
Chapter 13Parallel I/ORajeev Thakur & William GroppMany parallel applications need to access large amounts of data. In suchapplications, the I/O performance can play a signi�cant role in the overall timeto completion. Although I/O is always much slower than computation, it is stillpossible to achieve good I/O performance in parallel applications by using acombination of su�cient amount of high-speed I/O hardware, appropriate �le-system software, appropriate API for I/O, a high-performance implementationof the API, and by using that API the right way. We explain these points infurther detail in this chapter.We begin by explaining what parallel I/O means, how it arises, and why itis a problem. We give an overview of the infrastructure that currently exists forparallel I/O on modern parallel systems, including I/O architecture, parallel �lesystems, high-level libraries, and application programming interfaces (APIs) forparallel I/O. We explain how the API plays a key role in enabling (or preventing)high performance and how the lack of an appropriate standard API for parallelI/O has hindered performance and portability.Much of the research in parallel I/O over the last several years has con-tributed to the de�nition of the new standard API for parallel I/O that is partof the MPI-2 standard [31]. We discuss the evolution and emergence of this API,often just called MPI-IO, and introduce it with a simple example program. Wealso describe some optimizations enabled by MPI-IO that are critical for highperformance. Finally, we provide guidelines on what users can do to achievehigh I/O performance in their applications.Our focus is mainly on the type of parallel I/O commonly seen in high-endscienti�c computing and not on the I/O that arises in databases, transactionprocessing, and other commercial applications. I/O in parallel scienti�c com-puting often involves large data objects, such as a single large array, distributed1

CHAPTER 13. PARALLEL I/O 2across hundreds of processors. In contrast, while the amount of data storedand accessed in a commercial database may be larger than the data stored as aresult of a scienti�c simulation, each record in a commercial database is usuallyvery small.13.1 IntroductionAny application, sequential or parallel, may need to access data stored in �lesfor many reasons, such as reading the initial input, writing the results, check-pointing for later restart, data analysis, and visualization [18]. In this chapterwe are concerned mainly with parallel applications consisting of multiple pro-cesses (or threads1) that need to access data stored in �les. We de�ne parallelI/O as concurrent requests from multiple processes of a parallel program fordata stored in �les. Accordingly, at least two scenarios are possible:� Each process accesses a separate �le; that is, no �le is shared amongprocesses, or� All processes access a single, shared �le.While the former scenario can be considered as parallel I/O in some sense be-cause it represents I/O performed by a parallel program, it is actually justsequential (uniprocess) I/O performed independently by a number of processes.The latter case, where all processes access a shared �le, is true parallel I/O andrepresents what the term \parallel I/O" means as used in this chapter. In otherwords, the I/O is parallel from the application's perspective.In recent years, although great advances have been made in the CPU andcommunication performance of parallel machines, similar advances have notbeen made in their I/O performance. The densities and capacities of disks haveincreased signi�cantly, but improvement in performance of individual disks hasnot followed the same pace. Although parallel machines with peak performanceof 1 Tops/sec or more are available, applications running on parallel machinesusually achieve I/O bandwidths of at most a few hundred Mbytes/sec. In fact,many applications achieve less than 10 Mbytes/sec [12].As parallel computers get bigger and faster, scientists are increasingly us-ing them to solve problems that not only need a large amount of computingpower but also need to access large amounts of data. (See [14, 26, 38] for alist of many such applications.) Since I/O is slow, the I/O speed, and not theCPU or communication speed, is often the bottleneck in such applications. Forparallel computers to be truly usable for solving real, large-scale problems, theI/O performance must be scalable and balanced with respect to the CPU andcommunication performance of the system.The rest of this chapter is organized as follows. In Section 13.2 we describethe existing infrastructure for parallel I/O, including architecture, �le systems,1The discussion in this chapter refers to multiple processes rather than threads becauseour focus is on the MPI-IO model for parallel I/O. Nonetheless, the issues we discuss applyequally well to a parallel-programming model based on multiple threads within a process.

CHAPTER 13. PARALLEL I/O 3
Sector

Track

PlattersFigure 13.1: Schematic of a typical diskand high-level libraries. We also discuss the issue of application programminginterfaces (APIs) for parallel I/O and explain how the lack of an appropriatestandard API has hindered performance and portability in the past. In Sec-tion 13.3 we introduce the new MPI-IO standard API, which has the potential tosolve the API problem and deliver performance and portability. In Section 13.4we describe some optimizations that are critical to parallel I/O performance.In Section 13.5 we provide some guidelines on how users can achieve high I/Operformance in their applications. We summarize the chapter in Section 13.6.13.2 Parallel I/O InfrastructureIn this section we give a brief overview of the infrastructure for parallel I/O thatcurrently exists on parallel machines. We begin by reviewing basic, nonparallelI/O.13.2.1 Basic Disk ArchitectureThe most common secondary-storage device is a disk. A disk consists of one ormore platters coated with a magnetic medium. The disk spins at a relativelyhigh rate; 5,000{10,000 RPM (revolutions per minute) are common. A platteris divided into a number of concentric tracks, which are themselves divided intosmaller arcs called sectors. A sector is the smallest addressable unit on the disk,and a typical sector size is 512 bytes [61]. Data is read by one or more headsthat can move across the platters. A schematic of a disk is shown in Figure 13.1.Data from a disk is typically accessed in multiples of sectors stored contigu-ously, sometimes called a cluster. On commodity disks, a minimumof 32 sectors(16 Kbytes) or more are accessed in a single operation. As a result, reading orwriting a single byte of data from or to a disk actually causes thousands ofbytes to be moved. In other words, there can be a huge di�erence between theamount of data logically accessed by an application and the amount of dataphysically moved, as demonstrated in [49]. In addition, a substantial latency isintroduced by the need to wait for the right sector to move under a read or writehead|even at 10,000 RPM, it takes 6 milliseconds for the disk to complete onerevolution. To avoid accessing the disk for each I/O request, an operating sys-tem typically maintains a cache in main memory, called the �le-system cache,that contains parts of the disk that have been recently accessed. Data written

