
Chapter 19Software for the ScalableSolution of PDEsSatish BalayWilliam D. GroppLois Curfman McInnesBarry F. Smith 119.1 IntroductionThe numerical approximation of the solution of partial di�erential equations(PDEs), which can be used to model physical, chemical, and biological phe-nomena, is an important application of parallel computers, as we have seen inprevious chapters and as is discussed in [Kon00]. Early e�orts to build programsto solve PDE problems had to start from scratch, building code for each algo-rithm used in the solution process. This custom approach has two major draw-backs: it limits the use of parallel computers to a small number of groups thathave the resources and expertise to develop these codes, and it hampers the abil-ity to take advantage of developments in parallel algorithms. In conventional,serial programming, both of these drawbacks were partially solved by developinglibraries of routines that contained the best numerical analysis and implementa-tion techniques. The same route is being followed for parallel libraries, thoughparallelism introduces additional complications. Handling these complicationshas caused many groups to rethink the structure of numerical libraries, leadingto better software even for uniprocessor applications. In this chapter, we willcover some of the issues and solutions in the context of the Portable, Exten-sible Toolkit for Scienti�c Computation (PETSc), a collection of tools for thenumerical solution of PDEs and related problems [BGMS, BGMS00].1Mathematics and Computer Science Division, Argonne National Laboratory, 9700South Cass Ave., Argonne, IL 60439-4844. balay@mcs.anl.gov, gropp@mcs.anl.gov,mcinnes@mcs.anl.gov, bsmith@mcs.anl.gov, http://www.mcs.anl.gov/petsc.1

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 2Many issues arise in designing a parallel program to approximate the solutionto a PDE. A key issue is managing software complexity, or the interrelationshipsamong code for the various facets of the overall simulation. Three additionalcritical issues are numerical algorithms, data distribution and data access pat-terns. Ironically, these are exactly the same issues of importance for sequentialsolution; only the scale is di�erent.We begin by asking how we can organize our program to exploit parallelism,manage the complexity of the parallel application, and e�ectively use the avail-able computing resources. The approach that we take in this chapter is to startat the top, organizing the program around the mathematics of the approxima-tion. As we will see, this single organizing principle not only provides a methodfor e�ectively distributing the computation across the processors, but also al-lows us to change algorithms easily and thereby to incorporate new methods asthey become available. Such capabilities enable numerical software developersto better serve the needs of computational scientists, who can leverage expertiseencapsulated within existing libraries without needing to commit to a particu-lar solution strategy and to risk making premature choices of data structuresand algorithms. Engaging application scientists in library use without requiringexcessive commitment on their part is a critical facet of overcoming the all toofrequent perception that applications must implement from scratch all facets ofmodeling to achieve good performance. In fact, the \roll your own" approachis undesirable because it implies that implementation decisions must be madea priori, before experimentation with realistically sized problems can determinea code's most serious bottlenecks. Using abstractions in library design providesthe
exibility for application programmers to use library-provided functionalityfrom the beginning of an application's development as well as to inject newalgorithms and data structures (which may be written by library developers,the application scientists themselves, or third parties) during the lifetime of theapplication code.The remainder of this chapter is organized as follows. Section 19.2 presentsan overview of background for the numerical solution of PDEs, while Sec-tion 19.3 explains in more detail the challenges in parallel computations forPDE-based models. Section 19.4 overviews various possible possible solutionstrategies and lays out the territory for the remaining discussion in this chap-ter. Section 19.5 discusses the approach used within the PETSc software, withemphasis on the use of mathematical abstractions as an organizing principlethat can help to address issues in algorithmic
exibility, e�cient use of compu-tational resources, and composability with external tools. Section 19.6 providesan overview of recent work throughout the high-performance computing com-munity in parallel PDE software. Finally, we conclude in Section 19.7 with someobservations and recommendations.19.2 PDE BackgroundPartial di�erential equations that model scienti�c applications span the com-plete range of elliptic, parabolic, and hyperbolic types and combinations thereof.

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 3As discussed in [Hea97], hyperbolic PDEs describe time-dependent physicalprocesses, such as wave motion, that are not evolving toward a steady state;parabolic PDEs describe time-dependent physical processes, such as heat dif-fusion, that are evolving toward a steady state; and elliptic PDEs describeprocesses that have already reached a steady state, or equilibrium, and henceare independent of time. In addition, problems can be of mixed type, varyingby region or being multicomponent in a single region (e.g., a parabolic systemwith an elliptic constraint). Generally, elliptic equations are easy to discretize,but challenging to solve because their Green's functions are global: the solutionat each point depends upon the data at all other points. Conversely, hyperbolicequations are challenging to discretize because they support discontinuities butare easy to solve when addressed in characteristic form [KKS99].Many applications are based on replacing an in�nite dimensional continuousPDE system with an approximate �nite dimensional discrete system that canbe solved numerically. A wide range of numerical algorithms can be employedfor such problems (see, e.g., [MM94, Hea97]). We often categorize approachesas being explicit or implicit, depending on whether the algorithm computesthe solution at a given mesh point using only past iterates or using currentinformation from other mesh points as well. Explicit algorithms update the so-lution vector simply by using discretization information from neighboring meshpoints; no global linear or nonlinear solves are used. Explicit methods arerelatively straightforward to implement in parallel, since communication is gen-erally needed only for global reductions (e.g., vector norms) and ghost pointtransfers for local discretization. In contrast, implicit methods update all (ormost) variables in a single global linear or nonlinear solve. Consequently, sincethey propagate information throughout the global problem domain at each iter-ation, implicit methods can often converge in fewer time steps than do explicitmethods, particularly for large-scale problems. Unfortunately, the challengesin parallel implementations of implicit methods are considerable, due to theinherently global nature of the operators.Intermediate between these extremes are semi-implicit methods, in whichsubsets of variables (for example, pressure) are updated with global solves. Mostof the remaining discussion in this chapter will focus on issues arising in implicitand semi-implicit methods, since these can be especially e�ective for large-scaleproblems and are arguably more di�cult to implement in parallel than explicittechniques.19.3 Challenges in Parallel PDE ComputationsA commonly used approach for solving a PDE system is to replace the partialderivatives within the system (for example, spatial and time derivatives) withdiscrete approximations based on �nite di�erences, volumes, or elements andthen to solve numerically the resulting algebraic system of (time-dependent,nonlinear) equations. Without going any further, parallelism already introducesan issue: how is the solution vector distributed among the processors? Whilethis question may at �rst glance seem straightforward, it immediately leads

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 4to deeper issues regarding data access patterns as well as interrelationshipsamong software for various facets of parallel PDE solution, such as interfacesbetween partitioning tools and algebraic solvers. We must somehow managethis complexity without sacri�cing good performance; these dueling tradeo�sare particularly challenging when using the distributed memory resources andmultilevel memory hierarchies of modern architectures.19.3.1 Software ComplexityWe thus recognize immediately that software for parallel numerical PDEs (e.g.,tools for time evolution and algebraic nonlinear and linear solution) cannot bedeveloped in isolation, but rather must be considered in relationship to toolsthat partition the problem domain. Further consideration reveals that typicalscienti�c simulations need many additional capabilities, such as mesh genera-tion, PDE discretization, derivative computations, adaptive mesh re�nementand coarsening, optimization, sensitivity analysis, data management, visualiza-tion, and parallel performance analysis. Moreover, each computational phasemay have a di�erent preferred data representation, so that we must considertradeo�s in computation time and storage space when transitioning betweenphases.In recent years the high-performance computing community have developeda variety of software packages for these phases; however, the combined useof multiple software packages in a given application is a continuing challengebecause of incompatibilities in data structures and interfaces. In fact, the sit-uation appears much simpler when considering individual facets of PDE sim-ulations; the more di�cult challenges arise when simultaneously consideringmultiple phases. Understanding the relationships among these phases is crit-ical for the design of e�cient software because within the realm of completePDE-based simulations, no single software component performs in isolation.Moreover, no single research group can expect to encompass the expertise forcutting-edge capabilities in all areas. Composability and interoperability of dif-ferent tools via well-de�ned abstract interfaces are critically important, and,as further discussed in Section 19.5.3, this area is now receiving considerableattention throughout the high-performance computing community.19.3.2 Data Distribution and AccessAs we saw in Chapter 3, the performance of CPUs has increased far faster thanthe performance of the computer's memory. In contemporary systems it cantake one hundred clock cycles or more to access main (as opposed to cache)memory. As as result, the performance of many applications is bounded bythe performance of the main memory system, not the CPU [GKKS99], evenon single-processor systems. Achieving high performance on these systems re-quires careful attention to the use of memory. For example, it is common inapplications to use separate variables for di�erent physical variables, such asp for pressure and v for velocity. However, code that accesses these variablesin a loop over a mesh can su�er signi�cant performance problems. Instead (at

