
Chapter 1APPROXIMATING MAXIMUM STABLESET AND MINIMUM GRAPH COLORINGPROBLEMS WITH THE POSITIVESEMIDEFINITE RELAXATIONS. J. BensonDivision of Mathematics and Computer ScienceArgonne National LaboratoryArgonne, IL 60439benson@mcs.anl.govY. YeDepartment of Management SciencesThe University of IowaIowa City, Iowa 52242yyye@yuan.biz.uiowa.eduAbstract We compute approximate solutions to the maximum stable set problemand the minimum graph coloring problem using a positive semide�-nite relaxation. The positive semide�nite programs are solved using animplementation of the dual scaling algorithm that takes advantage ofthe sparsity inherent in most graphs and the structure inherent in theproblem formulation. From the solution to the relaxation, we apply arandomized algorithm to �nd approximate maximum stable sets and amodi�cation of a popular heuristic to �nd graph colorings. We obtainedhigh quality answers for graphs with over 1000 vertices and over 6000edges.Keywords: Stable Set, Independent Set, Maximum Clique, Graph Coloring, Posi-tive Semide�nite Relaxation.1



2 APPLICATIONS AND ALGORITHMS OF COMPLEMENTARITY1 INTRODUCTIONGiven an undirected graph G = (V;E), a stable set of vertices (orvertex packing or independent set) is a subset of V such that no twovertices are adjacent. The Maximum Stable Set Problem (MSS) asksfor the stable set with the maximum cardinality. A clique of graph Gis a subset set of vertices such that every pair of vertices is adjacent.A vertex cover is a subset of vertices that are incident to each edge inthe graph. Denoting �G as the graph complement of G, the followingstatements concerning any S � V are known to be equivalent:1. S is a stable set of G,2. S is a clique of �G,3. V n S is vertex cover of GAccordingly, the problems of �nding a maximum stable set of G, a max-imum clique in �G, and a minimum vertex cover in G are equivalent.A vertex coloring of a graph is an assignment of colors to the vertices Vsuch that no two adjacent vertices receive the same color. Equivalently,the problem looks to partition the vertices into independent sets. Thesmallest number of colors needed for this coloring is called the chromaticnumber of G. A graph is k-colorable if it can be colored with k colorsor less. Obviously, the cardinality of any clique in G is a lower boundon the chromatic number of G. When a graph, and every node inducedsubgraph, have a chromatic number that equals the cardinality of thelargest clique, it is known as a perfect graph. For this special class ofgraphs, the MSS problem can be solved to optimality using a polynomialalgorithm.These problems are classical problems in combinatorial optimizationand are well known to be NP-complete[19]. The MSS problem can besolved using polynomial time algorithms for special classes of graphs suchas perfect graphs and t-perfect graphs, circle graphs and their comple-ments, circular arc graphs and their complements, claw-free graphs, andgraphs with long odd cycles[27], but the existence of a polynomial timealgorithm for arbitrary graphs seems unlikely.Various exact solution methods have been developed for these com-binatorial optimization problems. An implicit enumeration technique ofCarrahan and Pardalos[12], integer programming with branch and boundby Babel and Tinhofer[3][4], Balas, Xue, and Yu[6][7], Mannino and Sas-sano [27], and Nemhauser[30], integer programming with cutting planesby Balas [5], Nemhauser[31], and Nemhauser and Sigismondi [30], and atabu search by Friden[17] have all been applied to the maximum stable



