
Notes on a Search for Optimal Lattice Rules�James Lynessy and Ronald CoolsAbstractIn this paper some of the results of a recent computer search [CoLy99] for optimalthree- and four-dimensional lattice rules of speci�ed trigonometric degree are discussed.The theory is presented in a general frame emphasising the special nature of latticerules among the rules of speci�ed trigonometric degree.1 Background MaterialIn this paper we discuss some of the results of a recent computer search [CoLy99] for optimals-dimensional lattice rules of speci�ed trigonometric degree.An s-dimensional cubature formula (or rule) Qf for [0; 1)s is a weighted sum of functionvalues Qf := N(Q)Xj=1 wjf(xj); (1.1)which approximates in some way the integralIf := Z[0;1)s f(x)dx: (1.2)A cubature formula of enhanced trigonometric degree � is one that integrates exactly alltrigonometric polynomials (with respect to period [0,1)) of degree �� 1. An optimal rule Qof enhanced degree � is one whose abscissa count N(Q) is as small as or smaller than theabscissa countN(Q0) of any other rule Q0 of the same enhanced degree �. A lattice rule Q(�)is an equal-weight cubature formula (wj = 1=N(Q)) whose abscissas xj lie in � \ [0; 1)s,where � is an integration lattice. For a lattice rule Q(�) to be of enhanced degree �, the duallattice �? can have no elements h for which jhj 2 [1; � � 1]. In the following subsections,the concepts mentioned above are properly connected, with the necessary theorems beingreferenced or proved. In what follows, we denote by ei a unit vector whose componentscoincide with the i-th row of the s � s identity matrix I . (Note that, in common Englishusage, the word rule may be used for cubature formula.)�January 20, 2000yThis author was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Advanced Scienti�c Computing Research, U.S.Department of Energy, underContract W-31-109-Eng-38.



1.1 Integration LatticesAn integration lattice L[t; D; Z; s] is speci�ed by positive integers t; d1; d2; : : : ; dt and the ele-ments of a t�s integer matrix Z. Here,D is the diagonal t�tmatrixD = diagfd1; d2; : : : ; dtg,and we denote the i-th row of Z by zi.De�nition 1 The integration lattice L[t; D; Z; s] comprises all points that may be expressedin the form p = tXi=1 jizi=di + sXi=1 kiei (1.3)for some selection of integers ji and ki.This lattice is said to be generated by the t + s generators zi=di i = 1; 2; : : : ; t and eii = 1; 2; : : : ; s.It is readily veri�ed that this set of points satis�es the standard de�nition of a lattice,that is, p1;p2 2 � ) p1 � p2 2 �, and, since p detD 2 ZZs for all p, there are no pointsof accumulation. Moreover, the subset of these points, obtained by assigning j1 = j2 =� � � = jk = 0, constitutes the unit lattice �0, also known as ZZs. Thus, � � �0, which is thecondition that a given lattice � is an integration lattice.It is well known that one can express any s-dimensional lattice � in terms of only sdistinct generators. Thus, there exists an s� s matrix A whose rows a1; a2; : : : ; as may beused to generate � and (1.3) may be replaced byp = sXi=1 �iai = �A; (1.4)where �i are integers, that is, � 2 �0.The reader will note that a generator matrix is not unique. When A is a generatormatrix of �, this same lattice is generated by UA, where U is any unimodular integermatrix (j detU j = 1).1.2 Dual LatticesCorresponding to every s-dimensional lattice � is its dual (or polar or reciprocal) lattice�?. This may be de�ned in terms of generator matrices as follows. When the generatormatrix of � is A, then �? is the lattice whose generator matrix is B = (AT )�1. This is asomewhat trite de�nition. For a more informative introduction, see [Lyn89]. It is readilyshown that, when � is an integration lattice, that is, � � �0, then �? is an integer latticethat is, �? � �0. Since all components of a point in �0 are integers, the same is true for�?, and so its generator matrix B has only integer elements. Again, UB is also a generatormatrix of �?, and it is possible to choose U so that H = UB is in upper triangular lattice2



