t. AT�+ s = c; s � 0; (2.6)where s 2 IRn and � 2 IRm, and the optimality conditions for x� to be a solution of (2.1) and (��; s�) to be asolution of (2.6) are that (x; �; s) = (x�; ��; s�) satis�esAx = b; (2.7a)AT� + s = c; (2.7b)XSe = 0; (2.7c)(x; s) � 0; (2.7d)where X = diag(x1; x2; : : : ; xn) and S = diag(s1; s2; : : : ; sn). Primal-dual methods solve (2.1) and (2.6)simultaneously by generating a sequence of iterates (xk; �k; sk) that in the limit satis�es the conditions(2.7). As mentioned above, the central path de�ned by the following perturbed variant of (2.7) plays animportant role in algorithm design: Ax = b; (2.8a)AT� + s = c; (2.8b)XSe = �e; (2.8c)(x; s) > 0; (2.8d)where � > 0 parametrizes the path. Note that these conditions are simply the optimality conditions for theproblem (2.2): If (x(�); �(�); s(�)) satis�es (2.8), then x(�) is a solution of (2.2). We have from (2.8c) thata key feature of the central path is thatxisi = �; for all i = 1; 2; : : : ; n; (2.9)that is, the pairwise products xisi are identical for all i.In primal-dual algorithms, steps are generated by applying a perturbed Newton method to the threeequalities in (2.8), which form a nonlinear system in which the number of equations equals the number ofunknowns. We constrain all iterates (xk; �k; sk) to have (xk; sk) > 0, so that the matrices X and S remainpositive diagonal throughout, ensuring that the perturbed Newton steps are well de�ned. Supposing thatwe are at a point (x; �; s) with (x; s) > 0 and the feasibility conditions Ax = b and AT�+ s = c are satis�ed,the primal-dual step (�x;��;�s) is obtained from following system:" 0 A 0AT 0 I0 S X #" ���x�s # = �" 00XSe � ��e + r # ; (2.10)5



where � = xT s=n, � 2 [0; 1], and r is a perturbation term, possibly chosen to incorporate higher-orderinformation about the system (2.8), or additional terms to improve proximity to the central path. Using thegeneral step (2.10), we can state the basic framework for primal-dual methods as follows:primal-dual algorithmGiven (x0; �0; s0) with (x0; s0) > 0;Set k  0 and �0 = (x0)T s0=n;repeatChoose �k and rk;Solve (2.10) with (x; �; s) = (xk; �k; sk) and (�; �; r) = (�k; �k; rk)to obtain (�xk;��k;�sk);Choose step length �k 2 (0; 1] and set(xk+1; �k+1; sk+1) (xk; �k; sk) + �k(�xk;��k;�sk);�k+1  (xk+1)T sk+1=n; k  k + 1;until some termination test is satis�ed.The various algorithms that use this framework di�er in the way that they choose the starting point, thecentering parameter �k, the perturbation vector rk, and the step �k. The simplest algorithm|a short-steppath-following method similar to the primal algorithm described above|setsrk = 0; �k � 1� 0:4pn; �k � 1; (2.11)and, for suitable choice of a feasible starting point, achieves convergence to a feasible point (x; �; s) withxT s=n � � for a given � in O �pn log �0� � iterations: (2.12)Note the similarity of both the algorithm and its complexity estimate to the corresponding primal algorithm.As in that case, algorithms with better practical performance but not necessarily better complexity estimatescan be obtained through more aggressive, adaptive choices of the centering parameter (that is, �k closer tozero). They use a line search to maintain proximity to the central path. The proximity requirement dictates,implicitly or explicitly, that while the condition (2.9) may be violated, the pairwise products must not betoo di�erent from each other. For example some algorithms force the iterates to remain in l2-neighborhoodsof the central path of the form:N (�) def= f(x; �; s)j(x; s) > 0; kXs� �ek2 � �g: (2.13)A very interesting algorithm of this type is the Mizuno-Todd-Ye predictor corrector method which can bedescribed as follows:predictor-corrector algorithmGiven (x0; �0; s0) 2 N (:25)Set k  0 and �0 = (x0)T s0=n;repeatSet (x; �; s) (xk; �k; sk) and (�; �; r) (�k; 0; 0);Solve (2.10) and set (u;w; v) (�x;��;�s);to obtain (�xk;��k;�sk);Choose step length �k as the largest � 2 (0; 1]such that:6



(x; �; s) + �(u;w; v) 2 N (:25)Set (x; �; s) (x; �; s) + �k(u;w; v) and (�; �; r) (�k; (1� �k); 0);Solve (2.10) and set(xk+1; �k+1; sk+1) (x; �; s) + (�x;��;�);�k+1  (xk+1)T sk+1=n; k k + 1;until some termination test is satis�ed.It can be proved that the above algorithm has the iteration complexity bound (2.12), the same as theshort-step algorithm de�ned by (2.11). We note that the predictor-corrector corrector method requires thesolution of two linear systems per iteration (one in the predictor step and another one in the correctorstep), while the short-step algorithm requires only the solution of one linear system per iteration. Howevernumerical experiments show that the predictor-corrector algorithm is signi�cantly more e�cient than theshort-step algorithm. This is explained by the fact that while with the short-step algorithm �k decreases bya �xed factor at each step, i.e., �k+1 = �1� 0:4n ��k; k = 0; 1; 2; : : : (2.14)the predictor-corrector algorithm, by its adaptive choice of �k, allows �k to decrease faster, especially closeto the solution. Ye et al. [30] proved that the predictor-corrector algorithm is quadratically convergent inthe sense that �k+1 � B�2k; k = 0; 1; 2; : : : (2.15)for some constant B independent of k. This constant may be large, so that (2.15) ensures a better decreaseof �k than (2.14) only if �k is su�ciently small (speci�cally, �k < (1� :4=n)B). There are examples in whichquadratic convergence cannot be observed