Positive Semide�nite Relaxations 3set problem. There e�ectiveness, however, has usually been limited tographs with less than 500 vertices. For the minimum graph coloringproblem, implicit enumeration and branch and bound based methods ofKubale[25] [26] have been limited to very small instances, and a columngeneration approach based upon the stable set formulation by Mehrotraand Trick[28] has been applied to graphs with up to 600 vertices. Ofcourse all of these algorithms have exponential complexity, so for largergraphs, the only option available is heuristic methods [34] [21] [22] [29],which have the cost of regularly suboptimal solutions.Aside from its theoretical interest, the MSS problem arises in applica-tions in information retrieval, experimental design, signal transmission,and computer vision[7]. Graph coloring arises when using �nite di�er-ences to approximate sparse Hessian matrices, and well as applications incomputer register allocation[11][14][13], timetable scheduling[9][15][43],and electronic bandwidth allocation[18]. In many of these applications,it su�ces to �nd an approximately optimal solution. This fact and thedi�culty of �nding exact solutions, have encouraged considerable e�orton �nding good approximation algorithms.2 POSITIVE SEMIDEFINITERELAXATIONSThe standard form of a positive semide�nite program is:Minimize C �X(SDP) Subject to Ai �X = bi; i = 1; : : : ; m;X 2 Kwhere K = K1�K2� � � ��Kr and Kl is the cone of nl � nl symmetricpositive semide�nite matrices, C;Ai 2 <n�n are symmetric, and A�C =tr (ATC).The dual of (SDP) can be written as:Maximize bTy(DSP) Subject to mXi=1 yiAi + S = C; S 2 K;where y 2 <m.There are some very strong connections between positive semide�-nite programming and combinatorial optimization. The famous Lov�asznumber, which provides an upper bound to the maximum stable set of



4 APPLICATIONS AND ALGORITHMS OF COMPLEMENTARITYa graph and a lower bound to its chromatic number, is the solution to apositive semide�nite program. Many more combinatorial problems havecan be relaxed into a positive semide�nite program, and some of theserelaxations o�er rounding techniques that are guaranteed to be withina speci�ed fraction of optimality.Most linear programming relaxations do not o�er a performance guar-antee, but Geomans and Williamson[20], in a now classic result, ap-plied the solution of a maximum cut positive semide�nite relaxationto a randomized algorithm and proved that the answers it generateshave an expectation greater than 0:878 of optimality. Although thestable set problem cannot be approximated within a constant fractionin polynomial time unless P = NP , provably good approximation al-gorithms using a positive semide�nite relaxation have been found forMAX-SAT, MAX-2-SAT, MAX-3-SAT, MAX-4-SAT, MAX k-CUT[36],MAX-3-CSP, minimum bandwidth, graph bisection, bound constrainedquadratic programming[32][45], graph coloring[23], and some schedulingproblems.Much like the formulation of Kleinberg and Goemans[24] the SDPrelaxation of the MSS problem will assign each vertex an integer valueof �1 or +1. One of the two sets will be a stable set. Given a graphG with n� 1 vertices, our formulation, adds an arti�cial vertex vn withno edges connecting it to other vertices. Since the arti�cial vertex isobviously a member of the maximal stable set of the new graph, it willused to identify the stable set and enforce the constraints of the problem.The MSS problem can be stated as:Maximize 12  n�1Xi=1 v2i + vnvi!(MSS) Subject to v 2 f�1; 1gn;jvi + vj + vnj = 1 if (vi; vj) 2 EDenoting ei;j;n 2 <n as the vector with zeros at all indices except i,j, and n, whose elements equal 1, the positive semide�nite relaxation of



Positive Semide�nite Relaxations 5MSS is Maximize 0BBB@ :5 :25. .. ...:5 :25:25 � � � :25 0 1CCCA �X(MSSSDP) Subject to diag(X) = e;(ei;j;neTi;j;n) �X = 1 8(i; j) 2 EX � 0Imposing the additional constraint upon (MSSSDP) that the matrix Xhave rank one would make it equivalent to (MSS). Relaxing this con-straint to include all symmetric positive semide�nite matrices makesthe feasible region convex, and the solution to this problem provides anupper bound to the integer program (MSS). A randomized algorithmuses a solution of the relaxed problem, X�, to identify stable sets. Therandomized algorithm goes as follows:1. Given a solution X� to (MSSSDP), �nd a V 2 <n�n such thatX� = V TV .2. Select a unit vector u 2 <n from the unit sphere and let v =sign(V Tu).3. For each (i; j) 2 E, if jvi + vj + vnj 6= 1, change the sign of eithervi or vj .The stable set will be the set of vertices with the same sign as vn. Forarbitrary graphs, the constraints corresponding to the edges of the graphwill be satis�ed with a frequency greater than 91% [10]. The third stepof the randomized algorithm ensures that no edge connects vertices inthe set by selectively removing vertices from the set. The choice ofwhether to switch vertices vi or vj may be arbitrary, but a better choicemay be made by switching the vertex whose value is farthest from vn: ifjvi�vnj > jvj�vnj, change the sign of vi, otherwise change the sign of vj .This randomized algorithm can be applied multiple times to calculatemultiple stable sets.In the linear programming relaxation of the maximal stable set prob-lem, utilizing larger cliques is crucial for a tight approximation to theconvex hull of the integer program. These cliques can also improve thepositive semide�nite relaxation. Given cliques C1; : : : ; Cd, such that Ck