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 5least on RISC-based systems), it is important to interlace the variables: de�ne asingle variable where the �rst index (in Fortran) indicates the physical quantity(e.g., pressure or velocity) and the following indices refer to the mesh. In thisway, a loop over the mesh accesses memory in a more e�cient fashion. Similarly,it is important not to create algorithms that replace a single, multicomponentproblem with a collection of single-component (or scalar) problems. While bothformulations may involve roughly the same number of
oating-point operations,the collection of solvers will often involve far more memory motion and therebylead to poor e�ciencies.These problems are exacerbated in parallel computers. In addition to thelarge latency of access to main memory, there is an even larger latency, coupledwith signi�cantly lower bandwidth, to the memory on remote nodes or proces-sors. Thus, even greater attention must be paid to both the location of data(data distribution) and the mode by which it is accessed. A simple exampleof this is given in Section ??, where di�erent distributions of data to di�erentprocesses lead to di�erent e�ciencies. That example is a case of a more gen-eral principle: minimizing the surface to volume ratio of the data distribution.This principle arises because, for PDE calculations, the most common opera-tions involve communicating neighbor data to processes that contain adjacentelements of the mesh. Minimizing the data that must be moved between pro-cesses is accomplished by minimizing the area of the joints between adjacentprocesses, relative to the mesh of unknowns. In practical terms, for a regulartwo-dimensional mesh, this means that the mesh should be divided into squares(a two-dimensional decomposition) rather than strips (a one-dimensional de-composition). Organizing the numerical algorithm to limit accesses to remotedata can also have a signi�cant bene�cial e�ect on performance; for iterativesolutions to linear equations, this is often accomplished by choosing a precon-ditioner that uses only or mostly data local to a process.The large latency of access to remote memory also has implications for bothalgorithm and software design. In order to reduce the impact of latency, thesimplest approach is to aggregate data transfers so that a single operation movesmany data items. This approach encourages a software design that follows atwo-phase model: in the �rst phase, as much data as possible is requested; inthe second phase, the computation waits until the data arrives. This techniqueallows the memory system and interprocess communication system to move thedata most e�ciently, in contrast to the more common model of requesting asingle item and then waiting until it is available. One concrete example ofthis situation arises in the assembly of a sparse matrix (see [BGMS97] for adetailed discussion). The most obvious approach is to add one element at atime to the matrix, ensuring that as each entry is added, the sparse matrixdata structures are updated. However, even for a single process, it is oftenmore e�cient to wait to update the sparse matrix data structures until many(possibly all) elements have been added to the matrix. As we have indicated,in the multiprocess case it is even more important to defer updating the matrixdata structures until many elements can be communicated with each operation.These considerations apply to both message-passing and thread-based models

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 6of parallelism, since they re
ect the costs to access remote memory. Under thethread-based model, smaller aggregates can be used because the latency is lowerthan in the message-passing model; however, the latency is still large relativeboth to local memory operations and to
oating-point operations.19.3.3 Portability, Algorithms, and Data RedistributionIf the above were not enough, any signi�cant application must be prepared toevolve over time. Both raw computer speed and the performance of algorithmshave grown tremendously over the past thirty years (see Figure 1.1). Hence, anapplication must be written to exploit both new computing systems and newalgorithms.Portability. To exploit new computers, an application must be portable.At the very least, the application should be written in a standard computerlanguage (such as Fortran or C, without extensions) and be careful in its as-sumptions about the computing environment (e.g., a C program should notassume that an int is a particular length). Parallel programs should use stan-dards such as MPI, OpenMP, or HPF to maintain portability. Even with suchstandards, the much more di�cult goal of performance portability (portabil-ity without sacri�cing performance) can be challenging to achieve, particularlyover a wide range of computer architectures [DGK84]. However, the bene�ts ofportability are enormous. Computer performance continues to increase by leapsand bounds; portable applications can quickly take advantage of the fastestcomputers, independent of any particular vendor.Algorithms. Algorithmic improvements have been at least as importantas advances in computer speed for many applications. Thus, it is importantthat an application be portable to new algorithms as well as to new hardware.Unfortunately, there are no standards (yet) to which applications can write thatwill guarantee that the newest algorithm can quickly inserted into an applica-tion. Much of the rest of this chapter discusses an approach for this problembased on developing interfaces between the application and the algorithms thatit uses. These interfaces re
ect the problem being solved, rather than an inter-face to a speci�c algorithm. A discussion of particular algorithms for PDEs isbeyond the scope of this chapter; various issues are discussed in, for example,[Hea97, KSV97, MM94, QV99, Saa96, SBG96].Even with the continual improvement in algorithms, in many cases it is notpossible to identify the best algorithm in advance. For example, preconditionediterative methods for linear systems are powerful and e�ective, but their e�-ciency can be sensitive to details of the problem. Thus, even for an applicationthat is not expected to be used for many years, it is important to have theability to experiment with di�erent methods and algorithms. This need alsoencourages an application design where the code interfaces to techniques thatsolve problems, rather than to a particular choice of algorithm.Data Redistribution. The concerns discussed above apply to both sequen-tial and parallel programs. Among the complexities that parallelism adds is thatof data redistribution. As often noted, achieving high performance requires pay-

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 7ing close attention to memory locality. In fact, many parallel algorithms havebeen developed that specify the distribution of the data for maximume�ciency.Unfortunately, the optimal data distribution for one step in an application maynot be optimal for the succeeding step. For example, one popular method forsolving certain kinds of PDEs is the alternating direction implicit, or ADI,method. In this method, the solution to a three-dimensional PDE is approx-imated by successively solving one-dimensional problems in each of the threecoordinate directions. The fastest algorithms for each of these one-dimensionalsolves requires that the data be decomposed so that all of the data along thedirection being solved is on the same processor. Switching from one coordinatedirection to another requires transposing the data (an all-to-all communication).An alternative approach involves the development of more complex algorithmsthat minimize the time over all three coordinate directions, not just a singledirection. Many parallel methods for PDEs su�er from varying degrees of scal-ing problems due to imperfect data distribution. Algorithms and software mustwork together to control the cost and complexity of data redistribution.19.4 Parallel Solution StrategiesChapter 10 reviews various approaches that deal with these challenges, includingparallel languages, parallelizing compilers and compiler directives, computer-assisted parallelization tools, parallel libraries, and problem-solving environ-ments. We brie
y discuss issues pertaining to parallel PDE work, mentionsome recent research in parallel libraries for PDEs, and then explain where ourwork �ts within this spectrum.The complexity of PDE-based simulations makes automated analysis ex-tremely di�cult for distributed-memory parallel systems. While parallel lan-guages and parallel compilers have worked well on shared-memory computers,particular hardware platforms (e.g., CM-5) [Thi93], or speci�c problems, theseapproaches have not yet been able to demonstrate general applicability. Forexample, HPF [KLS+94] is not yet up to the performance of message-passingcodes, except in limited settings with much structure to the memory address-ing [HKM98]. Hybrid HPF/MPI codes are possible steps along the evolution-ary process, with high-level languages automating the expression and compilerdetection of structured-address concurrency at lower levels of the PDE model-ing. Automated source-to-source parallel translators, such as the University ofGreenwich CAPTools project [IJCL96] (which adds MPI calls to a sequentialFortran 77 input) can facilitate the parallelization of legacy applications. Suchtools may attain 80{95% of the bene�ts of the best manual practice, but theresult is limited to the concurrency extractable from the original algorithm. Inmany cases, the legacy algorithm should, itself, be replaced. Similar commentsapply to OpenMP and hybrid OpenMP/MPI approaches.Beyond the capabilities of parallel languages, parallel compilers, and computer-assisted parallelization tools, we still need encapsulation of expertise for parallelPDEs in forms that are usable by the scienti�c computing community at large.We also must allow application programmers to leverage as much of their ex-

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 8
• Application-specific interface

• High-level mathematics interface

• Algorithmic and discrete mathematics interface

• Low-level computational kernels

• Programmer manipulates objects
associated with the application

• Programmer manipulates
mathematical objects, such as
PDEs and boundary conditions

• Programmer manipulates
mathematical objects (sparse
matrices, nonlinear equations),
algorithmic objects (solvers) and
discrete geometry (meshes)

• e.g., BLAS-type operations

• beam, plate, shell , ...