until quite late in the algorithm|the last few iterations. Even inthese examples, the linear decrease factor in �k in early iterations is much better than (1 � :4=n), becauseof the adaptive choice of �k.Even better reductions of �k in the early iterations can be obtained by considering larger neighborhoodsof the central path than the l2-neighborhoods (2.13). The worst-case complexity bounds of the resultingalgorithms deteriorates|O(nL) instead of O(pnL)|but the practical performance is better.Quadratic convergence, or, more generally, superlinear convergence is also important for the followingreason. The condition of the linear systems to be solved at each iteration often worsens as �k becomes small,and numerical problems are sometimes encountered. Superlinearly convergent algorithms need to performonly a couple of iterations with these small �k. When �k is small enough, a projection can be used to identifyan exact solution. A �nite-termination strategy can also be implemented by using the Tapia indicators todecide which components of x and s are zero at the solution [4]. The use of a �nite-termination strategyin conjunction with superlinearly convergent algorithms for linear programming is somewhat superuous,since the domain range of �k values for which superlinear convergence is obtained appears to be similarto the range on which �nite termination strategies are successful. Once the iterates enter this domain,the superlinear method typically convergence in a few steps, and the savings obtained by invoking a �nitetermination strategy are not great.In the above algorithms we assumed that a starting point satisfying exactly the linear constraints andlying in the interior of the region de�ned by the inequality constraints is given. In practice, however, itmay be di�cult to obtain such a starting point, so many e�cient implementations of interior-point methods,use starting points that lie in the interior of the region de�ned by the inequality constraints but do notnecessarily satisfy the equality constraints. Such methods are called infeasible-interior-point methods, and7



they are more di�cult to analyze. The �rst global convergence result for such methods was obtained byKojima, Megiddo and Mizuno, while the �rst polynomial complexity result was given by Zhang [32]. Thecomputational complexity of the infeasible-interior-point algorithms typically is worse than in the feasiblecase. An advantage is that these algorithms can solve problems for which no strictly feasible points exist.They also can be used to detect the infeasibility of certain linear programming problems.A di�erent way of dealing with infeasible starting points was proposed by Ye, Todd and Mizuno [31].Starting with a linear programming problem in standard form and with a possibly infeasible starting pointwhose x and s components are strictly positive, they construct a homogeneous self-dual linear program forwhich a strictly feasible starting point is readily available. The solution of the original problem is obtainedeasily from the solution of the homogeneous program. When the original linear program is infeasible, thisfact can be ascertained easily from the solution of the homogeneous problem.The practical performance of a numerical algorithm is explained better by a probabilistic complexityanalysis than by a worst-case complexity analysis. For example, the probabilistic computational complexityof the simplex method is strongly polynomial (that is, a polynomial in the dimension n of the problemonly), which is closer to practical experience with this method than the exponential complexity of theworst-case analysis (see Borgwardt [3] and the literature cited therein). As mentioned above, the worst-case complexity of interior-point methods is weakly polynomial, in the sense that the iteration bounds arepolynomials in the dimension n and the bitlength of the data L. In Anstreicher et al. [1], it is shown thatfrom a probabilistic point of view the iteration complexity of a class of interior-point methods is O(pn lnn).Thus the probabilistic complexity of this class on interior-point methods is strongly polynomial, that is, thecomplexity depends only on the dimension of the problem and not on the binary length of the data.Most interior-point software for linear programming is based on Mehrotra's predictor-corrector algorithm[14], often with the higher-order enhancements described by Gondzio [9]. This approach uses an adaptivechoice of �k, selected by �rst solving for the pure Newton step (that is, setting r = 0 and � = 0 in (2.10)).If this step makes good progress in reducing �, we choose �k small so that the step actually taken is quiteclose to this pure Newton step. Otherwise, we enforce more centering and calculate a conservative directionby setting �k closer to 1. The perturbation vector rk is chosen to improve the similarity between the system(2.10) and the original system (2.8) that it approximates. Gondzio's technique further enhances rk byperforming further solves of the system (2.10) with a variety of right-hand sides, where each solve reuses thefactorization of the matrix and is therefore not too expensive to perform.To turn this basic algorithmic approach into a useful piece of software, we must address many issues.These include problem formulation, presolving to reduce the problem size, choice of the step length, linearalgebra techniques for solving (2.10), and user interfaces and input formats.Possibly the most interesting issues are associated with the linear algebra. Most codes deal with apartially eliminated form of (2.10), either eliminating �s to obtain� 0 AAT �X�1S � h ���x i = � h 0�X�1(XSe � ��e + r) i ; (2.16)or eliminating both �s and �x to obtain a system of the formA(S�1X)AT�� = t; (2.17)to which a sparse Cholesky algorithm is applied. A modi�ed version of the latter form is used when densecolumns are present in A. These columns may be treated as a low-rank update and handled via the Sherman-Morrison-Woodbury formula or, equivalently, via a Schur complement strategy applied to a system interme-diate between (2.16) and (2.17). In many problems, the matrix in (2.17) becomes increasingly ill-conditioned8