CHAPTER 13. PARALLEL I/O 4
Compute nodes

I/O nodes

Disks

Interconnection Network

Figure 13.2: General parallel I/O architecture of distributed-memory systemsto the cache is periodically ushed to the disk by an operating-system daemon.Despite the cache, it is ine�cient to read or write small amounts of data froman application. Applications that need high I/O performance must ensure thatall I/O operations access large amounts of data.Further details about disk architecture can be found in [7, 61].13.2.2 Parallel I/O ArchitectureLet us now consider the I/O architectures of parallel machines. We �rst considerdistributed-memory machines, examples of which include the IBM SP, ASCIRed (Intel Tops), Cray T3E, clusters of workstations, and older machines suchas the Thinking Machines CM-5 and Intel Paragon and iPSC hypercubes. Fig-ure 13.2 shows the general I/O architecture of a distributed-memory machine.In addition to the compute nodes, the machine has a set of I/O nodes. TheI/O nodes are connected to each other and to the compute nodes usually bythe same interconnection network that connects the compute nodes. Each I/Onode is connected to one or more storage devices, each of which could be eitheran individual disk or an array of disks, such as a RAID (Redundant Array ofInexpensive Disks) [7, 40]. The I/O nodes function as servers for the parallel�le system. The parallel �le system typically stripes �les across the I/O nodesand disks by dividing the �le into a number of smaller units called striping unitsand assigning the striping units to disks in a round-robin manner. File strip-ing provides higher bandwidth and enables multiple compute nodes to accessdistinct portions of a �le concurrently.Usually, but not always, the I/O nodes are dedicated for I/O and no compute

CHAPTER 13. PARALLEL I/O 5jobs are run on them. On many machines, each of the compute nodes also hasa local disk of its own, which is usually not directly accessible from other nodes.These disks are not part of the common \parallel I/O system" but are used tostore scratch �les local to each process and other �les used by the operatingsystem.This kind of architecture allows concurrent requests from multiple computenodes to be serviced simultaneously. Parallelism comes about in multiple ways:parallel data paths from the compute nodes to the I/O nodes, multiple I/Onodes and �le-system servers, and multiple storage devices (disks). If eachstorage device is a disk array, it provides even more parallelism.Shared-memorymachines typically do not have this kind of I/O architecture;they do not have separate I/O nodes. Examples of such machines are the SGIOrigin2000, Cray T90, HP Exemplar, and NEC SX-4. On these machines,the operating system schedules the �le-system server on the compute nodes.Nonetheless, these machines can be con�gured with multiple disks, and the �lesystem can stripe �les across the disks. The disks are connected to the machinevia SCSI or Fibre Channel connections, just as they are in distributed memorymachines.For further information on parallel I/O architecture we refer readers to theexcellent surveys in [15] and [27].A relatively new area of research is that of network-attached storage devices(NASD) [19]. In NASD, storage devices are not directly connected to their hostsystems via a specialized I/O bus, but instead communicate with their hostsystems through a high-performance network such as Fibre Channel [16]. Thisapproach has the potential to improve performance and scalability by providingdirect data transfer between client and storage and eliminating the server, whichcan be a bottleneck.13.2.3 File SystemsA number of commercial and research �le systems have been developed over thelast few years to meet the needs of parallel I/O. We briey describe some ofthem below and provide pointers to additional information.One of the �rst commercial parallel �le systems was the Intel ConcurrentFile System (CFS) for the Intel iPSC hypercubes. It had a Unix-like API withthe addition of various �le-pointer modes [42]. CFS evolved into the ParallelFile System (PFS) on the Intel Paragon, but retained the same API. The CM-5, nCUBE, and Meiko CS-2 also had their own parallel �le systems [15]. Adi�erent API was introduced by the Vesta �le system, developed at the IBMWatson Research Center [10]. Vesta provided the initial parallel �le systemfor the IBM SP. The unique feature of Vesta was that it supported logical �leviews and noncontiguous �le accesses|a departure from the traditional UnixAPI. Vesta evolved into an IBM product called PIOFS, which remained theparallel �le system on the SP until recently. The current parallel �le systemon the IBM SP is called GPFS [1], which, interestingly, is not backward com-patible with PIOFS. It does not support PIOFS �le views or noncontiguous