• u = f

• u = g

• matrix A
• vectors x,b
• solve Ax=b

• do i=1,n
 x[i] = a*y[i] + x[i]
 enddo

2

�

Figure 19.1: Levels of abstraction in mathematical software.isting legacy code as possible, thereby enabling a gradual transition from themore traditional approach of \the application code does everything" to \theapplication code uses building blocks within software tools".As illustrated by Figure 19.1, we can consider numerical libraries and prob-lem solving environments (PSEs) as �tting within a spectrum of di�erent levelsof abstraction. At one end, software presents only an application-speci�c inter-face to the user, and the software handles all other facets of computation, frommesh generation to discretization to complete solution with numerical methodsand data analysis. While this level of abstraction is appealing in the simplic-ity presented to the application scientist, there is little compile-time
exibility.At the other end of the spectrum are low-level computational kernels, whicho�er enormous
exibility, although the complexity of interactions is di�cultto manage at this level. In the intermediate range we tend to compromisebased on the strengths of both ends; no one single abstraction choice is right orwrong, but rather di�erent tradeo�s can be made depending on particular de-sign objectives. PSEs, which are further discussed in Chapter 14, tend to buildapplication-oriented abstraction layers both above and below numerical librarylevels. Because there is no precise de�nition of PSEs in use in general practice,the term PSE itself does not convey su�cient information regarding the cate-gory of software of a PSE product. Examples can range from lower-level classlibraries to complete environments such as engineering tools like Nastran [MSC].The approach used within PETSc focuses on abstractions for algorithmsand discrete mathematics. Such abstractions range throughout a hierarchy,where software for sophisticated PDE algorithms can be designed upon lower-level building blocks of parallel data structures. Various groups have used

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 9similar approaches in leveraging abstractions at the PDE level for the de-velopment of parallel PDE software, including DAGH [PB], Di�pack [BL97,Dif], Kelp [FBK96, Bad], Overture [DLBQ99, BHQ], SAMRAI [HK99, KGHS],POOMA [ABC+95, POO], and UG [UG , BBJ+97]. Some of this work is dis-cussed in Chapter 13 within the context of data structure libraries.19.5 PETSc Approach to Parallel Software for PDEsNow that we have abstractly discussed the various challenges in PDE solutionand possible strategies for tackling them, we present concrete details of one ap-proach. In particular, this section introduces a set of techniques used withinthe Portable, Extensible Toolkit for Scienti�c Computation (PETSc) [BGMS,BGMS00] for the development of algorithms and data structures for large-scalePDE-based problems. Paramount goals are managing software complexity andaddressing issues in portable, scalable performance across a range of parallelenvironments, from networks of workstations to traditional massively paral-lel processors to clusters of symmetric multiprocessors. Our approach uses adistributed-memory (or \shared nothing") model, where we hide within parallelobjects the details of communication, and the user orchestrates communicationat a higher abstract level than message passing. We note that underneath theselayers, data is generally communicated via message passing.We introduce in Section 19.5.1 some samplemotivatingapplications that leadto discussion in Section 19.5.2 of software design based on their mathematicalformulations. Section 19.5.3 discusses issues in interoperability among softwaretools for the various phases of solving PDE-based systems. Finally, we explain inSection 19.5.4 how the
exibility in both algorithms and data structures a�ordedby this design enables us to better address issues in achieving high performance.19.5.1 Sample ApplicationsA Linear Elliptic ExampleTo enable concrete discussion of these issues and begin to explain our approach,we consider the linear elliptic PDE, r2u = b, in a two-dimensional domain
 with homogeneous Dirichlet boundary conditions; details of this model arediscussed in Chapter ??. In subsequent sections, we discuss additional com-plexities that arise in nonlinear and time-dependent problems. As discussed inChapter 9, various parallel programming models can be used, and for such asimple model all would be well suited. We focus discussion on an SPMD ap-proach, in which all processes execute essentially the same logic, though on asubset of the global problem domain, because this approach has proven quitee�ective for more complicated PDE computations and is the approach discussedin Section 19.5.2The parallel numerical solution process begins with generating a discretemesh of points that replaces the continuous domain of the equation. We parti-tion the mesh and associated data at runtime across the participating processesso that each process \owns" a unique subset of the mesh and the corresponding

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 10
proc 0

proc 3proc 2

proc 1

} proc 3: locally owned portion

proc 0

proc 3

proc 2

proc 1
=

Au = b

matrix vectorsFigure 19.2: Partitioning of a rectangular mesh and a corresponding linear sys-tem so that each process \owns" a unique subset of the mesh and the correspond-ing unknowns of the problem, u. The matrix A and vector b are partitionedaccordingly.unknowns of the problem, as illustrated in Figure 19.2 for a regular rectangularmesh that is distributed across four processes. Partitioning and mesh gener-ation are important phases for practical models beyond this simple example;these issues are discussed in Chapters 16 and 17, respectively. The next phase,discretization of the PDE over the mesh, typically follows the basic philosophyof \owner computes". For e�cient distributed-memory computations, the pro-cess that stores mesh and associated data for a particular region of the globalproblem domain calculates most, though not necessarily all, of the entries of thecorresponding local part of the discretized linear operator (or matrix), A, andthe right-hand-side vector, b, that de�ne the linear system Au = b.As we will further discuss in Section 19.5.2, a natural abstraction for repre-senting this mathematical problem in numerical software libraries follows thisform: that is, given the inputs A and b, compute as output the approximatesolution u. Note that at this level of abstraction we do not specify details aboutthe internal representation of the matrix A or the vectors u and b. Instead, useof an abstract interface and possibly multiple underlying implementations en-ables the application code to remain simple | no details about storage formatsneed to be directly speci�ed or even understood by beginning users, though ad-vanced users can customize these choices. This approach also a�ords
exibility,because library writers can develop a variety of implementations, each of whichmay be appropriate in di�erent circumstances (e.g., matrix formats that exploitsparsity and/or special structure). Moreover, when coupled with interoperabil-

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 11ity strategies discussed in Section 19.5.3, such abstractions help to enable theseamless introduction of newly developed implementations into existing code.A Nonlinear PDE ExampleTo present the approach used in PETSc, we focus on the discrete frameworkfor an implicit PDE solution algorithm, with pseudo-timestepping to advancetoward a steady state. This algorithm has the formul�tl + F (ul) = ul�1�tl ; (19.1)where �tl !1 as l !1, u represents a fully coupled vector of unknowns, andthe steady-state solution satis�es F (u) = 0. We choose this problem becauseit is often used in large-scale CFD models, including two aerodynamics appli-cations that we will discuss in some detail, namely, a compressible
ow overan airplane wing using a structured mesh [GKMT00] and both compressibleand incompressible
ow using an unstructured mesh [KKS99]. While we willpresent computational results for these representative large-scale applications,we will illustrate software design and usage via the simpler nonlinear ellipticPDE, F (u) = �r2u� �eu = 0; (19.2)where u = 0 on the boundary of the problem domain and � is a constant. Thisformulation, which is known as the Bratu problem, is taken from the MINPACK-2 test problem collection [ACM91]. The PETSc software distribution includesparallel implementations of this model that can be used to explore the softwarefunctionality.We will explain the software design used to support pseudo-transient con-tinuation of inexact Newton methods to advance these models toward a steadystate. While this discussion will focus on the SNES (Scalable Nonlinear Equa-tions Solvers) component, which provides a level of abstraction that is conve-nient for these particular applications, these design principles apply equally tothe linear solvers and timestepping algorithmic components as well.19.5.2 Mathematical FormulationKey considerations when designing user interfaces for algorithmic software com-ponents include the following:� What are the mathematical formulations of the target problem classes?� What numerical algorithms will we use to solve these problems?The combination of these two features helps to identify abstractions for com-ponents such as solvers and timesteppers as well as the mathematical operatorsand operands that serve as their primary inputs and outputs. As explainedbelow, su�ciently
exible abstract interfaces can support a variety of imple-mentations of data structures and algorithms and therefore can provide good