as the iterates progress, eventually causing the Cholesky process to break down as negative pivot elementsare encountered. A number of simple (and in some cases counterintuitive) patches have been proposed forovercoming this di�culty while still producing useful approximate solutions of (2.17) e�ciently.Despite many attempts, iterative solvers have not shown much promise as means to solve (2.17), at leastfor general linear programs. A possible reason is that, besides its poor conditioning, the matrix lacks theregular spectral properties of matrices obtained from discretizations of continuous operators. Some codesdo, however, use preconditioned conjugate gradient as an alternative to iterative re�nement for improvingthe accuracy, when the direct approach for solving (2.17) fails to produce a solution of su�cient accuracy.The preconditioner used in this case is simply the computed factorization of the matrix A(S�1X)AT .A number of interior-point linear programming codes are now available, both commercially and freeof charge. Information can be obtained from the World-Wide Web via the URL mentioned earlier. It isdi�cult to make blanket statements about the relative e�ciency of interior-point and simplex methods forlinear programming, since signi�cant improvements to the implementations of both techniques continue tobe made. Interior-point methods tend to be faster on large problems and can better exploit multiprocessorplatforms, because the expensive operations such as Cholesky factorization of (2.17) can be parallelized tosome extent. They are not able to exploit \warm start" information|a good prior estimate of the solution,for instance|to the same extent as simplex methods. For this reason, they are not well suited for use incontexts such as branch-and-bound or branch-and-cut algorithms for integer programming, which solve manyclosely related linear programs.Several researchers have devised special interior-point algorithms for special cases of (2.1) that exploit thespecial properties of these cases in solving the linear systems at each iteration. One algorithm for networkow problems uses preconditioned conjugate-gradient methods for solving (2.17), where the preconditioneris built from a spanning tree for the underlying network. For multicommodity ow problems, there is analgorithm for solving a version of (2.17) in which the block-diagonal part of the matrix is used to eliminatemany of the variables, and a preconditioned conjugate-gradient method is applied to the remaining Schurcomplement. Various techniques have also been proposed for stochastic programming (two-stage linearproblems with recourse) that exploit the problem structure in performing the linear algebra operations.3 Extensions to Convex Quadratic Programming and Linear Com-plementarityThe primal-dual algorithms of the preceding section are readily extended to convex quadratic programming(QP) and monotone linear complementarity problems (LCP), both classes being generalizations of linearprogramming. Indeed, many of the convergence and complexity properties of primal-dual algorithms were�rst elucidated in the literature with regard to monotone LCP rather than linear programming.We state the convex QP as minx cTx+ 12xTQx s.t. Ax = b; x � 0; (3.18)where Q is a positive semide�nite matrix. The monotone LCP is de�ned by square matrices M and N anda vector q, where M and N satisfy a monotonicity property: all vectors y and z that satisfy My +Nz = 0have yT z � 0. This problem requires us to identify vectors y and z such thatMy + Nz = q; (y; z) � 0; yT z = 0: (3.19)9



With some transformations, we can express the optimality conditions (2.7) for linear programming, andalso the optimality conditions for (3.18), as a monotone LCP. Other problems �t under the LCP umbrellaas well, including bimatrix games and equilibrium problems. The central path for this problem is de�ned bythe following system, parametrized as in (2.8) by the positive scalar �:My +Nz = q; (3.20a)Y Ze = �e; (3.20b)(y; z) > 0; (3.20c)and a search direction from a point (y; z) satisfying (3.20a) and (3.20c) is obtained by solving a system ofthe form h M NZ Y ih �y�z i = � h 0Y Ze � ��e + r i ; (3.21)where � = yT z=n, � 2 [0; 1], and, as before, r is a perturbation term. The corresponding search directionsystem for the quadratic program (3.18) is identical to (2.10) except that the (2; 2) block in the coe�cientmatrix is replaced by Q. The primal-dual algorithmic framework and the many variations within thisframework are identical to the case of linear programming, with the minor di�erence that the step lengthshould be the same for all variables. (In linear programming, di�erent