6 APPLICATIONS AND ALGORITHMS OF COMPLEMENTARITYhas nk vertices, stable sets v 2 f�1; 1gn must satisfyj(nk � 1)vn + Xvi2Ck vij = 1for k = 1; : : : ; d. This formulation has a positive semide�nite relaxationthat more closely approximates the convex hull of the integer program.This formulation has fewer constraints which can signi�cantly reducethe time required to solve the positive semide�nite program.To favor the inclusion of selected vertices into the stable set, theweighted maximal stable set problem has a similar formulation. Given aweights wi on the vertices, this problem seeks to maximize12 n�1Xi=1 wi �v2i + vnvi�subject to the same constraints as (MSS). These problems can also beaddressed using the positive semide�nite relaxation.For the graph coloring problem, instead of assigning colors or integersto the vertices of the graph, a unit vector vi 2 <n is assigned to theeach of the n vertices i in V . To capture the property of coloring, thevectors of adjacent vertices should di�erent in a natural way. Using thede�nition of [23], the vector k- coloring of G is an assignment of unitvectors vi 2 <n to each vertex i in V such that for any two adjacentvertices i and j, the dot product of the vectors satis�es the inequalityvTi vj � � 1k�1 . In other words, the angle between the vectors of adjacentvertices must be su�ciently large. De�ne the matrix V such that columni is given by vi and let X = V TV . The matrix X is positive semide�niteand satis�es the inequalities Xij = Xji � � 1k�1 for each pair of adjacentedges (i; j). Obviously, any matrix is n-colorable, so the graph coloringproblem can be posed as:Minimize rank(X)(COLOR) Subject to diag(X) = e;Xij � � 1n�1 for (i; j) 2 EX � 0 (1.1)Ignoring the objective function, the problem is now a positive semidef-inite program which seeks to �nd a feasible point. Heuristic algorithmscan then be applied to the solution to color the graph.Let aij 2 <n be a vector of zeros except indices i and j, whose elementsequal one. A positive semide�nite relaxation of the graph k coloring



Positive Semide�nite Relaxations 7problem can be rewritten as:Minimize 0 �X(COLORSDP) Subject to diag(X) = e;(aijaTij) �X � 2� 2k�1 if (i; j) 2 E (1.2)A solution X� with rank less than or equal to k, identi�es a legal k-coloring. The problem can be solved exactly. More generally, Karger,Motwani, Sudan propose a randomized algorithm that produces a k-semicoloring, an assignment of colors with relatively few adjacent ver-tices with the same color. We propose a heuristic procedure for to obtaina legal coloring, albeit with more than k colors if necessary.Coloring Algorithm For k = 1; : : : ;1. Let Uk be the uncolored vertices. If Uk is empty, terminate thealgorithm.2. Sort the vertices of Uk in decreasing order of degree in G[Uk], thegraph induced by the uncolored vertices, and let i be the vertexwith highest degree.3. Build a vertex set W k by examining vertices j 2 Uk in the de-creasing order of Xij . Add j to W k if it is not adjacent to any ofthe vertices in W k .4. Assign the vertices in W k color k.This algorithm is a modi�cation of the algorithm proposed by [35].In their algorithm, only step 3 is di�erent. Instead of using the solu-tion to the a positive semide�nite program, they examine the verticesin decreasing order of degree in G[Uk]. This algorithm remains one ofthe simplest and most popular, although other heuristics have been pro-posed and can be modi�ed to include information inherent in the positivesemide�nite program.3 POSITIVE SEMIDEFINITEPROGRAMMING ALGORITHMSThere are actually several polynomial algorithms that can solve pos-itive semide�nite programs. One is the primal-scaling algorithm (Nes-terov and Nemirovskii [33], Alizadeh [1], Vandenberghe and Boyd [42],and Ye [44]), which is the analogue of the primal potential reductionalgorithm for linear programming. This algorithm uses X to generate