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 12models for exploring algorithmic interchangeability and software interoperabilityamong multiple tools developed by di�erent groups. Such capabilities are criti-cal for making high-performance numerical software adaptable to the continualevolution of parallel and distributed architectures and the research community'sdiscovery of new algorithms that exploit their features.Mathematical Abstractions: Vectors, Matrices, Index Sets, and SolversThe mathematical formulations for a particular class of models present naturaland intuitive abstractions that can be used in software interfaces. PETSc isbuilt around a variety of mathematical and algorithmic objects; the applicationprogrammer works directly with these objects rather than concentrating on theunderlying (rather complicated) data structures. Two of the basic abstract dataobjects in PETSc are vectors and matrices, which were introduced for a linearproblem in Section 19.5.1. A PETSc vector (Vec) is an abstraction of an array ofvalues that represent a discrete �eld (e.g., coe�cients for the solution of a PDE),and a matrix (Mat) represents a discrete linear operator that maps betweenvector spaces. Each of these abstractions has several representations in PETSc.For example, PETSc currently provides three sequential sparse matrix dataformats, four parallel sparse matrix data structures, and a dense representation;each is appropriate for particular classes of problems. In addition, the samematrix interface supports matrix-free approaches, in which matrices need notbe explicitly stored, but rather certain functionalities (e.g., the application ofthe linear operator to a vector) can be provided in an encapsulated form.While vectors and matrices are rather straightforward mathematical abstrac-tions regardless of parallelism, we introduce the concept of an index set to dealwith the need for aggregation in e�cient distributed-memory computations. Anindex set (IS) is a generalization of a set of integer indices, which can be used forselecting, gathering, and scattering subsets of vector and matrix elements. Theindex set abstraction provides users complete control to manipulate subsets ofmatrix and vector elements in aggregation. While one can certainly manipulateindividual matrix and vector elements, this approach is not a parallel expressionand cannot exploit aggregation and other optimizations.Built on top of this foundation are various classes of solvers, including linear(SLES), nonlinear (SNES), and timestepping (TS) solvers. These solvers encap-sulate virtually all information regarding the solution procedure for a particularclass of problems, including the local state and various options. Applicationcodes can interface directly to any level of the numerical library hierarchy, asshown in Figure 19.3. In addition, new software tools for other facets of scien-ti�c simulations can be built using selected parts of this hierarchy. For example,the Toolkit for Advanced Optimization (TAO) [BMM99, BMM] employs PETScinfrastructure for parallel linear algebra in the construction of parallel optimiza-tion software.

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 13
Computation and Communication Kernels

MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers,
Unconstrained Minimization

ODE Integrators Visualization

InterfaceFigure 19.3: Organization of the PETSc libraries. Application codes can inter-face to whatever levels of abstraction are most appropriate for their needs.ParallelismAs explained in [BGMS97], we believe that use of the message-passing modelwithin carefully designed and implemented parallel numerical libraries is ane�ective approach to the problem of e�ciently using large-scale distributed-memory, as well as clustered and NUMA (non-uniform memory access) shared-memory computers. This approach enables us to face the explicit tradeo�s thatmust be made to balance the code's performance (computational e�ciency)and ease of use (programmer e�ciency). Most important, this combinationallows the gradual process of improving performance by the addition of newcomputational kernels, while retaining the remainder of the correctly workinglibraries and application code.The PETSc 2.0 package uses object-oriented programming to conceal thedetails of the message passing, without concealing the parallelism. Because thedetails of communication are hidden from the user, other communication ap-proaches besides message passing may be used as well, such as pure OpenMPor an MPI/OpenMP hybrid. A strength of the approach of message passingcombined with numerical libraries is that application codes written with thismodel will also run well on NUMA shared-memory computers|often as well ascodes custom written for a particular machine. This translation occurs becauseeven shared-memory machines have a memory hierarchy that message-passingprograms inherently respect. For the small number of code locations where tak-ing explicit advantage of the shared memory can lead to improved performance,alternative library routines that bypass the message-passing system may easilybe provided, thus retaining a performance-portable library.In general, the data for any PETSc object (vector, matrix, mesh, linearsolver, etc.) is distributed among several processes. The distribution is handledby an MPI communicator (called MPI Comm in MPI syntax), which represents a

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 14group of processes. When an object is created, for example with the commandsC interface:VecCreate(MPI_Comm c,int m,Vec* v);MatCreate(MPI_Comm c,int m,int n,Mat *A);SLESCreate(MPI_Comm c,SLES *ls);Fortran interface:call VecCreate(MPI_Comm c,integer m,Vec v,integer ir)call MatCreate(MPI_Comm c,integer m,int n,Mat A,integer ir)call SLESCreate(MPI_Comm c,SLES ls,integer ir)the �rst argument speci�es the communicator, thus indicating which processesshare the object. The creation routines are collective over all processes in thecommunicator.This approach does not attempt to completely conceal parallelism from theapplication programmer. Rather, the user initiates combinations of sequentialand parallel phases of computations, but the library handles the detailed (data-structure-dependent) message passing required during the coordination of thecomputations. This provides a good balance between ease of use and e�ciency ofimplementation. Six of our main guiding design principles are listed below anddiscussed in detail in [BGMS97]; the �rst four focus on allowing the applicationprogrammer to achieve high performance, while the last two focus on ease ofuse of the libraries.� Performance{ overlapping communication and computation,{ determining within the library the details of various repeated com-munications, and optimizing the resulting message passing code,{ allowing the user to dictate exactly when certain communication isto occur, and{ allowing the user to aggregate data for subsequent communication.� Ease of use{ allowing the user to work e�ciently with parallel objects without spe-ci�c regard for what portion of the data is stored on each processor,and{ managing communication whenever possible within the context ofhigher-level operations on a parallel object or objects instead of work-ing directly with lower-level message-passing routines.Note that the �rst four principles are chie
y related to reducing the number ofmessages, minimizing the amount of data that needs to be communicated, andhiding the latency and limitations of the bandwidth by sending data as soonas possible, before it is required by the receiving processor. The six guidingprinciples, embedded in a carefully designed object-oriented library, enable thedevelopment of highly e�cient application codes, without requiring a large e�ortfrom the application programmer.

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 15
Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post
Processing

PC KSP PETSc

Application Driver

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0Figure 19.4: Coarsened calling tree of nonlinear PDE application, showing theuser-supplied main program and call-back routines for providing the initial non-linear iterate, computing the nonlinear residual vector at a library-requestedstate, and evaluating the Jacobian (preconditioner) matrix.Implicit Solution of Nonlinear PDEs: An Application Code PerspectiveThe examination of families of algorithms reveals what input and output param-eters are needed within abstract interfaces. For example, to solve discretizedsteady-state nonlinear PDEs of the form F (u) = 0, where F : <n ! <n (asgiven in Equation (19.2)), a variety of algorithms can be used, including ex-plicit, semi-implicit, and fully implicit techniques. We explore the interface ofthe SNES component of PETSc, which solves systems of this form using im-plicit Newton-type methods (see, e.g., [DJS83, NW99]), including line searchand trust region variants. These methods can be expressed in the formuk+1 = uk � [F 0(uk)]�1F (uk); k = 0; 1; : : : ;where u0 is an initial approximation to the solution and F 0(uk) is nonsingular.In practice, the Newton iteration is implemented by the following two steps:1. (Approximately) solve F 0(uk)�uk = �F (uk).2. Update uk+1 = uk +�uk.A coarse diagram of the calling tree of a typical nonlinear PDE applicationappears in Fig. 19.4. The top-level user routine performs I/O related to initial-ization, restart, and post processing; it also calls PETSc subroutines to createdata structures for vectors and matrices and to initiate the nonlinear solver.As shown by this diagram, a basic reason why the design of nonlinear equationsolver libraries is fundamentally di�erent from classical numerical linear algebrasubroutine libraries such as LINPACK, EISPACK, and LAPACK is that theapplication code must perform certain operations for the library. The simplestsuch example is evaluating the nonlinear function F (u) at given state vectors u;

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 16SNES snes; /* nonlinear solver */Mat J; /* Jacobian matrix */Vec x, f; /* solution and residual vectors */int n, its; /* problem dimension, number of iterations */AppCtx usercontext; /* user-defined application context */.../* Create matrix and vectors */MatCreate(MPI_COMM_WORLD,n,n,&J);VecCreate(MPI_COMM_WORLD,n,&x);VecDuplicate(x,&f);/* Create nonlinear solver */SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,&snes);/* Set routines for evaluation of the nonlinear function and Jacobian */SNESSetFunction(snes,f,EvaluateFunction,usercontext);SNESSetJacobian(snes,J,EvaluateJacobian,usercontext);/* Set runtime options */SNESSetFromOptions(snes);/* Solve the nonlinear system */SNESSolve(snes,x,&its);/* Destroy objects when finished */SNESDestroy(snes); MatDestroy(J); VecDestroy(x); VecDestroy(f);Figure 19.5: Sample SNES application code interface.another typical requirement is approximating the associated Jacobian matrix,F 0(u). In addition, the software must somehow deal with application-speci�cdata and data structures that are not known and cannot be predicted by thelibrary writers. Auxiliary information required for the evaluation of F (u) andF 0(u) that is not carried as part of u is communicated through PETSc via auser-de�ned \context" that encapsulates application-speci�c data. (Such infor-mation would typically include dimensioning data, mesh geometry data, physicalparameters, and quantities that could be derived from the state u but are mostconveniently stored instead of recalculated, such as constitutive quantities.)Figure 19.5 illustrates the basic SNES user interface, which is both simpleto use and inherently
exible. In particular, this single interface is identical forthe uniprocessor and parallel cases, serves both real and complex numbers, andsupports a range of di�erent algorithms. The primary phases of solver usage are(1) instantiating the solver via the routine SNESCreate(); (2) specifying a vec-tor data structure and call-back routine for evaluation of the nonlinear functionF (u) via SNESSetFunction() (and optionally the matrix data structure and as-sociated routine for evaluation of the Jacobian F 0(u) via SNESSetJacobian());(3) selecting various runtime options via SNESSetFromOptions(); (4) solvingthe nonlinear system via SNESSolve(); and (5) destroying the solver and free-ing associated memory via the routine SNESDestroy().