step lengths usually are taken for theprimal variable x and the dual variables (�; s).)Complexity results are also similar to those obtained for the corresponding linear programming algorithm.For an appropriately chosen starting point (y0; z0) with �0 = (y0)T z0=n, we obtain convergence to a pointwith � � � in O�n� log �0� � iterations;where � = 1=2, 1, or 2, depending on the algorithm. Fast local convergence results typically require an addi-tional strict complementarity assumption that is automatically satis�ed in the case of linear programming.Some authors have proposed superlinear algorithms that do not require strict complementarity, but thesemethods require accurate identi�cation of the set of degenerate indices before the fast convergence becomese�ective.The LCP algorithms can, in fact, be extended to a wider class of problems involving so-called su�cientmatrices. Instead of requiring M and N to satisfy the monotonicity property de�ned above, we require thereto exist a nonnegative constant � such thatyT z � �4� Xi j yizi>0yizi; for all y; z with My +Nz = 0.The complexity estimates for interior-point methods applied to such problems depends on the parameter �, sothat the complexity is not polynomial on the whole class of su�cient matrices. Potra and Sheng [19] proposea large-step infeasible-interior-point method for solving P�(�)-matrix linear complementarity problems witha number of strong properties. The algorithm generates points in a large neighborhood of an infeasiblecentral path, and each iteration requires only one matrix factorization. If the problem has a solution,the algorithm converges from an arbitrary positive starting point. The computational complexity of thealgorithm depends on the quality of the starting point. If a well centered starting point is feasible or closeto being feasible, it has O((1 + �)pnL)-iteration complexity. In cases in which such a starting point is notreadily available, a modi�ed version of the algorithm terminates in O((1 + �)2nL) steps either by �nding asolution or by determining that the problem is not solvable. Finally, high-order local convergence is proved10



for problems having a strictly complementary solution. We note that while the properties of the algorithm(e.g. computational complexity) depend on �, the algorithm itself does not.Primal-dual methods have been applied to many practical applications of (3.18) and (3.19), includingportfolio optimization, optimal control, and `1 regression. See [28] for references.The interior-point approach has a number of advantages over the active-set approach from a computa-tional point of view. It is di�cult for an active-set algorithm to exploit any structure inherent in both Q andA without redesigning most of its complex linear algebra operations: the operations of adding a constraint tothe active set, deleting a constraint, evaluating Lagrange multiplier estimates, calculating the search direc-tion, and so on. In the interior-point approach, on the other hand, the only complex linear algebra operationis solution of the linear system (3.21)|and this operation, though expensive, is relatively straightforward.Since the structure and dimension of the linear system remain the same at all iterations, the routines forsolving the linear systems can exploit fully the properties of the systems arising from each problem class orinstance. In fact, the algorithm can be implemented to high e�ciency using an object-oriented approach,in which the implementer of each new problem class needs to supply only code for the factorization andsolution of the systems (3.21), optimized for the structure of the new class, along with a number of simpleoperations such as inner-product calculations. Code that implements upper-level decisions (choice of param-eter �, vector r, steplength �) remains e�cient across the gamut of applications of (3.19) and can simply bereused by all applications.We note, however, that active-set methods would still require much less execution time than interior-pointmethods in many contexts, especially when \warm start" information is available and when the problem isgeneric enough that not much bene�t is gained by exploiting its structure.The extension of primal-dual algorithms from linear programming to convex QP is so straightforward thata number of the interior-point linear programming codes have recently been extended to handle problems inthe class (3.18) as well. In their linear algebra calculations, most of these codes treat both Q and A as generalsparse matrices, and hence are e�cient across a wide range of applications. By contrast, implementationsof active-set methods for (3.18) that are capable of handling even moderately sized problems have not beenwidely available.4 Semide�nite ProgrammingAs mentioned in the introduction, semide�nite programming (SDP) has been one of the most active areasof optimization research in the 1990s. SDP consists in minimizing a linear functional of a matrix sub-ject to linear equality and inequality constraints, where the inequalities include membership of the cone ofpositive semide�nite matrices. SDP is a broad paradigm; it includes as special cases linear programming,(linearly constrained) QP, quadratically constrained QP and other optimization problems (see [16] and [25]).Semide�nite programming has numerous applications in such diverse areas as optimal control, combinatorialoptimization, structural optimization, pattern