CHAPTER 13. PARALLEL I/O 6�le accesses; instead, it supports the POSIX I/O interface [24]. However, fornoncontiguous accesses, users can use the MPI-IO interface on top of GPFS byusing either IBM's implementation of MPI-IO or other implementations, suchas ROMIO [45]. Unlike other parallel �le systems, GPFS follows a shared-diskmodel rather than a client-server model [1]. Shared-memory multiprocessorsalso have high-performance �le systems that allow concurrent access to �les.Examples of such �le systems are XFS on the SGI Origin2000, HFS on the HPExemplar, and SFS on the NEC SX-4. Sun has developed a parallel �le system,Sun PFS, for clusters of Sun SMPs [66].A number of parallel �le systems have also been developed by various re-search groups. The Galley parallel �le system developed at Dartmouth Col-lege supports a three-dimensional �le structure consisting of �les, sub�les, andforks [35]. PPFS is a parallel �le system developed at the University of Illinoisfor clusters of workstations [23]. The developers use it as a testbed for researchon various aspects of �le-system design, such as caching/prefetching policies andautomatic/adaptive policy selection [29, 30]. PVFS is a parallel �le system forLinux clusters developed at Clemson University [64]. PVFS stripes �les acrossthe local disks of machines in a Linux cluster and provides the look-and-feelof a single Unix �le system. The regular Unix commands, such as rm, ls, andmv, can be used on PVFS �les, and the �les can be accessed from a (parallel)program by using the regular Unix I/O functions. PVFS is also packaged in away that makes it very easy to download, install, and use.Distributed/networked �le systems are a rich area of research. Examples ofsuch �le systems are xFS [2], AFS/Coda [8], and GFS [60]. We do not discussthem in this chapter; interested readers can �nd further information in thepapers cited above.13.2.4 The API ProblemMost commercial parallel �le systems have evolved out of uniprocessor �le sys-tems, and they retain the same API, namely, the Unix I/O API. The Unix API,however, is not an appropriate API for parallel I/O for two main reasons: itdoes not allow noncontiguous �le accesses and it does not support collectiveI/O. We explain these reasons below.The Unix read/write functions allow users to access only a single contigu-ous piece of data at a time.2 While such an API may be su�cient for theneeds of uniprocess programs, it is not su�cient for the kinds of access pat-terns common in parallel programs. Many studies of the I/O access patternsin parallel programs have shown that each process of a parallel program mayneed to access several relatively small, noncontiguous pieces of data from a�le [3, 12, 36, 50, 51, 56]. In addition, many/all processes may need to accessthe �le at about the same time, and, although the accesses of each process may2Unix does have functions readv and writev, but they allow noncontiguity only in memoryand not in the �le. POSIX has a function lio listio that allows users to specify a list ofrequests at a time, but each request is treated internally as a separate asynchronous I/Orequest, the requests can be a mixture of reads and writes, and the interface is not collective.

CHAPTER 13. PARALLEL I/O 7be small and noncontiguous, the accesses of di�erent processes may be inter-leaved in the �le and together may span large contiguous chunks. Such accesspatterns occur because of the manner in which data stored in a shared �le is dis-tributed among processes. With the Unix I/O interface, the programmer has nomeans of conveying this \big picture" of the access pattern to the I/O system.Each process must seek to a particular location in the �le, read or write a smallcontiguous piece, then seek to the start of the next contiguous piece, read orwrite that piece, and so on. The result is that each process makes hundreds orthousands of requests for small amounts of data. Numerous small I/O requestsarriving in any order from multiple processes results in very poor performance,not just because I/O latency is high but also because the �le-system cache getspoorly utilized.The example in Figure 13.3 illustrates this point. The �gure shows an ac-cess pattern commonly found in parallel applications, namely, distributed-arrayaccess. A two-dimensional array is distributed among 16 processes in a (block,block) fashion. The array is stored in a �le corresponding to the global arrayin row-major order, and each process needs to read its local array from the �le.The data distribution among processes and the array storage order in the �le aresuch that the �le contains the �rst row of the local array of process 0, followedby the �rst row of the local array of process 1, the �rst row of the local array ofprocess 2, the �rst row of the local array of process 3, then the second row of thelocal array of process 0, the second row of the local array of process 1, and soon. In other words, the local array of each process is not located contiguouslyin the �le. To read its local array with a Unix-like API, each process mustseek to the appropriate location in the �le, read one row, seek to the next row,read that row, and so on. Each process must make as many read requests asthe number of rows in its local array. If the array is large, the �le system mayreceive thousands of read requests.Instead, if the I/O API allows the user to convey the entire access infor-mation of each process as well as the fact that all processes need to access the�le simultaneously, the implementation (of the API) can read the entire �lecontiguously and simply send the right pieces of data to the right processes.This optimization, known as collective I/O, can improve performance signif-icantly [13, 28, 48, 58]. The I/O API thus plays a critical role in enablingthe user to express I/O operations conveniently and also in conveying su�cientinformation about access patterns to the I/O system so that the system canperform I/O e�ciently.Another problem with commercial parallel-�le-system APIs is the lack ofportability. Although parallel �le systems have Unix-like APIs, many vendorssupport variations of the Unix (or POSIX [24]) API, and, consequently, pro-grams written with these APIs are not portable.13.2.5 I/O LibrariesA number of I/O libraries have also been developed over the last several years,mostly as part of research projects. These libraries either provide a better API

CHAPTER 13. PARALLEL I/O 8
4 6 7

12 13 14 15

0 1 2 3

5

8 9 10 11

0 1 2 3 0 1 2 3

8 9 8 9

4 5 6 7 4 5 6 7

10 11 10 11

12 13 14 15 12 13 14 15

Access pattern in the file

Large array
distributed
among
16 processes

Figure 13.3: Common access pattern in parallel applications: distributed-arrayaccess. The numbers on the line indicate the process that needs a particularportion of the �le.than Unix I/O and perform I/O optimizations enabled by the API or providesome convenience features useful to applications that �le systems do not provide.We list some of these libraries below.The PASSION library, developed at Syracuse University, supports e�cientto arrays and sections of arrays stored in �les [55]. It uses data sieving, two-phase collective I/O, and (recently) compression as the main optimizations.The Panda library, developed at the University of Illinois, also supports high-performance array access [48]. It uses server-directed collective I/O and chun-ked storage as the main optimizations. SOLAR is a library for out-of-corelinear-algebra operations, developed at IBM Watson Research Center [65]. TheChemIO library, developed at Paci�c Northwest National Laboratory, providesI/O support for computational-chemistry applications [34].HDF [63], netCDF [33], and DMF [47] are libraries designed to provide evenhigher level of I/O support to applications. For example, they can directlyread/write meshes and grids. Such libraries also try to hide I/O parallelismfrom the application, often to the detriment of performance. Nonetheless, theselibraries are very popular among application developers because they provide alevel of abstraction that application developers need.Because all the libraries mentioned above support their own API, usuallymuch di�erent from the Unix I/O API, they do not solve the API portability