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 17Note that the SNES user interface employs abstractions for vectors (Vec),matrices (Mat), and nonlinear solver algorithms (SNES). This interface revealsnothing about the particular data structures that may be used at runtime, andin fact the actual algorithms, including linesearch and trust regions variants ofinexact Newton methods, are implemented in a data-structure-neutral formatusing these same abstractions. This data-structure-neutral approach [SG96]allows the natural storage formats for vectors and matrices to be dictated bythe user's application. Since issues regarding the selection of storage formatsfor parallel, sparse linear algebra are usually quite complicated, this feature iscritical to the software's performance.Figure 19.6 presents sample code to evaluate the nonlinear function withinEquation (19.2) in parallel on a two-dimensional regular mesh with a �nite dif-ference discretization. The problem is partitioned according to Figure 19.2,where each process owns a unique subset of the mesh and the correspondingdata objects. The approach for parallel computation of the nonlinear func-tion and Jacobian is \owner computes," with message merging and overlappingcommunication with computation where possible via split transactions. Eachprocessor \ghosts" its stencil dependencies on its neighbors' data. Grid func-tions are mapped from a global (user-de�ned) ordering into contiguous localorderings, which may be designed to maximize spatial locality for cache linereuse. Scatter/gather operations are created between local sequential vectorsand global distributed vectors. This example uses distributed arrays (DA) withinPETSc to handle ghost point communication; the more general VecScatter toolcould be used for unstructured meshes. Alternatively, one could employ toolsthat provide parallel discretization capabilities at higher levels of abstraction,such as Overture [BHQ]. In fact, we have recently develped \object wrappers"that allow all Overture and PETSc objects to coexist and interoperate in thesame application.Both a procedural interface (i.e., routine calls) and a command-line interface(i.e., argc/argv program input parameters) may be used to specify particularchoices for algorithms, parameters, and data structures. The procedural inter-face provides a great deal of control on a usage by usage basis within a single ap-plication. For example, one can select a linesearch or trust region variant of New-ton's method by calling SNESSetType(snes,ls) or SNESSetType(snes,tr), re-spectively. Alternatively, these choices can be speci�ed by the correspondingruntime option (e.g., -snes type [ls,tr]); the runtime option approach ap-plies the same rules to all queries via a database and thereby enables the user tohave complete control at runtime with no extra coding. A typical usage scenariois to employ the procedural interface to indicate defaults (that may be di�erentfrom those speci�ed by the library) within a given application code, and then touse the command-line interface to override these defaults for experimentationwith a variety of alternatives.

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 18/* FormFunction - Evaluates nonlinear function, F(X).Input Parameters: Output Parameter:snes - the SNES context F - vector containingX - input vector newly evaluatedptr - optional user-defined context nonlinear function*/int FormFunction(SNES snes,Vec X,Vec F,void *ptr){AppCtx *a = (AppCtx *) ptr;int ierr, i, j, row, mx, my, xs, ys, xm, ym, gxs, gys, gxm, gym;double two = 2.0, one = 1.0, lambda, hx, hy, hxdhy, hydhx, sc;Scalar u, uxx, uyy, *x, *f;Vec localX = a->localX, localF = a->localF;mx = a->mx; my = a->my; lambda = a->param;hx = one/(double)(mx-1); hy = one/(double)(my-1);sc = hx*hy*lambda; hxdhy = hx/hy; hydhx = hy/hx;/* Scatter ghost points to local vector */ierr = DAGlobalToLocalBegin(a->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);ierr = DAGlobalToLocalEnd(a->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);/* Get pointers to vector data */ierr = VecGetArray(localX,&x); CHKERRQ(ierr);ierr = VecGetArray(localF,&f); CHKERRQ(ierr);/* Get local grid boundaries */ierr = DAGetCorners(a->da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL); CHKERRQ(ierr);ierr = DAGetGhostCorners(a->da,&gxs,&gys,PETSC_NULL,&gxm,&gym,PETSC_NULL); CHKERRQ(ierr);/* Compute function over the locally owned part of the grid */for (j=ys; j<ys+ym; j++) {row = (j - gys)*gxm + xs - gxs - 1;for (i=xs; i<xs+xm; i++) {row++;if (i == 0 || j == 0 || i == mx-1 || j == my-1) {f[row] = x[row]; continue;}u = x[row];uxx = (two*u - x[row-1] - x[row+1])*hydhx;uyy = (two*u - x[row-gxm] - x[row+gxm])*hxdhy;f[row] = uxx + uyy - sc*exp(u);}}/* Restore vectors */ierr = VecRestoreArray(localX,&x); CHKERRQ(ierr);ierr = VecRestoreArray(localF,&f); CHKERRQ(ierr);/* Insert values into global vector */ierr = DALocalToGlobal(a->da,localF,INSERT_VALUES,F); CHKERRQ(ierr);return 0;}Figure 19.6: Sample parallel nonlinear function evaluation code for equation(19.2), using a �nite di�erence discretization on a two-dimensional regular meshand distributed arrays for ghost point communication.

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 1919.5.3 Composability and InteroperabilityAs discussed in Section 19.3.1, the high-�delity multiphysics applications of in-terest within high-performance scienti�c computing often require the combineduse of software tools that encapsulate the expertise of multidisciplinary researchteams. Current-generation software tools have demonstrated good success indirect pairwise interfaces, whereby one tool directly calls another by using well-de�ned interfaces that are known at compile time. For example, we have devel-oped two-way interfaces between PETSc and PVODE, which provides higher-order, adaptive ODE schemes and robust nonlinear solvers [Hin]. However, more
exible and dynamic capabilities are needed than prede�ned interfaces that usea succession of subroutine calls. This is especially important because we mustsupport incremental shifts in parallel algorithms and programming paradigmsthat inevitably occur during the lifetimes of scienti�c application codes.Consequently, various research groups within the high-performance comput-ing community are exploring the ideas of component programming, based on en-capsulating units of functionality and providing a meta-language speci�cation oftheir interfaces (see, e.g., [Szy98, BDH+98]). Component-based software devel-opment can be considered an evolutionary step beyond object-oriented design.Object-oriented techniques have been quite successful in managing the com-plexity of modern software, but they have not resulted in signi�cant amountsof cross-project code reuse. Sharing object-oriented code is di�cult because oflanguage incompatibilities, the lack of standardization for interobject communi-cation, and the need for compile-time coupling of interfaces. Component-basedsoftware development addresses issues of language independence|seamlesslycombining components written in di�erent programming languages|and com-ponent frameworks de�ne standards for communication among components.The Common Component Architecture (CCA) Forum, whose current mem-bership is drawn from various Department of Energy national laboratories andcollaborating academic institutions, is working to specify a component archi-tecture for high-performance scienti�c computing [Com, AGG+99]. We arecurrently incorporating new features within the PETSc software to enable com-pliance with this evolving speci�cation.19.5.4 Performance IssuesAs discussed by [AGKS99], achieving high sustained performance for PDE-basedsimulations involves three aspects. The �rst is a scalable algorithm in the senseof convergence rate; the second is good per-processor performance on contem-porary cache-based microprocessors; and the third is a scalable implementation,in the sense of time per iteration as the number of processors increases. Thissection demonstrates that the
exible software design presented in this chapterenables application codes to address all three of these issues and to avoid pre-mature optimization for particular algorithmic and data structure choices byexperimenting with a range of options for realistic problems.