8 APPLICATIONS AND ALGORITHMS OF COMPLEMENTARITYthe iterate direction. Another is the dual-scaling algorithm (Vanden-berghe and Boyd [42], Anstreicher and Fampa [2], and Ye [44]), whichis the analogue of the dual-scaling algorithm for linear programming.The dual-scaling algorithm uses only S to generate the iterate direction.The third is the primal-dual scaling algorithm which uses both X andS to generate iterate directions, including Alizadeh-Haeberly-Overton,Helmberg-Rendl-Vanderbei-Wolkowicz/ Kojima-Shida-Hara/ Monteiro,Nesterov-Todd, Gu, and Toh directions, as well as directions called theMTW and Half directions (see Todd [39] and references therein). Allthese algorithms possess O(pn log(1=�)) iteration complexity to yieldaccuracy �.The features of the positive semide�nite program should determinewhich algorithm and which implementation of the algorithm is mostappropriate. In contrast to applications of SDP in control theory andtruss topology design, positive semide�nite programs arising in combi-natorial optimization typically have many variables, contain sparse lowrank constraint matrices, and require relatively low precision solutions.Although rank one matrices reduce the complexity of interior point al-gorithms for positive semide�nite programming by a factor of n, not allimplementations utilize this structure to reduce the complexity. Our im-plementation of the dual scaling algorithm explicitly accounts for thesefeatures[8]. Furthermore, the dual matrix S has a sparsity pattern likethat of the graph's adjacency matrix. This sparsity o�ers the potentialfor savings in computation time and memory requirements, which thedual scaling algorithm can exploit better than primal dual algorithms.Although the rate of convergence of the dual algorithms is only linear,the relatively low precision required by combinatorial problems lessensthe disadvantage of slower convergence.One assumption for the convergence of the dual scaling algorithm isthat the feasible primal region has a relative interior.Theorem 1 The positive semide�nite relaxation (MSSSDP) has a rel-ative interior.Proof. 1 De�ne the vectors v1; v2; : : : ; vn byvji = � �1 if i = j or i = n+ 11 otherwiseand vn+1i = � �1 if 1 � i � n1 if i = n+ 1



Positive Semide�nite Relaxations 9These vectors satisfy the constraints of (MSS) and the matrices X i =vi(vi)T satisfy the positive semide�nite relaxation (MSSSDP). LetX = 1n+ 1 n+1Xi=1 X i:This matrix is a strict convex combination of symmetric rank one matri-ces and is therefore positive semide�nite. To prove it is positive de�nite,it su�ces to show that fvi : i 2 f1; 2; : : : ; n+1gg is linearly independent.Linear independence can be shown by evaluating the determinant of V n,whose columns are the vectors vi. Since det(Vn) = �(2)n 6= 0, the con-vex hull of the feasible solutions of the nonconvex optimization problemsin <n contains n+1 linearly independent vectors, so the SDP relaxationhas a feasible solution that is positive de�nite.Theorem 2 The feasible region of the n-coloring problem relaxation(COLORSDP) contains a positive de�nite matrix.Proof. 2 Let Xij = ( 1 if i = j� 1n+1 otherwiseThen X = � 1n+1eeT + n+2n+1I. The matrix has one eigenvalue of 2n+1 andn� 1 eigenvalue equal to n+2n+1 , which implies it is positive de�nite.Since the primal and dual problems of these SDP relaxations alwayshave a feasible solution whose S and X part is positive de�nite, it followsthat the primal and dual optimal values are attained and equal[37].(Quite recently, Tuncel extended these theorems to the SDP relaxationsof rather general nonconvex sets [41].)4 COMPUTATIONAL RESULTSIn our computational experiments, we used a variety of previouslytested graphs drawn from a large number of sources. For each of thesegraphs, we formulated the positive semide�nite relaxation of the integercombinatorial problem and solved the relaxation until a relative dualitygap of 10�3 has been achieved.For the maximum stable set problems, most of the graphs are takenfrom the 2nd DIMACS Challenge [16]. These graphs were contributedas test problems for solving the maximum clique problem. For thesegraphs, we took the complement of these graphs and applied our max-imum stable set algorithm. The results are supplied in Table 1.1. Asecond set of test problems are examples of Mycielski graphs[40]. These