CHAPTER 13. PARALLEL I/O 9problem.13.2.6 Language-Based Parallel I/OSome e�orts have been made to support parallel I/O directly in the parallelprogramming language. For example, the Fortran D and Fortran 90D researchprojects explored the use of language-based parallel I/O with a combinationof compiler directives and runtime library calls [4, 5, 39]. CM Fortran fromThinking Machines Corp. also supported reading and writing of parallel arrays.Although parallel I/O was discussed during the deliberations of the High Per-formance Fortran (HPF) Forum, it does not appear in the �nal HPF standard.In all, language-based parallel I/O remains mainly a research e�ort.13.2.7 Need for a Standard I/O APIAlthough great strides were made in parallel I/O research in the early 1990s,there remained a critical need for a single, standard, language-neutral API de-signed speci�cally for parallel I/O performance and portability. Fortunately,such an API now exists. It is the I/O interface de�ned as part of the MPI-2standard, often referred to as MPI-IO [21, 31].13.3 Overview of MPI-IOIn this section we give a brief overview of MPI-IO, describe its main features,and elaborate on one important feature|the ability to specify noncontiguousI/O requests by using MPI's derived datatypes.13.3.1 BackgroundMPI-IO originated in an e�ort begun in 1994 at IBM Watson Research Centerto investigate the impact of the (then) new MPI message-passing standard onparallel I/O. A group at IBM wrote an important paper [44] that explores theanalogy between MPI message passing and I/O. Roughly speaking, one canconsider reads and writes to a �le system as receives and sends of messages.This paper was the starting point of MPI-IO in that it was the �rst attemptto exploit this analogy by applying the (then relatively new) MPI concepts formessage passing to the realm of parallel I/O.The idea of using message-passing concepts in an I/O library appeared suc-cessful, and the e�ort was expanded into a collaboration with parallel I/O re-searchers from NASA Ames Research Center. The resulting speci�cation ap-peared in [9]. At this point a large email discussion group was formed, withparticipation from a wide variety of institutions. This group, calling itself theMPI-IO Committee, pushed the idea further in a series of proposals, culminatingin [62].During this time, the MPI Forum had resumed meeting to address a numberof topics that had been deliberately left out of the original MPI Standard,including parallel I/O. The MPI Forum initially recognized that both the MPI-IO Committee and the Scalable I/O Initiative [46] represented e�orts to develop

CHAPTER 13. PARALLEL I/O 10
�������������������������������
�������������������������������
�������������������������������
�������������������������������

P0 P1 P(n-1)P2

FILEFigure 13.4: Each process needs to read a chunk of data from a common �lea standard parallel I/O interface and therefore decided not to address I/O in itsdeliberations. In the long run, however, the three threads of development|bythe MPI-IO Committee, the Scalable I/O Initiative, and the MPI Forum|merged because of a number of considerations. The result was that, from thesummer of 1996, the MPI-IO design activities took place in the context of theMPI Forum meetings. The MPI Forum used the latest version of the existingMPI-IO speci�cation [62] as a starting point for the I/O chapter in MPI-2. TheI/O chapter evolved over many meetings of the Forum and was released in its�nal form along with the rest of MPI-2 in July 1997 [31]. MPI-IO now refers tothis I/O chapter in MPI-2.13.3.2 Simple MPI-IO ExampleTo get a avor of what MPI-IO looks like, let us consider a simple example: aparallel program in which processes need to read data from a common �le. Letus assume that there are n processes, each needing to read (1=n)th of the �leas shown in Figure 13.4. Figure 13.5 shows one way of writing such a programwith MPI-IO. It has the usual functions one would expect for I/O: an open, aseek, a read, and a close. Let us look at each of the functions closely.MPI File open is the function for opening a �le. The �rst argument to thisfunction is a communicator that indicates the group of processes that need toaccess the �le and that are calling this function. This communicator also repre-sents the group of processes that will participate in any collective I/O operationson the open �le. In this simple example, however, we don't use collective I/Ofunctions. We pass MPI COMM WORLD as the communicator, meaning that all pro-cesses need to open and thereafter access the �le. The �le name is passed asthe second argument to MPI File open. The third argument to MPI File openspeci�es the mode of access; we use MPI MODE RDONLY because this program onlyreads from the �le. The fourth argument, called the info argument, allows theuser to pass hints to the implementation. In this example, we don't pass anyhints; instead, we pass a null info argument, MPI INFO NULL. MPI File openreturns a �le handle in the last argument. This �le handle is to be used forfuture operations on the open �le.After opening the �le, each process moves its local �le pointer, called anindividual �le pointer, to the location in the �le from which the process needsto read data. We use the function MPI File seek for this purpose. The �rstargument to MPI File seek is the �le handle returned by MPI File open. The

CHAPTER 13. PARALLEL I/O 11/* read from a common file using individual file pointers */#include "mpi.h"#define FILESIZE (1024 * 1024)int main(int argc, char **argv){ int *buf, rank, nprocs, nints, bufsize;MPI_File fh;MPI_Status status;MPI_Init(&argc,&argv);MPI_Comm_rank(MPI_COMM_WORLD, &rank);MPI_Comm_size(MPI_COMM_WORLD, &nprocs);bufsize = FILESIZE/nprocs;buf = (int *) malloc(bufsize);nints = bufsize/sizeof(int);MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);MPI_File_seek(fh, rank*bufsize, MPI_SEEK_SET);MPI_File_read(fh, buf, nints, MPI_INT, &status);MPI_File_close(&fh);free(buf);MPI_Finalize();return 0;}Figure 13.5: Simple MPI-IO program to perform the I/O needed in Figure 13.4second argument speci�es the o�set in the �le to seek to, and the third argumentMPI SEEK SET speci�es that the o�set must be calculated from the head of the�le. We specify the o�set to MPI File seek as a product of the rank of theprocess and the amount of data to be read by each process.We use the function MPI File read for reading data. On each process,this function reads data from the current location of the process's individual�le pointer for the open �le. The �rst argument to MPI File read is the �lehandle. The second argument is the address of the bu�er in memory into whichdata must be read. The next two arguments specify the amount of data tobe read. Since the data is of type integer, we specify it as a count of thenumber of integers to be read. The �nal argument is a status argument, whichis the same as the status argument in MPI communication functions, such as