recognition, trace factor analysis in statistics, matrix comple-tions, etc. See the excellent survey paper by Vandenberghe and Boyd [25] for some instances. It was onlyafter the advent of interior-point methods, however, that e�cient solution methods for SDP problems wereavailable. During the past few years an impressive number of interior-point methods for SDP have been pro-posed. Some of them have been successfully implemented and used to solve important application problems.However the theory and practice of interior-point methods for SDP has not yet reached the level of maturityof interior-point methods for LP, QP, and LCP. One reason that the study of interior-point methods forSDP is extremely important is that while LP, QP, and LCP can also be solved by other methods (e.g. thesimplex method or Lemke's method), interior-point methods appear to be the only e�cient methods for11



solving general SDP problems presently known.To de�ne the SDP, we introduce the notation SIRn�n to represent the set of n � n symmetric matrices,and the inner product X � Z of two matrices in this set, which is de�ned asX � Z = nXi=1 nXj=1 xijzij :The SDP in standard form is thenminX C �X; s.t. X � 0; Ai �X = bi; i = 1; 2; : : : ;m; (4.22)where X 2 SIRn�n, and its associated dual problem ismaxy;S bT� s.t. mXi=1 �iAi + S = C; S � 0; (4.23)where S 2 SIRn�n and � 2 IRm.In what follows, we will consider only primal-dual interior-point methods that simultaneously solvethe primal and dual problems. Points on the central path for (4.22), (4.23) are de�ned by the followingparametrized system: mXi=1 �iAi + S = C; (4.24a)Ai �X = bi; i = 1; 2; : : :;m; (4.24b)XS = �I; (4.24c)X � 0; S � 0; (4.24d)where as usual � is the positive parameter. Unlike the corresponding equations for linear programming, thesystem (4.24a), (4.24b), (4.24c) is not quite \square," since the variables reside in the space SIRn�n � IRm �SIRn�n while the range space of the equations is SIRn�n � IRm � IRn�n. In particular, the product of twosymmetric matrices (see (4.24c)) is not necessarily symmetric. Before Newton's method can be applied thedomain and range have to be reconciled. The various primal-dual algorithms di�er partly in the manner inwhich they achieve this reconciliation.The paper of Todd [24] is witness to the intensity of research in SDP interior-point methods: It describestwenty techniques for obtaining search directions for SDP, among the most notable being the following:1) the AHO search direction proposed by Alizadeh, Haeberly and Overton;2) the KSH/HRVW/M search direction independently proposed by Kojima, Shindoh and Hara; Helmberg,Rendl, Vanderbei and Wolkowicz; and later rediscovered by Monteiro;3) the NT direction introduced by Nesterov and Todd.Most of the search directions for SDP are obtained by replacing equation (4.24c) by a "symmetric" onewhose range lies in SIRn�n: �(X;S) = 0; (4.25)12



Primal-dual methods are then derived as perturbed Newton's methods applied to (4.24a), (4.24b), (4.25).Examples of symmetrizations (4.25) include the Monteiro-Zhang family [15], in which�(X;S) = HP (XS);where HP (M ) = 12 �PMP�1 + (PMP�1)T � ;(with a given a nonsingular matrixP 2 IRn�n) is the symmetrization operator of Zhang. The search directions1), 2), 3) mentioned above are obtained by taking P equal to I, S1=2, and [S1=2(S1=2XS1=2)�1=2S1=2]1=2,respectively.Even if the SDP has integer data, its solution cannot in general be expressed in terms of rational numbers,so that the exact solution cannot be obtained in a �nite number of bit operations. We say that an interior-point method for SDP \is polynomial" if there is a positive constant ! such that the distance to optimum(or the duality gap) is reduced by a factor of 2�O(L) in at most O(n!L) iterations. In this case we willsay that the interior-point method has O(n!L) iteration complexity. The iteration complexity appears tobe dependent on the choice of search direction. The best results obtained to date show that some feasibleinterior-point methods based on small neighborhoods for the central path have O(pnL) iteration complexityfor all three search directions mentioned above.Monteiro and Zhang [15] proved that algorithms acting in large neighborhoods of the central path haveO(nL) iteration complexity if based on the NT direction and O(n3=2L) if based on the KSH/HRVW/Msearch direction. They also gave iteration complexity bounds (which depend on the condition number ofmatrices Jx and Js de�ned by PTP = X�1=2JxX1=2 = S�1=2JsS1=2) for algorithms acting in the largeneighborhood that are based on the MZ� family of directions. This family is a subclass of the MZ familythat contains the NT and the KSH/HRVW/M directions but not the AHO direction. So far, no complexityresults are known for algorithms based on the large neighborhood and the AHO direction.The analysis of infeasible interior-point algorithms for SDP is considerably more di�cult than that of theirfeasible counterparts. The �rst complexity result in this respect was obtained by Kojima, Shindoh, and Hara,who showed that an infeasible-interior-point potential reduction method for SDP has O(n5=2L) iterationcomplexity. Subsequently Zhang analyzed an infeasible-interior-point method, based on the KSH/HRVW/Msearch direction, that has O(n2L) iteration complexity when acting in the semi-large neighborhood andO(n5=2L) iteration complexity in the large neighborhood of the central path. The