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 20Algorithmic ExperimentationNow that we have covered the basic principles of design and seen what someof the issues are for parallel PDE computations, we examine a speci�c applica-tion to demonstrate how this approach enables investigation of open researchissues. In particular, we explore the standard three-dimensional aerodynamicstest case of transonic
ow over an ONERA M6 wing using the frequently stud-ied parameter combination of a freestream Mach number of 0.84 with an angleof attack of 3:06o. The robustness of solution strategies is particularly impor-tant for this model because of the so-called �-shock that develops on the upperwing surface. The basis for our implementation, as discussed in [GKMT00], isa legacy sequential Fortran 77 code by Whit�eld and Taylor [WT91] that usesa mapped structured C-H mesh. This application demonstrates the use of thenonlinear solvers within SNES in the legacy context, where we retain the orig-inal code's discretization as embodied in
ux balance routines for steady-stateresidual construction and �nite-di�erence Jacobian construction. The functionevaluations are undertaken to second order in the upwinding scheme, and theJacobian matrix (used mainly as a preconditioner) is evaluated to �rst order.We parallelize the logically regular, mapped mesh using the distributed arraytools of PETSc.We consider Newton-Krylov-Schwarz methods, which combine a Newton-Krylov method with a Schwarz-based preconditioner. From a computationalpoint of view, one of the most important characteristics of a Krylov method forthe linear system Ax = b is that information about the matrix A needs to beaccessed only in the form of matrix-vector products in a relatively small numberof carefully chosen directions. Newton-Krylov methods are suited for nonlinearproblems in which it is unreasonable to compute or store a true, full Jacobian,where the action of A can be approximated by discrete directional derivatives.However, if the Jacobian A is ill-conditioned, the Krylov method will require anunacceptably large number of iterations. The system can be transformed intothe equivalent form B�1Ax = B�1b through the action of a preconditioner, B,whose inverse action approximates that of A, but at smaller cost. It is in thechoice of preconditioning where the battle for low computational cost and scal-able parallelism is usually won or lost. In Schwarz preconditioning methods (see,e.g., [SBG96]), the operator is introduced on a subdomain-by-subdomain basisthrough a conveniently computable approximation to a local Jacobian. SuchSchwarz-type preconditioning provides good data locality for parallel implemen-tations over a range of parallel granularities, allowing signi�cant architecturaladaptability.Figure 19.7 shows a sample script that can be used to automate experimen-tation with this hierarchy of tunable algorithms. The script demonstrates theuse of both linesearch and trust region variants of Newton's method on variousnumbers of processors. Several Krylov methods are considered, including GM-RES, BiCGStab, and transpose-free QMR, in conjunction with additive Schwarzpreconditioners with various degrees of overlap. This script facilitates the in-vestigation of which preconditioning and Krylov methods are most e�ective

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 21for particular problem sizes and processor con�gurations. Additional runtimeoptions could also be invoked to investigate a range of other issues, includinglinear and nonlinear convergence parameters, blocked matrix data structures,and derivative computations via sparse �nite di�erences and automatic di�er-entiation.#! /bin/csh## Sample script: Experimenting with nonlinear solver options.# Can be used with, e.g., petsc/src/snes/examples/tutorials/ex5.c#foreach np (8 16 32 64) # number of processorsforeach snestype (ls tr) # nonlinear solverforeach ksptype (gmres bcgs tfqmr) # Krylov solverforeach overlap (1 2 3 4) # level of overlap for ASMecho '****** Beginning new run ******'mpirun -np $np ex2 -snes_type $snestype -ksp_type $ksptype \-pc_type asm -pc_asm_overlap $overlapendendendendFigure 19.7: Sample script for Newton-Krylov-Schwarz algorithmic experimen-tation.Preconditioner quality dramatically a�ects the overall e�ciency of the par-allel Newton-Krylov-Schwarz methodology, as demonstrated in Figure 19.8 forvarious degrees of overlap for the restricted additive Schwarz method (RASM)[CS99], which eliminates interprocess communication during the interpolationphase of the additive Schwarz technique. The graphs within these �gures com-pare convergence rate (in terms of relative residual norm) with both nonlineariteration number (left-hand graph) and time (right-hand graph) for a mesh ofdimension 98� 18� 18 with �ve degrees of freedom per node, on 16 processorsof an IBM SP2. All runs plotted in this �gure use preconditioned restartedGMRES with a Krylov subspace of maximum dimension 30 and a �xed rela-tive convergence tolerance of 10�2; each processor hosts a single preconditionerblock, which is solved via point-block ILU(0). We see that for this model, two-cell overlap provides a good balance in terms of power and cost. Less overlaptrades o� cheaper cost per iteration for a preconditioner that does not allow thenonlinear iterations to converge as rapidly, while more overlap is costly to applyand does not contribute to faster nonlinear convergence. Similar behavior wasobserved for other problem sizes and processor con�gurations, even when usingdi�erent criteria to determine linear inner iteration convergence.Data Structures and Orderings for Fast Local PerformanceA key consideration in algorithms and data structures is the management of mul-tilevel memory hierarchies. To demonstrate some of these issues, we consideranother application, FUN3D, which is a tetrahedral vertex-centered unstruc-

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 22
Overlap 0

Overlap 1

Overlap 2

Overlap 3

0 20 40 60 80 100 120 140 160
−14

−12

−10

−8

−6

−4

−2

0

2

Nonlinear Iteration Number

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Comparison of Overlap for RASM Preconditioner (16 Processors, Medium Mesh)

Overlap 0

Overlap 1

Overlap 2

Overlap 3

0 100 200 300 400 500 600
−14

−12

−10

−8

−6

−4

−2

0

2

Time (sec)

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Comparison of Overlap for RASM Preconditioner (16 Processors, Medium Mesh)

Figure 19.8: Comparison of four domain-decomposed preconditioners:subdomain-block Jacobi and restricted additive Schwarz with overlap of 1, 2,and 3 cells. All methods solve point-block ILU(0) on 16 subdomains on an IBMSP2.tured mesh code originally developed for uniprocessors by W. K. Anderson ofthe NASA Langley Research Center for compressible and incompressible Eulerand Navier-Stokes equations [AB94]. FUN3D uses a control volume discretiza-tion with variable-order Roe schemes for approximating the convective
uxesand a Galerkin discretization for the viscous terms. The application was paral-lelized using the VecScatter tools within PETSc for ghost point communicationand the nonlinear solvers within SNES [KKS97].We can view PDE computations predominantly as a mix of loads and storeswith embedded
oating-point operations (
ops) [AGKS99]. Since
ops are cheaprelative to memory references, we concentrate on minimizing the memory refer-ences and emphasize strong sequential performance as one of the factors neededfor e�cient aggregate performance. Data storage patterns for primary and aux-iliary �elds should adapt to hierarchical memory through (1) interlacing, (2)structural blocking degrees of freedom that are de�ned at the same point inpoint-block operations, and (3) reordering of edges for reuse of vertex data.Interlacing allows e�cient reuse of cached operands, since components at thesame point interact more intensely with each other than do the same �elds atother points. Similarly, blocking reduces the number of loads signi�cantly andenhances reuse of data items in registers. Also, edge-reordering for vertex reusere
ects the fact that nearby points interact more intensely than distant points.Applying these techniques within FUN3D required whole-program transforma-tions of certain loops of the original vector-oriented application but, as shownin Figure 19.9, raised the per-processor performance by a factor of between 2.5and 7, depending on the microprocessor and optimizing compiler. We note thatthe use of the abstract interface for PETSc matrix assembly enabled the changefrom a compressed, sparse row point storage format to the block variant withoutchanging a single line of the matrix assembly code.Because of the cost and di�culty of architectural tuning for new environ-

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 23
0

20

40

60

80

100

120

140

160

180

SP Origin Pentium

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

Figure 19.9: E�ect of cache optimizations of the average execution time for onenonlinear iteration of the FUN3D application. Base denotes the case withoutany optimizations, and NOER denotes no edge reordering. The performanceimproves by a factor of about 2.5 on the Pentium and 7.5 on the IBM SP. Theprocessor details are 120 MHz IBM SP (P2SC \thin", 128 KB L1), 250 MHzOrigin2000 (R1000, 32 KB L1, and 4 MB L2), and 400 MHz Pentium II (runningWindows NT 4.0, 16 KB L1, and 512 KB L2).ments, some recent e�orts have focused on automating this process for nu-merical kernels. In particular, ATLAS (Automatically Tuned Linear AlgebraSoftware) [WD] and PHiPAC (Portable High Performance ANSI C) [BAV+]are packages for automatically producing high-performance BLAS, in particularmatrix-matrix-multiplication routines, for machines with complicated memoryhierarchies and functional units.ScalabilityHaving �rst assured attention to good per-processor performance for the FUN3Dapplication, we are now ready to discuss the scalability of this aerodynamicmodel. In Figure 19.10 we demonstrate several metrics of the code's parallelscalability, which uses pseudo-timestepping and the Newton-Krylov-Schwarz im-plementations in PETSc, for a �xed-size mesh with 2.8 million vertices runningon up to 1024 Cray T3E processors. We see that the implementation e�ciencyof parallelization (i.e., the e�ciency on a per-iteration basis) is 82 percent ingoing from 128 to 1024 processors. The number of nonlinear iterations is also

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 24
 Nonlinear iterations

0
10
20
30
40
50

128 256 384 512 640 768 896 1024

 Execution time (s)