10 APPLICATIONS AND ALGORITHMS OF COMPLEMENTARITYgraphs are interesting because they contain no cliques of size larger than2. For these graphs, we expect our relaxation to be very tight. The re-sults are also included in Table 1.1. A third set of graphs are line graphscreated from other randomly generated graphs. Three line graphs werecreated from a graph with 100 vertices and 248 nonzero edges. Anotherthree line graphs were created from graphs with 200 vertices and 597nonzero edges. These line graphs are interesting because the SDP relax-ation methods and successive relaxation methods perform very poorlyfor the maximum stable set problem in the worst case[38]. For these linegraphs, lower bounds for the maximum stable set was calculated usingthe program \dfmax.c", also available from the DIMACS web site[16].For each graph, we solved the positive semide�nite relaxation, withoutusing cliques of size 3 or larger, and applied the randomized procedurefor �nding stable sets. Since the time required by the randomizationprocedure is very small relative to the time spent on solving the positivesemide�nite program, we applied the randomized procedure n times oneach problem. The data in Table 1.1 includes the number of vertices (jV j)and edges (jEj) in each graph, the upper bound provided by the semidef-inite relaxation (SDP), the size of the maximum stable set (Optimal),and the size the the largest stable set found using our implementationof the algorithm (DSDP).Of the 24 graphs, we solved (MSS) exactly 14 times. In 13 of those14 instances, the positive semide�nite relaxation was extremely tight.These 13 instances include the �ve Mycielski graphs, which have nolarge cliques. This evidence demonstrates the importance of using largecliques when such knowledge is available. The ten instances in whichDSDP did not �nd the optimal answer included all of the line graphs.Even in the line graphs, however, the SDP relaxation proved to be withinabout 10% of the optimal answer. The worst results were from theproblem sanr200 0:7, whose SDP bound is 23:9, maximum stable setsize is 18, and DSDP answer is 11. In most cases, however, the SDPrelaxation was strong and our answers were good.For the graph coloring problem, we used examples collected by Trickand Mehrotra [40]. For these problems, we formulated and solved therelaxed of the n�coloring problem (COLORSDP). From this solution, weapplied the graph coloring heuristic to obtain one graph coloring. Table1.2 shows the minimal number of colors used, the number of colors weused in DSDP, and the number of colors used by the heuristic [35].Of these test problems, the optimal coloring is known for 34 of them.In 24 of these 34 problems, we correctly identi�ed an optimal coloringof the graph. Although the heuristic also found an optimal coloringin many of these graphs, problem queen5:5, utilized the solution to



Positive Semide�nite Relaxations 11Table 1.1 Maximum Stable Set ProblemsGraph jV j jEj SDP Optimal DSDPhamming10-2 1024 5120 512.1 512 512hamming6-2 64 192 32.0 32 32hamming6-4 64 1312 5.35 4 4hamming8-2 256 1024 128.0 128 128johnson16-2-4 120 1600 8.0 8 8johnson8-2-4 28 168 4.0 4 4brock200 1 200 5066 27.5 21 14brock200 3 200 7852 18.8 15 9brock200 4 200 6811 21.3 17 9keller4 172 5100 14.0 11 7san200 0.9 1 200 1990 70.0 70 70san200 0.9 2 200 1990 60.0 60 60san200 0.9 3 200 1990 44.1 44 44sanr200 0.7 200 6032 23.9 18 11sanr200 0.9 200 2037 49.3 40 34myciel3 11 20 5.0 5 5myciel4 23 71 11.0 11 11myciel5 47 236 23.0 23 23myciel6 95 755 47.0 47 47myciel7 191 2360 95.0 95 95line1 248 1202 50.0 � 47 39line2 248 1220 49.5 � 47 40line3 248 1212 49.5 � 47 42line4 597 3414 100.0 � 89 79line5 597 3481 100.0 � 85 76line6 597 3635 100.0 � 85 82