form (utlf). That is, Hcc > 0; Hrc 2 [0; Hcc), when r < c and Hrc = 0 when r > c. Theutlf generator matrix H is in 1{1 correspondence with the integer lattice �?. (This ishelpful for counting the number of di�erent lattices and for organizing a search for optimallattices. See [LyS�89].)1.3 Lattice RulesThe lattice rule Q(�) is a cubature formula whose abscissas lie on the intersection of anintegration lattice � = L[t; D; Z; s] and [0; 1)s. It is denoted by Q[t; D; Z; s] and may bede�ned by Q[t; D; Z; s]f = 1d1d2 : : :dt d1Xj1=1 d2Xj2=1 : : : dtXjt=1 f(fX jizi=dig); (1.5)where, as is conventional, y = fxg is de�ned as the vector obtained from the fractionalparts of each component of x.The same rule Q(�) may have many di�erent representations of this form, using di�erentvalues of t and other parameters. A rule is of rank r if it can be expressed in this form witht = r, but cannot be so expressed with t < r. See, for example, [SlLy89]. An example ofa rank-2 rule is given in Section 4. The m-copy rule de�ned in Section 3 when m > 1 is ofrank s.The number of function values N(Q) used by Q(�) is the number of points in �\ [0; 1)s;this coincides with the density of lattice points and can be shown to beN = j detAj�1 = j detBj = H11H22 : : :Hss: (1.6)Unfortunately, this value is not immediately clear from (1.5). In point of fact, N =(detD)=k, where k is a positive integer and, of course, detD = d1d2 : : : dt. When k > 1,the form (1.5) is termed repetitive.The reader will note that (s!)�1j detBj is the s-volume of a simplex having vertices atthe s generators of �? and at the origin. This simplex is known as a basic simplex of thelattice �?. In fact, any simplex constructed from (s + 1) distinct elements of this latticehas s-volume k(s!)�1j detBj, where k is a nonnegative integer.1.4 Fourier Series and Trigonometric PolynomialsWe treat the s-dimensional hypercube [0; 1)s. For many functions, the Fourier series�f(x) = Xh2ZZs f̂he2�ih:x (1.7)converges and coincides with f(x) in (0; 1)s. Heref̂h = Z[0;1)s f(x)e�2�ih:xdx (1.8)3



is a Fourier coe�cient of f(x). A trigonometric polynomial is simply a function f(x),having only a �nite number of nonvanishing Fourier coe�cients. To quantify this, we de�nea subset 
(x; �) of the s-dimensional unit lattice
(s; �) = fh such that jhj := jh1j+ jh2j+ � � �+ jhsj < �g: (1.9)De�nition 2 f(x) is an s-dimensional trigonometric polynomial of degree d (or enhanceddegree � = d + 1) when its only nonzero Fourier coe�cients f̂h are those for which h 2
(s; �).1.5 Lattice Rules of Speci�ed Trigonometric DegreeThe discretization error of any cubature formula may be expressed in terms of the Fouriercoe�cients of the integrand function. To this end, we apply the operator Q to the Fourierseries (1.7) above to obtain Qf = Xh2ZZs f̂hdh(Q); (1.10)where we have de�ned dh(Q) := Q(e2�ih:x) = N(Q)Xj=1 wje2�ih:xj : (1.11)Equation (1.10) above may be considered a generalization of the Poisson summation for-mula, which in one dimension connects a sum of equally spaced function values with a sumof equally spaced Fourier transforms. When Q is a lattice rule, many coe�cients dh(Q) in(1.11) vanish.Theorem 1 When Q = Q(�) is a lattice rule,dh(Q) = ( 1 for all h 2 �?0 otherwise:There are several straightforward ways of proving this. See, for example, [Lyn89].Applying this result to (1.10) in the case that Q is a lattice rule givesQ(�)f = Xh2�? f̂h: (1.12)We are now in a position to derive a criterion for the enhanced degree of a lattice rule.Recalling that f̂0 = If , we rewrite this equation in the formEf := Q(�)f � If = Xh2�?0<jhj<� f̂h + Xh2�?jhj�� f̂h: (1.13)4