analysis of the Mizuno-Todd-Ye predictor-corrector method for infeasible starting points was performed independently by Kojima,Shida and Shindoh and Potra and Sheng. The analysis in the latter paper shows that the iteration complexitydepends on the quality of the starting point. If the problem has a solution, then the algorithm is globallyconvergent. If the starting point is feasible or close to feasible, the algorithms �nds an optimal solution inat most O(pnL) iterations. If the starting point is large enough according to some speci�c criteria, thenthe algorithm terminates in at most O(nL) steps either by �nding a strictly complementary solution or bydetermining that the primal-dual problem has no solution of norm less than a speci�ed size.Superlinear convergence is especially important for SDP since no �nite termination schemes exist forsuch problems. As predicted by theory and con�rmed by numerical experiments, the condition number ofthe linear systems de�ning the search directions increases like 1=�, so that the respective systems becomequite ill conditioned as we approach the solution. As we observed in the case of linear programming, aninterior-point method that is not superlinearly convergent is unlikely to obtain high accuracy in practice.On the other hand, superlinearly convergent interior-point methods often achieve good accuracy (dualitymeasure of 10�10 or better) in substantially fewer iterations than indicated by the worse-case global linearconvergence rate indicated by the analysis. 13



The local convergence analysis for interior-point algorithms for SDP is much more challenging than forlinear programming. Kojima, Shida and Shindoh [12] established superlinear convergence of the Mizuno-Todd-Ye predictor-corrector algorithm based on the KSH/HRVW/M search direction under the followingthree assumptions:(A) SDP has a strictly complementary solution;(B) SDP is nondegenerate in the sense that the Jacobian matrix of its KKT system is nonsingular;(C) the iterates converge tangentially to the central path in the sense that the size of the neighborhoodcontaining the iterates must approach zero, namely,limk!1 k(Xk)1=2Sk(Xk)1=2 � (Xk � Sk=n)IkF =(Xk � Sk=n) = 0:Assumption (B) and (C) are quite restrictive; similar conditions are not required for the superlinear con-vergence of interior-point methods for linear programming or QP. Potra and Sheng [20] proved superlinearconvergence of the same algorithm under assumption (A) together with the following condition:(D) limk!1XkSk=pXk � Sk = 0,which is clearly weaker than (C). Of course both (C) and (D) can be enforced by the algorithm, but thepractical e�ciency of such an approach is questionable. From a theoretical point of view, however, it isknown from [20] that a modi�ed version of the algorithm of [12] that uses several corrector steps in orderto enforce (C) has polynomial complexity and is superlinearly convergent under assumption (A) only. It iswell known that assumption (A) is necessary for superlinear convergence of interior-point methods that takeNewton-like steps even in the QP case. (However, there are methods for convex QP and monotone LCPthat attain superlinear convergence by making explicit guesses of the set of degenerate indices.)Kojima, Shida and Shindoh [12] also gave an example suggesting that interior-point algorithms for SDPbased on the KSH/HRVW/M search direction are unlikely to be superlinearly convergent without imposinga condition like (C) or (D). In a later paper they showed that a predictor-corrector algorithm using the AHOdirection is quadratically convergent under assumptions (A) and (B). They also proved that the algorithm isglobally convergent, but no polynomial complexity bounds have yet been found. It appears that the use ofthe AHO direction in the corrector step has a strong e�ect on centering. This property is exploited in a recentpaper of Ji et al. [10] who proved that the Mizuno-Todd-Ye algorithm, based on the MZ-family is superlinearunder assumptions (A) and (D). They also showed that under assumptions (A) and (B) the algorithm hasQ-order 1.5 if scaling matrices in the corrector step have bounded condition number, and Q-order 2 if thescaling matrices in both predictor and corrector step have bounded condition number. In particular, theseresults apply for the AHO direction, where the scaling matrix is the identity matrix. References to theresults cited above can be found in [10].Over the past several years we have witnessed an intense research e�ort on the use of SDP for �ndingapproximate solution of (NP-hard) combinatorial optimization problems. In what follows, we will describethe technique of Goemans and Williamson, which yields an approximate solution whose value is within 13%of optimality for the MAX CUT problem [7].In MAX CUT, we are presented with an undirected graph with N whose edges wij have nonnegativeweights. The problem is choose a subset S � f1; 2; : : : ; Ng so that the sum of weights of the edges that crossfrom S to its complement is minimized. In other words, we aim to choose S to maximize the objectivew(S) def= Xi2S;j =2S wij:14