0

1000

2000

128 256 384 512 640 768 896 1024

Aggregate Gflop/s

0

40

80

128 256 384 512 640 768 896 1024

Mflops/s per processor

0
20
40
60
80

100

128 256 384 512 640 768 896 1024

 Average verti ces per processor

0

10000

20000

128 256 384 512 640 768 896 1024

 Impl ementati on eff i ci ency

0

1

128 256 384 512 640 768 896 1024Figure 19.10: Parallel performance of the FUN3D application for a �xed-sizemesh of 2.8 million vertices (over 11 million unknowns) run on up to 1024 CrayT3E 600 MHz processors.fairly
at over the same eightfold range of processors (rising from 37 to 42), re-
ecting reasonable algorithmic scalability. This is much less serious degradationthan predicted by the linear elliptic theory (see [SBG96]); pseudo-timestepping,required by the nonlinearity, is responsible. The overall e�ciency is the productof the implementation e�ciency and the algorithmic e�ciency. The computa-tional rates per processor are also close to
at over this range, even thoughthe relevant working sets in each subdomain vary by nearly a factor of eight.This emphasizes the requirement of good serial performance for good parallelperformance.19.6 Software for PDEsWe now provide a brief overview of various software tools for the scalable solu-tion of partial di�erential equations.� DAGH [PB] - DAGH (Distributed Adaptive Grid Hierarchy) provides aprogram development infrastructure for the implementation of solutions ofpartial di�erential equations using adaptive mesh re�nement algorithms.� Di�pack [Dif, BL97] - Di�pack is an object-oriented framework for solvingPDEs.� DOUG [HS] - DOUG (Domain decomposition On Unstructured Grids) isa black box parallel iterative solver for �nite element systems arising fromelliptic partial di�erential equations.

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 25� FFTW [Fft] - FFTW is a collection of fast Fourier transform routines,including routines for parallel computers. FFTs are often used in solvingcertain classes of linear PDEs, and can be used as preconditioners for moregeneral PDEs.� KeLP [Bad, FBK96] - KeLP (Kernel Lattice Parallelism) is a frameworkfor implementing portable scienti�c applications on distributed-memoryparallel computers. It is intended for applications with special needs, inparticular, that adapt to data-dependent or hardware-dependent condi-tions at run time.� MUDPACK [Ada] - MUDPACK includes a suite of portable Fortranprograms that automatically discretize and use multigrid techniques togenerate second- and fourth-order approximations to elliptic PDEs onrectangular regions.� Overture [BHQ, DLBQ99] - Overture is an object-oriented code frame-work for solving PDEs; it provides a portable,
exible software develop-ment environment for applications that involve the simulation of physicalprocesses in complex moving geometry.� Parallel ELLPACK [HRH, HKM+95] - Parallel ELLPACK is a problemsolving environment for PDE-based applications.� PARASOL [PAR] - PARASOL is an integrated environment for parallelsparse matrix solvers. PARASOL is written in Fortran 90 and uses MPIfor communication.� PETSc [BGMS97, BGMS] - PETSc (Portable, Extensible Toolkit for Sci-enti�c computing) is a collection of tools for the parallel numerical solutionof PDEs and related problems.� POOMA [ABC+95, POO] POOMA (Parallel Object-Oriented Methodsand Applications) is an object-oriented framework for applications in com-putational science requiring high-performance parallel computers.� SAMRAI [KGHS, HK99] - SAMRAI is an object-oriented code frame-work that provides general and extensible software support for rapid pro-totyping and development of parallel structured adaptive mesh re�nementapplications.� UG [UG , BBJ+97] - UG (Unstructured Grids) is a
exible software toolfor the numerical solution of partial di�erential equations on unstructuredmeshes in two and three space dimensions using multigrid methods.� VECFEM [Gro] - VECFEM is a package for the solution of nonlinearboundary value problems by the �nite element method.Additional pointers may be available through the following on-line resources:

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 26� MGNet [Dou] - MGNet is a repository for information related to multi-grid, multilevel, multiscale, aggregation, defect correction, and domaindecomposition methods, including links to software packages.� NHSE [Nat] - The National High-Performance Software Exchange is adistributed collection of software, documents, data, and information ofinterest to the high performance and parallel computing community.19.7 Observations and RecommendationsAs discussed in Chapter 3, future computing technology will likely be charac-terized by highly parallel, hierarchical designs. This trend in design is a fairlystraightforward consequence of two other trends: a desire to work with increas-ingly large data sets at increasing speeds and the imperative of cost-e�ectiveness.Fortunately, data use in most PDE-based applications has su�cient temporaland spatial locality to map reasonably well to distributed- and hierarchical-memory systems. To achieve good performance, this locality can be exploitedby a combination of the application programmer at the algorithmic level, thesystem software at the compiler and runtime levels, and the hardware.This chapter presented some ideas for addressing these issues in PDE soft-ware at the level of numerical library writers and application programmers. Inparticular, we discussed how organizing applications around the mathematicsof models enables the writing of applications that can be run without changewith a wide variety of di�erent algorithms and data structures. This facili-tates exploiting parallelism, managing complexity within the application, ande�ectively using the available computing resources. Using these techniques, ap-plications have run scalably on thousands of processors, achieving performancein the tera
op range. We conclude with a few additional recommendations forapplication scientists.� Design application codes around abstract concepts, not particular algo-rithms or data structures. Expect the best algorithms to change over thelifetime of an application.� Take advantage of modern programming languages; e.g., use features ofFortran 90 rather than minimalistic Fortran 77.� Use programming models that o�er portable performance, such as MPI orOpenMP. Use vendor-speci�c features or extensions only when the bene�tclearly outweighs the loss of portability.� Communicate and compute on aggregates, not individual elements.� Use libraries whenever possible; and when libraries do not provide theneeded functionality, contact the authors with suggestions and recom-mendations.� Give the largest possible problem to the numerical library. For example, ifthe library o�ers suitable nonlinear solvers as well as linear solvers, use the

CHAPTER 19. SOFTWARE FOR THE SCALABLE SOLUTION OF PDES 27nonlinear solvers rather than building a simple nonlinear iteration yourselfand using the library's linear solvers. This approach gives the library thebest opportunity to maximize performance (see Section 19.3.3).AcknowledgmentsWe were supported by the Mathematical, Information, and Computational Sci-ences Division subprogram of the O�ce of Advanced Scienti�c Computing Re-search, U.S. Department of Energy, under Contract W-31-109-Eng-38.

Bibliography[AB94] W. K. Anderson and D. L. Bonhaus. An implicit upwind algorithmfor computing turbulent
ows on unstructured grids. Computersand Fluids, 23:1{21, 1994.[ABC+95] S. Atlas, S. Banerjee, J. C. Cummings, P. J. Hinker, M. Srikant,J. V.W. Reynders, and M. Tholburn. POOMA: A high-performancedistributed simulation environment for scienti�c applications. InSupercomputing '95 Proceedings, December 1995.[ACM91] Brett M. Averick, Richard G. Carter, and Jorge J. Mor�e. TheMINPACK-2 test problem collection. Technical Report ANL/MCS-TM-150, Argonne National Laboratory, 1991.[Ada] John C. Adams. MUDPACK Web page. See http://-www.scd.ucar.edu/css/software/mudpack.[AGG+99] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. C.McInnes, S. Parker, and B. Smolinski. Toward a common com-ponent architecture for high-performance scienti�c computing. InProceedings of High Performance Distributed Computing, 1999. Toappear (also Argonne National Laboratory Mathematics and Com-puter Science Division preprint P759-0699).[AGKS99] W. K. Anderson, W. D. Gropp, D. K. Kaushik D. E. Keyes, andB. F. Smith. Achieving high sustained performance in an unstruc-tured mesh CFD application. In Proceedings of SC 99, 1999. Toappear.[Bad] Scott Baden. KeLP Web page. See http://www-cse.ucsd.edu/-groups/hpcl/scg/kelp/.[BAV+] J. A. Bilmes, K. Asanovic, R. Vudoc, S. Iyer, J. Demmel,C. Chin, and D. Lam. PHiPAC Web Page. See http://-www.icsi.berkeley.edu/~bilmes/phipac/.[BBJ+97] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, and C. Wieners. UG { a
exible software toolbox for28