When f(x) is a trigonometric polynomial of enhanced degree �, in view of De�nition 2above, every term in the �nal summation is zero. Because of this, the condition for Efto be zero must be that the �rst summation is also zero; this implies that �? contains noelements h for which 0 < jhj < �.Theorem 2 Q(�) is of enhanced degree � if and only if �? contains no elements, otherthan the origin within 
(s; �).This result could equally well be established using (1.11) by constructing moment equa-tions. A set of moment equations isd0(Q) = 1 dh(Q) = 0 8 0 < h < �;whether or not Q is a lattice rule. Theorem 2 may be expressed in other ways. For example,� = minh6=0h2�? jhj: (1.14)In classical lattice theory, the term admissible is used for this concept. A lattice � is termed
-admissible if it contains no elements other than the origin within 
. Thus, � is the largestinteger for which �? is 
(s; �)-admissible.2 The Search for Optimal RulesEvery cubature formula Q has an abscissa set. We denote by N(Q) the number of abscissasin this set. All these may be taken to be in [0; 1)s. We de�ne Nmin(s; �) to be the minimalnumber N(Q) of abscissas needed by any cubature formula Q of enhanced trigonometricdegree �. Any formula Q of this enhanced degree � for which N(Q) = Nmin(s; �) is termedan optimal rule. Our searches have all been limited to lattice rules, and the more expensivesearches to subsets of lattice rules. We have been particularly careful to specify the subsetof lattice rules with respect to which each individual result is optimal.The �nal paragraph of the preceding section indicates that many properties of interest ofQ(�) are geometric properties of �?; these may be conveniently obtained from its generatormatrix, B or H . For example, the abscissa count N(Q) is simply s!V , V being the s-volumeof the basic simplex of �?. In terms of the generator matrix, this is simply j detBj ordetH = H11H22 : : :Hss. The enhanced degree of Q is simply the shortest L1 distance ofany element of �? from the origin, as speci�ed by (1.14) above. Moreover, there is a 1{1correspondence between an integer lattice and its generator matrix in utlf.This all suggests a somewhat indirect class of search procedure, one based on searchingsets of integer lattices, �?. Finally, when the search is complete and the \best" latticesfound, then and only then need � and Q(�) be constructed.5



The search population comprises sets of integer lattices. Each lattice is represented by agenerator matrix. Several searches for rules having optimal Zaremba indices are describedin [LyS�91]. In these, �? is represented by its utlf generator H . In the current search, adi�erent generator, described below, is used.Besides indicating a method for an exhaustive search, the theory of the preceding section,in particular the �nal theorem, suggests some obvious characteristics we might expect to�nd in the dual lattice of an optimal rule. Indeed, our recent major search [CoLy99] wascon�ned to areas where promising lattices seemed likely to occur. The next paragraph isadapted from [CoLy99], where a complete description of this search may be found.A dynamic approach to the problem of �nding an optimal rule might start with a latticethat is comfortably of enhanced degree � and has a high abscissa count. We perturb thisgiven 
(s; �)-admissible lattice �?, with a view to reducing the s-volume of its unit cellbut keeping it 
(s; �)-admissible, that is, not allowing any lattice point to enter the �xedregion 