This problem can be restated as an integer quadratic program by introducing variables yi, i = 1; 2; : : : ; N ,such that yi = 1 for i 2 S and yi = �1 for i =2 S. We then havemaxy 12 Xi<j wij(1� yiyj) subject to yi 2 f�1; 1g for all i = 1; 2; : : : ; N . (4.26)This problem is NP-complete. Goemans and Williamson replace the variables yi 2 IR by vectors vi 2 IRN andconsider instead the problemmaxv1;v2;:::;vN 12 Xi<j wij(1� vTi vj); subject to kvik = 1 for all i = 1; 2; : : : ; N . (4.27)This problem is a relaxation of (4.26) because any feasible point y for (4.26) corresponds to a feasible pointvi = (yi; 0; 0; : : : ; 0)T ; i = 1; 2; : : :; N;for (4.27). The problem (4.27) can be formulated as an SDP by changing variables v1; v2; : : : ; vN to a matrixY 2 IRN�N , such that Y = V TV; where V = [v1; v2; : : : ; vN ] :The constraints kvik = 1 can be expressed simply as Yii = 1, and since Y = V TV , we must have Ysemide�nite. The transformed version of (4.27) is thenmax 12 Xi<j wij(1� Yij) subject to Yii = 1, i = 1; 2; : : :; N and Y � 0,which has the form (4.22) for appropriate de�nitions of C and Ai, i = 1; 2; : : : ; N . We can recover V from Yby performing a Cholesky factorization. The �nal step of recovering an approximate solution to the originalproblem (4.26) is performed by choosing a random vector r 2 IRN , and settingyi = � 1; if rTvi > 0,�1 if rTvi � 0.A fairly simple geometric argument shows that the expected value of the solution so obtained has objectivevalue at least :87856 of the optimal solution to (4.26).Similar relaxations have been obtained for many other combinatorial problems, showing that is possibleto �nd good approximate solutions to many NP-complete problems by using polynomial algorithms. Suchrelaxations are also useful if we seek exact solutions of the combinatorial problem by means of a branch-and-bound or branch-and-cut strategy. Relaxations can be solved at each node of the tree (in which some of thedegrees of freedom are eliminated and some additional constraints are introduced) to obtain both a boundon the optimal solution and in some cases a candidate feasible solution for the original problem. Since therelaxations to be solved at adjacent nodes of the tree are similar, it is desirable to use solution informationat one node to \warm start" the SDP algorithm at a child node.5 Convex ProgrammingOne of the most surprising results in interior-point methods is the fact that interior-point algorithms fromLP can be extended to general convex programming problems, at least in a theoretical sense. The key to such15



an extension was provided by Nesterov and Nemirovskii [16]. These authors explored the properties of self-concordant functions, and described techniques in which the inequality constraints in a convex programmingproblem are replaced by self-concordant barrier terms in the objective function. They derived polynomialalgorithms by applying Newton-like methods to the resulting parametrized reformulations.The fundamental property of self-concordant functions is that their third derivative can be bounded bysome expression involving their second derivative at each point in their domain. This property implies thatthe second derivative does not uctuate too rapidly in a relative sense, so that the function does not deviatetoo much from the second-order approximation on which Newton's method is based. Hence, we can expectNewton's method to perform reasonably well on such a function.Given a �nite-dimensional real vector space V, an open, nonempty convex set S � V, and a closed convexset T � V with nonempty interior, we have the following formal de�nition.De�nition 1 The function F : S ! IR is self-concordant if it is convex and if the following inequality holdsfor all x 2 S and all h 2 V: ��D3F (x)[h; h; h]��� 2 �D2F (x)[h; h]�3=2 ; (5.28)where DkF [h1; h2; : : : ; hk] denotes the kth di�erential of F along the directions h1; h2; : : : ; hk.F is called strongly self-concordant if F (xi) ! 1 for all sequences xi 2 S that converge to a point onthe boundary of S.F is a #-self-concordant barrier for T if it is a strongly self-concordant function for intT , and theparameter # def= supx2intT F 0(x)T [F 00(x)]�1F 0(x) (5.29)is �nite.Note that the exponent 3=2 on the right-hand side of (5.28) makes the condition independent of the scalingof the direction h. It is shown in [16, Corollary 2.3.3] that if T 6= V, then the parameter # is no smaller than1. It is easy to show that log-barrier function of Section 2 is an n-self-concordant barrier for the positiveorthant IRn+ if we take V = IRn; T = IRn+; F (x) = � nXi=1 logxi:where IRn+ denotes the positive orthant. Another interesting case is the second-order cone (or \ice-creamcone"), for which we haveV = IRn+1; T = f(x; t) j kxk2 � tg; F (x; t) = � log �t2 � kxk2� ; (5.30)where t 2 IR and x 2 IRn. In this case, F is an 2-self-concordant barrier. Second-order cone programmingconsists in minimizing a linear function subject to linear equality constraints together with inequality con-straints induced by second-order cones. Convex quadratically constrained quadratic programs can be posedin this form, along with sum-of-norms problems and many other applications.A third important case is the cone of positive semide�nite matrices, for which we haveV = n� n symmetric matricesT = n� n symmetric positive semide�nite matricesF (X) = � log detX; 16