12 APPLICATIONS AND ALGORITHMS OF COMPLEMENTARITYthe positive semide�nite program to �nd an optimal coloring which theheuristic could not do. In a total of four problems, the coloring obtainedusing the SDP relaxation was better than the coloring obtained by theheuristic, but in the three DSJC125 graphs, the coloring was actuallyworse.For seven of the graphs in which we de�nitely did not compute theoptimal coloring, we formulated a tighter formulation. Instead of usingthe n-color formulation, we used the k-color formulation where k is theminimal graph coloring. We solved these tighter relaxations and appliedour heuristic to these solutions, hoping to identify a better coloring. Theresults are in Table 1.3. The number of colors required when using thetighter formulation is in the last column (DSDP2). In only one of theseven instances did the tighter formulation actually improve the coloring.On the other hand, there was one instance where the tighter formulationactually worsened the coloring of the graph. Hence, it seems su�cientto pose the n-coloring relaxation.The time required to solve these problems ranged from less than asecond for queen5:5 to over twelve hours to �nd the maximum stableset of brock200 1. The heuristic can �nd answers very quickly, but thepositive semide�nite relaxation may o�er improved answers. For othercombinatorial problems, performance guarantees for algorithms usingthe positive semide�nite relaxation exist. The cost of these guaran-tees, however, is the signi�cant additional cost in computation time andmemory requirements. This contributes the growing mountain of evi-dence demonstrating the high quality of solutions that can be obtainedfrom the semide�nite relaxation.AcknowledgmentsThis work was supported by the Mathematical, Information, and ComputationalSciences Division subprogram of the O�ce of Advanced Scienti�c Computing Re-search, U.S. Department of Energy, under Contract W-31-109-Eng-38.



Positive Semide�nite Relaxations 13Table 1.2 Graph Coloring ProblemsGraph jV j jEj Optimal DSDP Heuristicanna 138 493 11 11 11david 87 406 11 11 11homer 561 1629 13 13 13huck 74 301 11 11 11jean 80 254 10 10 10games120 120 638 9 9 9miles250 128 387 8 8 8miles500 128 1170 20 20 20miles750 128 2113 31 32 32miles1000 128 3216 42 42 42miles1500 128 5198 73 73 73queen5.5 25 160 5 5 7queen6.6 36 290 7 9 9queen7.7 49 476 7 11 11queen8.8 64 728 9 11 12queen9.9 81 1055 10 13 13queen10.10 100 1470 ? 14 14queen11.11 121 1980 11 15 15queen12.12 144 2596 ? 17 17queen13.13 169 3328 13 18 18queen14.14 196 4186 ? 19 19myciel3 11 20 4 4 4myciel4 23 71 5 5 5myciel5 47 236 6 6 6myciel6 95 755 7 7 7myciel7 191 2360 8 8 8zeroin.i.1 211 4100 49 49 49zeroin.i.2 211 3541 30 30 30zeroin.i.3 206 3540 30 30 30mulsol.i.1 197 3925 49 49 49mulsol.i.2 188 3885 31 31 31mulsol.i.3 184 3916 31 31 31mulsol.i.4 185 3946 31 31 31mulsol.i.5 186 3973 31 31 31DSJC125.1 125 736 ? 6 7DSJC125.5 125 3891 ? 21 22DSJC125.9 125 6961 ? 49 50DSJC250.1 250 3218 ? 11 11DSJR500.1 500 3555 ? 13 13



14 APPLICATIONS AND ALGORITHMS OF COMPLEMENTARITY
Table 1.3 Graph Coloring Problems with a Tighter RelaxationGraph jV j jEj Optimal DSDP DSDP2miles750 128 2113 31 32 32queen6.6 36 290 7 9 9queen7.7 49 476 7 11 10queen8.8 64 728 9 11 12queen9.9 81 1055 10 13 13queen11.11 121 1980 11 15 15queen13.13 169 3328 13 18 18
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