(s; �). It is reasonable to believe that the process of making this unit cell small,that is, making the lattice �? denser and reducing its order, would, in general, move latticepoints towards the origin. This process would be seriously inhibited by the boundary of
(s; �). Ultimately (as the wiggle room disappears), one would expect progress to come toa complete stop (grind to a halt) at a stage where many points of �? were (jammed) on thisboundary. Thus, it is plausible to believe that the lattice � of an optimal lattice rule Q(�)of enhanced degree � will have a dual lattice �? with many elements on this boundary. Theunderlying feature of our search is that it is limited to dual lattices having this property.In three dimensions, our population comprised all integer lattices generated by b1, b2,and b3, where these lay on di�erent faces of the octahedron 
(3; �). None have enhanceddegree exceeding �. In our search, we check the abscissa count �rst. If this is the smallestyet encountered, we carry out the longer task of calculating the enhanced degree. If thisturns out to be �, we retain this lattice �? as a candidate for an optimal lattice.These remarks are intended only to give the underlying idea of the search. A properdescription even in three dimensions is far longer. In higher dimensions there are manycomplications that we do not discuss here.The cost in computer time of this search is enormous. The complexity is high but notmore than �s2�1. However, after code development and calculations lasting over one year,we have found what are probably the optimal lattice rules for s = 3, � < 54, and fors = 4, � < 23. Unfortunately, we cannot a�rm that these are optimal in a general sense.In [CoLy99] we have introduced de�nitions (K-optimal) which specify the precise sense inwhich these rules are optimal.3 The rho-index �(Q)In this section, we simply state some examples of the results we found. The reader interestedin a complete set of results should refer to [CoLy99]. There we give seventy-six lattice rules,6



all optimal in some sense, each speci�ed in terms of its utlf matrixH . These are presented inthree pages of tabular material, which we do not reproduce here. However, we do reproducebelow two �gures in which a rule may be represented by a single point. In these two �gureswe have included a majority of the rules discovered by our search, as well as some otherrules.De�nition 3 Let an s-dimensional cubature rule Q have abscissa count N and strict en-hanced trigonometric degree �. Then its �-index �(Q) is�(Q) := �s=(s!N): (3.1)In earlier papers, the concept of an e�ciency indicator was used. We believe that thee�ciency indicator has now outlived its usefulness; we recommend using the �-index instead.Naturally, this suggestion has no e�ect on the depth and nature of research about optimalrules. It simply provides a way of illustrating results. The reader might compare Figures 1and 2 below with corresponding �gures that use the e�ciency indicator as ordinate. Figures1 and 2 are reasonably compact (in a nontechnical sense). The following theoretical resultsshow why.De�nition 4 The m-copy (or ms-copy) of an s-dimensional cubature formula (1.1) isQ(m)f = m�1Xk1=0 m�1Xk2=0 : : :m�1Xks=0 NXj=1 wjms f �xj + (k1; k2; : : : ; ks)m � : (3.2)This is, of course, the rule obtained by partitioning [0; 1]s in a natural way into ms identicalsquares and applying a properly scaled version of Q to each. It is almost self-evident thatthe m-copy of a lattice rule is also a lattice rule.Theorem 3 When Q is a cubature formula of enhanced degree � having abscissa count N ,then Q(m) is a cubature formula of enhanced degree s� and abscissa count �sN .A proof restricted to lattice rules is almost self-evident, since the e�ect of taking anm-copy isto replace � by (1=m)� and �? bym�?. However, the general proof is also straightforward.