for which F is an n-self-concordant barrier. This barrier function can be used to model the constraint X � 0in (4.22).Self-concordant barrier functions allow us to generalize the primal barrier method of Section 2 to problemsof the form min hc; xi s.t. Ax = b; x 2 T ; (5.31)where T is a closed convex set, hc; xi denotes a linear functional on the underlying vector space V, and A isa linear operator. Similarly to (2.2), we de�ne the barrier subproblem to beminx f(x;�) def= 1� hc; xi+ F (x); s.t. Ax = b; (5.32)where F (x) is a self-concordant barrier and � > 0 is the barrier parameter. Note that by the De�nition 1,f(x;�) is also a strongly self-concordant function. The primal barrier algorithm for (5.31) based on (5.32)is as follows:primal barrier algorithmGiven x0 2 intT and �0 > 0;Set k  0;repeatObtain xk+1 2 intT by performing one or more projected Newton stepsfor f(�;�k), starting at x = xk;Choose �k+1 2 (0; �k);until some termination test is satis�ed.As in Sections 2, 3, and 4, the worst-case complexity of algorithms of this type depends on the parameter# associated with F but not on any properties of the data that de�nes the problem instance. For example,we can de�ne a short-step method in which a single full Newton step is taken for each value of k, and � isdecreased according to �k+1 = �k=�1 + 18p#� :Given a starting point with appropriate properties, we obtain an iterate xk whose objective hc; xki is within� of the optimum in O�p# log #�0� � iterations:Long-step variants are discussed by Nesterov and Nemirovskii [16]. The practical behavior of the methodsdoes, of course, depend strongly on the properties of the particular problem instance.The primal-dual algorithms of Section 2 can also be extended to more general problems by means of thetheory of self-scaled cones developed by Nesterov and Todd [17, 18]. The basic problem considered is theconic programming problem min hc; xi s.t. Ax = b; x 2 K; (5.33)where K � IRn is a closed convex cone, that is, a closed convex set for which x 2 K ) tx 2 K for allnonnegative scalars t, and A denotes a linear operator from IRn to IRm. The dual cone for K is denoted byK� and de�ned as K� def= fs j hs; xi � 0 for all x 2 Kg;17



and we can write the dual instance of (5.33) asmaxhb; �i s.t. A��+ s = c; s 2 K�; (5.34)where A� denotes the adjoint of A. The duality relationships between (5.33) and (5.34) are more complexthan in linear programming, but if either problem has a feasible point that lies in the interior of K or K�,respectively, the strong duality property holds. This property is that when the optimal value of either (5.33)or (5.34) is �nite, then both problems have �nite optimal values, and these values are the same.K is a self-scaled cone when its interior intK is the domain of a self-concordant barrier function F withcertain strong properties that allow us to de�ne algorithms in which the primal and dual variables are treatedin a perfectly symmetric fashion and play interchangeable roles. The full elucidation of these properties isquite complicated. It su�ces to note here that the three cones mentioned above|the positive orthant IRn+, thesecond-order cone (5.30), and the cone of positive semide�nite symmetric matrices|are the most interestingself-scaled cones, and their associated barrier functions are the logarithmic functions mentioned above.To build algorithms from the properties of self-scaled cones and their barrier functions, the Nesterov-Todd theory de�nes a scaling point for a given pair x 2 intK, s 2 intK� to be the unique point w such thatH(w)x = s, where H(�) is the Hessian of the barrier function. In the case of linear programming, it is easyto verify that w is the vector in IRn whose elements are psi=xi. The Nesterov-Todd search directions areobtained as projected steepest descent direction for the primal and dual barrier subproblems (that is, (5.32)and its dual counterpart), where a weighted inner product involving the matrix H(w) is used to de�ne theprojections onto the spaces de�ned by the linear constraints Ax = b and A�� + s = c, respectively. Theresulting directions satisfy the following linear system:" 0 A 0A� 0 I0 H(w) I #" ���x�s # = �" 00s + ��rF (x) # ; (5.35)where � = hx; si=#. (The correspondence with (2.10) is complete if we choose the perturbation term tobe r = 0.) By choosing the starting point appropriately, and designing schemes to choose the parameters� and step lengths along these directions, we obtain polynomial algorithms for this general setting. TheNT direction in the previous section is the specialization of the above search directions for semide�niteprogramming.6 ConclusionsInterior-point methods remain an active and fruitful area of research, although the frenetic pace that charac-terized the area has slowed in recent years. Interior-point codes for linear programming codes have becomemainstream and continue to undergo development, although the competition from the simplex method issti�. Semide�nite programming has proved to be an area of major impact. Applications to quadratic pro-gramming show considerable promise, because of the superior ability of the interior-point approach to exploitproblem structure e�ciently. The inuence on nonlinear programming theory and practice has yet to bedetermined, even though signi�cant research has already been devoted to this topic. Use of the interior-pointapproach in decomposition methods appears promising, though no rigorous comparative studies with alter-native approaches have been performed. Applications to integer programming problems have been tried bya number of researchers, but the interior-point approach is hamstrung here by competition from the simplexmethod with its superior warm-start capabilities. 18
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