CHAPTER 13. PARALLEL I/O 12MPI Recv. One can determine the amount of data actually read by using thefunctions MPI Get count or MPI Get elements on the status object returned byMPI File read, but we don't bother to do so in this example. MPI File readincrements the individual �le pointer on each process by the amount of data readby that process. Finally, we close the �le using the function MPI File close.The �ve functions, MPI File open, MPI File seek, MPI File read, MPI File write,and MPI File close, are actually su�cient to write any I/O program. Theother MPI-IO functions are for performance, portability, and convenience. Al-though these �ve functions3 can be used as a quick start to using MPI-IO andfor easily porting Unix I/O programs to MPI-IO, users must not stop here. Forreal bene�ts with using MPI-IO, users must use its special features, such assupport for noncontiguous accesses and collective I/O. This issue is discussedfurther in Section 13.5 and in [21].13.3.3 Main Features of MPI-IOMPI-IO is a rich interface with many features speci�cally intended for portable,high-performance parallel I/O. It has bindings in three languages: C, Fortran,and C++.MPI-IO supports three kinds of basic data-access functions: using an explicito�set, individual �le pointer, and shared �le pointer. The explicit-o�set func-tions take as argument the o�set in the �le from which the read/write shouldbegin. The individual-�le-pointer functions read/write data from the currentlocation of a �le pointer that is local to each process. The shared-�le-pointerfunctions read/write data from the location speci�ed by a common �le pointershared by the group of processes that together opened the �le. In all these func-tions, users can specify a noncontiguous data layout in memory and �le. Bothblocking and nonblocking versions of these functions exist. MPI-IO also hascollective versions of these functions, which must be called by all processes thattogether opened the �le. The collective functions enable an implementation toperform collective I/O. A restricted form of nonblocking collective I/O, calledsplit collective I/O, is supported.A unique feature of MPI-IO is that it supports multiple data-storage repre-sentations: native, internal, external32, and also user-de�ned representa-tions. native means that data is stored in the �le as it is in memory; no dataconversion is performed. internal is an implementation-de�ned data represen-tation that may provide some (implementation-de�ned) degree of �le portability.external32 is a speci�c, portable data representation de�ned in MPI-IO. A �lewritten in external32 format on one machine is guaranteed to be readable onany machine with any MPI-IO implementation. MPI-IO also includes a mecha-nism for users to de�ne a new data representation by providing data-conversionfunctions, which MPI-IO uses to convert data from �le format to memory format3The reader familiar with threads will note that the seek operation is not thread-safe: ite�ectively sets a global variable (the position in the �le) that another thread could change be-fore the subsequent read or write operation. MPI-IO has thread-safe variants of MPI File readand MPI File write, called MPI File read at and MPI File write at, that combine the seekand read/write operation.

CHAPTER 13. PARALLEL I/O 13and vice versa.MPI-IO provides a mechanism, called info, that enables users to pass hintsto the implementation in a portable and extensible manner. Examples of hintsinclude parameters for �le striping, prefetching/caching information, and access-pattern information. Hints do not a�ect the semantics of a program, but theymay enable the MPI-IO implementation or underlying �le system to improveperformance or minimize the use of system resources [6, 41].MPI-IO also has a set of rigorously de�ned consistency and atomicity se-mantics that specify the results of concurrent �le accesses.For details of all these features, we refer readers to [20, 21, 31]. We elaboratefurther on only one feature|the ability to access noncontiguous data with asingle I/O function by using MPI's derived datatypes|because it is critical forhigh performance in parallel applications. We emphasize this point becauseachieving high performance requires both a proper API and proper use of thatAPI by the programmer. Other I/O e�orts have also addressed the issue ofaccessing noncontiguous data; one example is the low-level API [11] developedas part of the Scalable I/O Initiative [46]. MPI-IO, however, is the only widelydeployed API that supports noncontiguous access.13.3.4 Noncontiguous Accesses in MPI-IOIn MPI, the amount of data a function sends or receives is speci�ed in terms of in-stances of a datatype [32]. Datatypes in MPI are of two kinds: basic and derived.Basic datatypes are those that correspond to the basic datatypes in the hostprogramming language|integers, oating-point numbers, and so forth. In addi-tion, MPI provides datatype-constructor functions to create derived datatypesconsisting of multiple basic datatypes located either contiguously or noncontigu-ously. The datatype created by a datatype constructor can be used as an inputdatatype to another datatype constructor. Any noncontiguous data layout cantherefore be represented in terms of a derived datatype.MPI-IO uses MPI datatypes for two purposes: to describe the data layoutin the user's bu�er in memory and to de�ne the data layout in the �le. Thedata layout in memory is speci�ed by the datatype argument in each read/writefunction in MPI-IO. The data layout in the �le is de�ned by the �le view. Whenthe �le is �rst opened, the default �le view is the entire �le; that is, the entire�le is visible to the process, and data will be read/written contiguously startingfrom the location speci�ed by the read/write function. A process can changeits �le view at any time by using the function MPI File set view, which takesas argument an MPI datatype, called the �letype. From then on, data will beread/written only to those parts of the �le speci�ed by the �letype; any \holes"will be skipped. The �le view and the data layout in memory can be de�ned byusing any MPI datatype; therefore, any general, noncontiguous access patterncan be compactly represented.