7
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Figure 1: � as a function of � for three-dimensional rules
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Figure 2: � as a function of � for four-dimensional rules� Rules appearing in recent papers� Rules appearing in [CoLy99]2 The M�oller Bound NME8



Corollary 1 The �-indices of a cubature formula Q and any of its m-copies Q(m) areidentical. That is, �(Q(m)) = �(Q): (3.3)This follows immediately from (3.1).The second relevant result concerns NME(s; �), the well-known lower bound on theabscissa count of any s-dimensional rule of enhanced trigonometric degree �. This boundis sometimes called M�oller's lower bound, although M�oller considered only the algebraicdegree [M�ol79]. All results known to us on lower bounds are contained in [Coo97]; see inparticular subsections 7.1 and 8.3. For odd values of � the bound is classical. For evenvalues of � it is mentioned in [Nos85] and derived in [Mys87], extending M�oller's result.Using this result, one can easily show that �( ~Q) � 1 for a hypothetical rule ~Q of degree� and abscissa count NME. Since no actual rule of this degree can have a lower abscissacount, we �nd �(Q) � �( ~Q) � 1: (3.4)In Figures 1 and 2, every point entry represents a cubature formula. In view of (3.4)above, there can be no entries above � = 1. The square entries are the hypothetical rules~Q mentioned above. Because of M�oller's bound, there can be no entries above these.However, in view of (3.3), every point on this �gure gives rise to an in�nite sequence ofother points; speci�cally, a point at (�; �) implies there is a sequence of points at (m�; �) forall positive integer m. In general, these points are not shown.It is apparent, then, that rules of particular interest have entries in the part of this�gure lying in a strip bounded above by � = 1 and below by one of the previous entries.The reasoning here extends to s-dimensions.4 Some Speci�c Results for s = 4, � = 16The four-dimensional rule with the highest �-index known to us is one with � = 16. In thissection we �rst give several examples of rules having enhanced degree � = 16. We thenmake some general points in terms of these examples.In 1991, Noskov published [Nos91] two rank-1 simple rules having � = 16. These wereof the form Qf = 1N NXj=1 f (fjz=Ng) : (4.1)One is a member of a family of rules speci�ed for all � = 4k; k = 1; 2; : : :; the member with� = 16 has N = 3544; z = (1; 17; 129; 985); � = 192: (4.2)9



(See Section 5 for the multiplicity �.) Another, found by experiment, hasN = 3522; z = (1; 17; 195; 949); � = 192: (4.3)Almost ten years later, in the course of the exhaustive search described above, we cameacross the rank-1 simple rule withN = 3376; z = (1; 169; 1091; 1387); � = 192: (4.4)This may or may not be an optimal rank-1 rule; however it is not an optimal lattice rule ofthis degree. In [CoLy99], a rank-2 rule is listed. Since it has rank 2, it cannot be writtenin rank-1 form (4.1) above. One D � Z representation isQf = 13312 1656Xj=1 2Xk=1 f �� jz21656 + ke12 �� ; (4.5)with N = 3312; z2 = (1431; 919; 495; 1); e1 = (1; 0; 0; 0); � = 96:It has not been shown that this is a generally optimal rule. It is K-optimal with respectto a reduced family. Thus, there could possibly be: (i) a K-optimal rule; (ii) a lattice rule;(iii) a general rule; having successively higher values of �.5 Symmetric EquivalenceIn the context of lattice searches, the concept of symmetric equivalent sets of lattices was�rst extensively developed in [LyS�91]. The �rst paragraph of Section 3 of [CoLy99] alsoprovides a good introduction to these ideas.Briey, a lattice � is symmetrically equivalent to another lattice �0 if one can obtain �from �0 by elementary rotations or inversions of the coordinate axis system. For example,in four dimensions (s = 4), any particular lattice is one of a set of � lattices, each of whichis a symmetric copy of any other. In general, � can be as high as 2s�1s! = 192. In fact,many lattices �0 have built in additional symmetry, and the multiplicity of the symmetricequivalent set to which �0 belongs may be any integer of the form 192=k, where k is apositive integer.It is intuitively obvious that many characteristics of each lattice, including its abscissacount and its trigonometric degree, are shared by each lattice in a set of symmetric equiv-alents. Thus, considerable e�ort in a search could be saved if only one member of each setwere treated. Speci�cally, whether the search is taking place on a personal computer oron a state-of-the-art supercomputer, avoiding such duplication of e�ort might reduce thecomputer time required in a four-dimensional search from N hours to N minutes. However,our own experience in several comparable searches is that it is extremely di�cult to exploitthe symmetry e�ectively.Further information with detailed proofs about lattice rules in general may be obtainedfrom [SlJo94]. Much of the background for our search may be found in [CoSl96].10
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