BIBLIOGRAPHY 29solving partial di�erential equations. Computing and Visualizationin Science, 1997.[BDH+98] Manfred Broy, Anton Deimel, Juergen Henn, Kai Koskimies,Franti�sek Pl�a�sil, Gustave Pomberger, Wolfgang Pree, Michael Stal,and Clemens Szyperski. What characterizes a (software) compo-nent? Software { Concepts and Tools, 19:49{56, 1998.[BGMS] Satish Balay, William D. Gropp, Lois Curfman McInnes,and Barry F. Smith. PETSc Web page. Seehttp://www.mcs.anl.gov/petsc.[BGMS97] Satish Balay, William D. Gropp, Lois Curfman McInnes, andBarry F. Smith. E�cient management of parallelism in object ori-ented numerical software libraries. In E. Arge, A. M. Bruaset, andH. P. Langtangen, editors,Modern Software Tools in Scienti�c Com-puting, pages 163{202. Birkhauser Press, 1997.[BGMS00] Satish Balay, William D. Gropp, Lois Curfman McInnes, andBarry F. Smith. PETSc 2.0 users manual. Technical Report ANL-95/11 - Revision 2.0.28, Argonne National Laboratory, March 2000.[BHQ] David L. Brown, WilliamD. Henshaw, and Daniel J. Quinlan. Over-ture Web page. See http://www.llnl.gov/CASC/Overture.[BL97] A. M. Bruaset and H. P. Langtangen. A comprehensive set of toolsfor solving partial di�erential equations: Di�pack. In NumericalMethods and Software Tools in Industrial Mathematics, pages 61{90. Birkhauser Press, 1997.[BMM] Steve Benson, Lois Curfman McInnes, and Jorge Mor�e.Toolkit for Advanced Optimization (TAO) Web page. Seehttp://www.mcs.anl.gov/tao.[BMM99] Steve Benson, Lois Curfman McInnes, and Jorge Mor�e. GPCG: Acase study in the performance and scalability of optimization algo-rithms. Technical Report ANL/MCS-P768-0799, Mathematics andComputer Science Division, Argonne National Laboratory, 1999.[Com] Common Component Architecture Forum. See http://-www.acl.lanl.gov/cca-forum.[CS99] X.-C. Cai and M. Sarkis. A restricted additive Schwarz precondi-tioner for general sparse linear systems. SIAM J. Scienti�c Com-puting, 21:792{797, 1999.[DGK84] J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing linearalgebra algorithms for dense matrices on a vector pipeline machine.SIAM Review, 26(1):91{112, January 1984.

BIBLIOGRAPHY 30[Dif] Di�pack Web page. See http://www.nobjects.com/Diffpack/.[DJS83] J. E. Dennis Jr. and Robert B. Schnabel. Numerical Methods for Un-constrained Optimization and Nonlinear Equations. Prentice-Hall,Inc., Englewood Cli�s, NJ, 1983.[DLBQ99] William D. Henshaw D. L. Brown and Daniel J. Quinlan. Over-ture: An object-oriented framework for solving partial di�erentialequations on overlapping grids. In Proceedings of the SIAM Work-shop on Object Oriented Methods for Inter-operable Scienti�c andEngineering Computing, pages 215{224. SIAM, 1999.[Dou] Craig C. Douglas. MGNet Web page. See http://www.mgnet.org.[FBK96] Stephan J. Fink, Scott B. Baden, and Scott R. Kohn. Flexiblecommunicationmechanisms for dynamic structured applications. InIrregular '96, 1996.[Fft] FFTW Web page. http://www.fftw.org/.[GKKS99] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Towardrealistic performance bounds for implicit CFD codes. In A. Eceret al., editor, Proceedings of Parallel CFD'99. Elsevier, 1999. Toappear.[GKMT00] William D. Gropp, David E. Keyes, Lois Curfman McInnes, andM. D. Tidriri. Globalized Newton-Krylov-Schwarz algorithms andsoftware for parallel implicit CFD. Int. J. High Performance Com-puting Applications, 2000. To appear (also ICASE Technical Report98-24).[Gro] Lutz Grosz. VECFEM Web Page. See http://-wwwmaths.anu.edu.au/~vecfem/.[Hea97] Michael T. Heath. Scienti�c Computing: An Introductory Survey.McGraw Hill, 1997.[Hin] A. Hindmarsh et al. PVODE Web page. Seehttp://www.llnl.gov/CASC/PVODE, Lawrence Livermore Na-tional Laboratory.[HK99] Richard Hornung and Scott Kohn. The use of object-oriented de-sign patterns in the SAMRAI structured AMR framework. In Pro-ceedings of the SIAM Workshop on Object-Oriented Methods forInter-Operable Scienti�c and Engineering Computing, pages 235{244, 1999.[HKM+95] E. N. Houstis, S. B. Kim, S. Markus, P. Wu, N. E. Houstis, A.C.Catlin, S. Weerawarana, and T.S. Papatheodorou. Parallel ELL-PACK elliptic PDE solvers. In Proceedings of INTEL SupercomputerUser's Group Conference, Albuquerque, NM, 1995.

BIBLIOGRAPHY 31[HKM98] M. E. Hayder, D. E. Keyes, and P. Mehrotra. A comparison ofthe PETSc library and HPF implementations of an archetypal PDEcomputation. Advances in Engineering Software, 29:415{424, 1998.[HRH] Elias Houstis, John Rice, and Apostolos Hadjidimos. Parallel ELL-PACK Web page. See http://www.cs.purdue.edu/research/-cse/pellpack/.[HS] Mark J. Hagger and Linda Stals. DOUG Web Page. See http://-www.maths.bath.ac.uk/~parsoft/doug/.[IJCL96] C. S. Ierotheou, S. P Johnson, M. Cross, and P. F. Leggett. Com-puter aided parallelization tools (CAPTools) - conceptual overviewand performance on the parallelization of structured mesh codes.Parallel Computing, 22:197{226, 1996.[KGHS] Scott Kohn, Xabier Garaiza, Rich Hornung, and Steve Smith. SAM-RAI Web page. See http://www.llnl.gov/CASC/SAMRAI.[KKS97] D. K. Kaushik, D. E. Keyes, and B. F. Smith. On the interactionof architecture and algorithm in the domain-based parallelization ofan unstructured grid incompressible
ow code. In J. Mandel et al.,editor, Proceedings of the 10th International Conference on DomainDecomposition Methods, pages 311{319. Wiley, 1997.[KKS99] D. K. Kaushik, D. E. Keyes, and B. F. Smith. Newton-Krylov-Schwarz methods for aerodynamic problems: Compressible and in-compressible
ows on unstructured grids. In C.-H. Lai et al., editor,Proceedings of the 11th International Conference on Domain De-composition Methods. Domain Decomposition Press, Bergen, 1999.To appear.[KLS+94] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, andM. E. Zosel. The High Performance Fotran Handbook. MIT Press,1994.[Kon00] Alice E. Koniges, editor. Industrial Strength Parallel Computing.Morgan Kaufmann Publishers, San Francisco, 2000.[KSV97] David E. Keyes, Ahmed Sameh, and V. Venkatakrishnan, editors.Parallel Numerical Algorithms. Kluwer Academic Publishers, theNetherlands, 1997.[MM94] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Dif-ferential Equations. Press Syndicate of the University of Cambridge,1994.[MSC] MSC Software Corporation. NASTRAN Web page. Seehttp://www.mechsolutions.com/products/nastran/.

BIBLIOGRAPHY 32[Nat] National High-Performance Software Exchange Web page. Seehttp://www.nhse.org.[NW99] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.Springer-Verlag, New York, 1999.[PAR] PARASOL Web page. See http://www.genias.de/projects/-parasol.[PB] M. Parashar and J. C. Browne. DAGH Web page. See http://-www.caip.rutgers.edu/~parashar/DAGH/.[POO] POOMA Web page. See http://www.acl.lanl.gov/pooma.[QV99] Al�o Quarteroni and Alberto Valli. Domain Decomposition Meth-ods for Partial Di�erential Equations. Oxford Science Publications,Oxford, 1999.[Saa96] Yousef Saad. Iterative Methods for Sparse Linear Systems. PWSPublishing Company, Boston, 1996.[SBG96] Barry F. Smith, Petter Bj�rstad, and William Gropp. Domain De-composition: Parallel Multilevel Methods for Elliptic Partial Di�er-ential Equations. Cambridge University Press, 1996.[SG96] Barry F. Smith andWilliamD. Gropp. The design of data-structure-neutral libraries for the iterative solution of sparse linear systems.Scienti�c Programming, 5:329{336, 1996.[Szy98] Clemens Szyperski. Component Software: Beyond Object-OrientedProgramming. ACM Press, New York, 1998.[Thi93] Thinking Machines Corporation. Users Manual for CM-Fortran.Thinking Machines Corporation, 1993.[UG] UG Web Page. See http://cox.iwr.uni-heidelberg.de/~ug/.[WD] R. Clint Whaley and Jack Dongarra. ATLAS Web Page. Seehttp://www.netlib.org/atlas/.[WT91] D. L. Whit�eld and L. K. Taylor. Discretized Newton-relaxationsolution of high resolution
ux-di�erence split schemes. In Pro-ceedings of the AIAA Tenth Annual Computational Fluid DynamicsConference, pages 134{145, 1991.