CHAPTER 13. PARALLEL I/O 1413.3.5 MPI-IO ImplementationsSeveral implementations of MPI-IO are available, including portable and vendor-speci�c implementations. ROMIO is a freely available, portable implementationthat we have developed at Argonne [45, 59]. It runs on most parallel comput-ers and networks of workstations and uses the native parallel/high-performance�le systems on each machine. It is designed to be used with multiple MPI-1implementations. Another freely available, portable MPI-IO implementation isPMPIO from NASA Ames Research Center [17, 43]. A group at Lawrence Liver-more National Laboratory has implemented MPI-IO on the HPSS mass-storagesystem [25]. Most vendors either already have an MPI-IO implementation orare actively developing one. SGI and HP have included ROMIO into their MPIproduct. Sun [66] and Fujitsu have their own (complete) MPI-IO implementa-tions. IBM, Compaq (DEC), NEC, and Hitachi are in various stages of MPI-IOdevelopment.13.4 Parallel I/O OptimizationsIn this section we describe some key optimizations in parallel I/O that are crit-ical for high performance. These optimizations include data sieving, collectiveI/O, and hints and adaptive �le-system policies. With the advent of MPI-IO,these optimizations are now supported in the API in a standard, portable way.This in turn enables a library or �le system to actually perform these optimiza-tions.13.4.1 Data SievingAs mentioned above, in many parallel applications each process may need toaccess small, noncontiguous pieces of data. Since I/O latency is very high,accessing each contiguous piece separately is very expensive: it involves toomany system calls for small amounts of data. Instead, if the user conveysthe entire noncontiguous access pattern within a single read or write function,the implementation can perform an optimization called data sieving and reador write data with much higher performance. Data sieving was �rst used inPASSION in the context of accessing sections of out-of-core arrays [53, 55].We use a very general implementation of data sieving (for any general accesspattern) in our MPI-IO implementation, ROMIO. We explain data sieving inthe context of its implementation in ROMIO [58].To reduce the e�ect of high I/O latency, it is critical to make as few requeststo the �le system as possible. Data sieving is a technique that enables animplementation to make a few large, contiguous requests to the �le system evenif the user's request consists of several small, noncontiguous accesses. Figure 13.6illustrates the basic idea of data sieving. Assume that the user has made asingle read request for �ve noncontiguous pieces of data. Instead of readingeach noncontiguous piece separately, ROMIO reads a single contiguous chunkof data starting from the �rst requested byte up to the last requested byte intoa temporary bu�er in memory. It then extracts the requested portions from

CHAPTER 13. PARALLEL I/O 15
read a contiguous chunk

user’s request for noncontiguous

into memory

into user’s buffer
copy requested portions

data from a fileFigure 13.6: Data sievingthe temporary bu�er and places them in the user's bu�er. The user's bu�erhappens to be contiguous in this example, but it could well be noncontiguous.A potential problem with this simple algorithm is its memory requirement.The temporary bu�er into which data is �rst read must be as large as theextent of the user's request, where extent is de�ned as the total number of bytesbetween the �rst and last byte requested (including holes). The extent canpotentially be very large|much larger than the amount of memory available forthe temporary bu�er|because the holes (unwanted data) between the requesteddata segments could be very large. The basic algorithm, therefore, must bemodi�ed to make its memory requirement independent of the extent of theuser's request.ROMIO uses a user-controllable parameter that de�nes the maximumamountof contiguous data that a process can read at a time during data sieving. Thisvalue also represents the maximum size of the temporary bu�er. The user canchange this size at run time via MPI-IO's hints mechanism. If the extent ofthe user's request is larger than the value of this parameter, ROMIO performsdata sieving in parts, reading only as much data at a time as de�ned by theparameter.The advantage of data sieving is that data is always accessed in large chunks,although at the cost of reading more data than needed. For many common accesspatterns, the holes between useful data are not unduly large, and the advantageof accessing large chunks far outweighs the cost of reading extra data. In someaccess patterns, however, the holes are so large that the cost of reading the extradata outweighs the cost of accessing large chunks. An \intelligent" data-sievingalgorithm can handle such cases as well. The algorithm can analyze the user'srequest and decide whether to perform data sieving or access each contiguousdata segment separately. We plan to add this feature to ROMIO.Data sieving can similarly be used for writing data. A read-modify-writemust be performed, however, to avoid destroying the data already present in theholes between contiguous data segments. The portion of the �le being accessedmust also be locked during the read-modify-write to prevent concurrent updatesby other processes. The size of the write bu�er can also be changed by the uservia hints.

CHAPTER 13. PARALLEL I/O 16One could argue that most �le systems perform data sieving anyway becausethey perform caching. That is, even if the user makes many small I/O requests,the �le system always reads multiples of disk blocks and may also perform aread-ahead. The user's requests, therefore, may be satis�ed out of the �le-system cache. Our experience, however, has been that the cost of making manysystem calls, each for small amounts of data, is extremely high, despite thecaching performed by the �le system. In most cases, it is more e�cient to makea few system calls for large amounts of data and extract the needed data.13.4.2 Collective I/OIn many cases, the data to be read or written represents a single object, dis-tributed across many processors. An example is a single array, distributed acrossall processes in a parallel application. As we have seen, when this array is writ-ten to a �le, each process must write many relatively small segments. Yet oncethe data is in the �le, the array is stored in a single, contiguous block in the�le. How can we exploit the fact that the entire data to be written �lls a large,contiguous block in the �le?If the entire noncontiguous access information of all processes is known, animplementation can optimize the access even further. Instead of reading largechunks and discarding the unwanted data as in data sieving, the unwanted datacan be communicated to other processes that need it. Such optimization isbroadly referred to as collective I/O, and it has been shown to improve perfor-mance signi�cantly [13, 28, 48, 58, 66].Collective I/O can be performed in di�erent ways and has been studiedby many researchers in recent years. It can be done at the disk level (disk-directed I/O [28]), at the server level (server-directed I/O [48]), or at the clientlevel (two-phase I/O [13] or collective bu�ering [37]). Each method has itsadvantages and disadvantages. Since ROMIO is a portable, user-level librarywith no separate I/O servers, ROMIO performs collective I/O at the client levelusing a generalized version of two-phase I/O. We explain the basic concept oftwo-phase I/O below; details of ROMIO's implementation can be found in [58].Two-Phase I/OTwo-phase I/O was �rst proposed in [13] in the context of accessing distributedarrays from �les. The basic idea in two-phase I/O is to avoid making lots ofsmall I/O requests by splitting the access into two phases: an I/O phase and acommunication phase. Let us consider the example of reading a (block,block)distributed array from a �le using two-phase I/O, illustrated in Figure 13.7. Inthe �rst phase of two-phase I/O, all processes access data assuming a distribu-tion that results in each process making a single, large, contiguous access. Inthis example, such a distribution is a row-block or (block,*) distribution. Inthe second phase, processes redistribute data among themselves to the desireddistribution. The advantage of this method is that by making all �le accesseslarge and contiguous, the I/O time is reduced signi�cantly. The added costof interprocess communication for redistribution is (almost always) small com-

CHAPTER 13. PARALLEL I/O 17
P0

P1

P2

P3

P0 P1

P2 P3

Read contiguous

Read contiguous

Read contiguous

Read contiguous

Redistribute

Redistribute

Redistribute

Redistribute

File

user’s buffer
(block, block) distribution

 temporary buffer
(block, *) distributionFigure 13.7: Reading a distributed array by using two-phase I/Opared with the savings in I/O time. The overall performance, therefore, is closeto what can be obtained by making large I/O requests in parallel.The basic two-phase method was extended in [54] to access sections of out-of-core arrays. An even more general version of two-phase I/O is implementedin ROMIO [58]. It supports any access pattern, and the user can also controlvia hints the amount of temporary memory ROMIO uses as well as the numberof processes that actually perform I/O in the I/O phase.13.4.3 Hints and Adaptive File-System PoliciesParallel applications exhibit such a wide variation in access patterns that anysingle �le-system policy (regarding �le-striping parameters, caching/prefetching,etc.) is unlikely to perform well for all applications. Two solutions exist forthis problem: either the user can inform the �le system (via hints) about theapplication's access pattern, the desired striping parameters, or the desiredcaching/prefetching policies, or the �le system can be designed to automaticallydetect and adapt its policies to the access pattern of the application. Various re-search e�orts have demonstrated the bene�ts of such optimization [6, 29, 30, 41].As mentioned above, hints can also be used to vary the sizes of temporarybu�ers used internally by the implementation for various optimizations. Choos-ing the right bu�er size can improve performance considerably, as demonstratedin Section 13.5.2 and in [66].The hints mechanism in MPI-IO also allows users to specify machine-speci�coptions and optimizations in a portable way. That is, the same program can berun everywhere, and the implementation will simply ignore the hints that arenot applicable to the machine on which the program is being run. An example ofthe use of machine-speci�c hints are the hints ROMIO accepts for using \directI/O" on SGI's XFS �le system. Direct I/O is an XFS option that can be speci�edvia the O DIRECT ag to the open function. In direct I/O, the �le system movesdata directly between the user's bu�er and the storage devices, bypassing the�le-system cache and thereby saving an extra copy. Another advantage is that

CHAPTER 13. PARALLEL I/O 18in direct I/O the �le system allows writes from multiple processes and threadsto a common �le to proceed concurrently rather than serializing them as itdoes with regular bu�ered I/O. Direct I/O, however, performs well only if themachine has su�cient I/O hardware for high disk bandwidth. If not, regularbu�ered I/O through the �le-system cache performs better. ROMIO, therefore,does not use direct I/O by default. It uses direct I/O only if the user (whoknows whether the machine has high disk bandwidth) recommends it via ahint. On the Argonne Origin2000 con�gured with 10 Fibre Channel controllersand a total of 100 disks, we obtained bandwidths of around 720 Mbytes/secfor parallel writes and 650 Mbytes/sec for parallel reads with the direct I/Ohint speci�ed. Without this hint, the bandwidth was only 100 Mbytes/sec forparallel writes and 300 Mbytes/sec for parallel reads.Direct I/O can be used only if certain restrictions regarding the memoryalignment of the user's bu�er, minimum and maximum I/O sizes, alignment of�le o�set, etc., are met. ROMIO determines whether these restrictions are metfor a particular request and only then uses direct I/O; otherwise it uses regularbu�ered I/O (even if the user speci�ed the direct I/O hint). We plan to addan optimization to ROMIO in which even though the user's request does notmeet the restrictions, ROMIO will try to meet the restrictions by reorganizingthe data internally, at least in the case of collective I/O routines.13.5 How Can Users Achieve High I/O Performance?We provide some general guidelines for achieving high I/O performance andsome speci�c guidelines for achieving high performance with MPI-IO.13.5.1 General GuidelinesFollowing are some general guidelines for achieving high I/O performance. Al-though many of them seem obvious, the reason for poor performance is oftenthat one or more of these simple guidelines are not being followed.� Buy Su�cient I/O Hardware for the Machine: Machines tend tobe purchased for high computation and communication performance butare often undercon�gured for the I/O requirements of the applicationsbeing run on them. It is impossible to achieve good I/O performance withinsu�cient I/O hardware (for example, too few disks). It is di�cult tosay how much I/O hardware is su�cient|it depends on the application'srequirements, system architecture, performance of the I/O hardware, etc.The vendor of the machine may be able to provide guidance in this regard.Some useful guidelines on how to con�gure an I/O subsystem are providedin [15].� Use Fast File Systems, Not NFS: On many installations of high-performance machines, the home directories of users are NFS (NetworkFile System [52]) mounted so that they can be accessed directly fromother machines. This is a good convenience feature, but users must notuse the same directory for reading or writing large amounts of data from

CHAPTER 13. PARALLEL I/O 19parallel applications, because NFS is terribly slow. They must use thedirectory that corresponds to the native high-performance �le system onthe machine.� Do Not Perform I/O From One Process Only: Many parallel ap-plications still perform I/O by having all processes send their data toone process that gathers all the data and writes it to a �le. Applicationdevelopers have chosen this approach because of historical limitations inthe I/O capabilities of many parallel systems: either parallel I/O frommultiple processes to a common �le was not supported, or, if supported,the performance was poor. On modern parallel systems, however, theselimitations no longer exist. With su�cient and appropriately con�guredI/O hardware and modern high-performance �le systems, one can achievehigher performance by having multiple processes directly access a com-mon �le. The MPI-IO interface is speci�cally designed to support suchaccesses and to enable implementations to deliver high performance forsuch accesses.� Make Large Requests Wherever Possible: I/O performance is muchhigher for large requests than for small requests. Application developersmust therefore make an attempt to write their programs in a way thatthey make large I/O requests rather than lots of small requests, whereverpossible.� UseMPI-IO and Use it the RightWay: MPI-IO o�ers great potentialin terms of portability and high performance. It gives implementationsan opportunity to optimize I/O. Therefore, we recommend that users useMPI-IO and use it the right way. The right way is explained in more detailbelow, but, in short, whenever each process needs to access noncontiguousdata and multiple processes need to perform such I/O, users must useMPI derived datatypes, de�ne a �le view, and use a single collective I/Ofunction. They must not access each small contiguous piece separately asthey would with Unix I/O.13.5.2 Achieving High Performance with MPI-IOLet us examine the di�erent ways of writing an application with MPI-IO andsee how this choice a�ects performance.Any application has a particular \I/O access pattern" based on its I/Oneeds. The same I/O access pattern, however, can be presented to the I/Osystem in di�erent ways, depending on which I/O functions the applicationuses and how. The di�erent ways of expressing I/O access patterns in MPI-IO can be classi�ed into four levels, level 0 through level 3 [57]. We explainthis classi�cation with the help of the same example we considered in previoussections, namely, accessing a distributed array from a �le (Figure 13.3). Theprinciple applies to other access patterns as well.Recall that in this example the local array of each process is not contiguousin the �le; each row of the local array is separated by rows of the local arrays of

CHAPTER 13. PARALLEL I/O 20
}

for (i=0; i<n_local_rows; i++) {

 MPI_File_seek(fh, ...)

MPI_File_close(&fh)

 MPI_File_read_all(fh, row[i], ...)

Level 1
(many collective, contiguous requests)

MPI_File_open(MPI_COMM_WORLD, "filename", ..., &fh)

MPI_Type_commit(&subarray)

MPI_File_set_view(fh, ..., subarray, ...)

MPI_File_close(&fh)

MPI_File_read_all(fh, local_array, ...)

Level 3
(single collective, noncontiguous request)

MPI_Type_create_subarray(.., &subarray, ...)

MPI_File_open(MPI_COMM_WORLD, "filename", ..., &fh)

for (i=0; i<n_local_rows; i++) {

 MPI_File_read(fh, row[i], ...)

 MPI_File_seek(fh, ...)

}

MPI_File_close(&fh)

Level 0
(many independent, contiguous requests)

MPI_Type_commit(&subarray)

MPI_File_set_view(fh, ..., subarray, ...)

MPI_File_read(fh, local_array, ...)

MPI_File_close(&fh)

MPI_Type_create_subarray(..., &subarray, ...)

Level 2
(single independent, noncontiguous request)

MPI_File_open(..., "filename", ..., &fh)

MPI_File_open(..., "filename", ..., &fh)Figure 13.8: Pseudo-code that shows four ways of accessing the data in Fig-ure 13.3 with MPI-IOother processes. Figure 13.8 shows four ways in which a user can express thisaccess pattern in MPI-IO. In level 0, each process does Unix-style accesses|oneindependent read request for each row in the local array. Level 1 is similarto level 0 except that it uses collective I/O functions, which indicate to theimplementation that all processes that together opened the �le will call thisfunction, each with its own access information. Independent I/O functions, onthe other hand, convey no information about what other processes will do. Inlevel 2, each process creates a derived datatype to describe the noncontiguousaccess pattern, de�nes a �le view, and calls independent I/O functions. Level 3is similar to level 2 except that it uses collective I/O functions.The four levels represent increasing amounts of data per request, as illus-trated in Figure 13.9.4 The more the amount of data per request, the greater isthe opportunity for the implementation to deliver higher performance. Howgood the performance is at each level depends, of course, on how well theimplementation takes advantage of the extra access information at each level.ROMIO, for example, performs data sieving for level-2 requests and collectiveI/O for level-3 requests. However, it cannot perform these optimizations if theuser does not express the access pattern in terms of level-2 or level-3 requests.Users must therefore strive to express their I/O requests as level 3 rather thanlevel 0. Figure 13.10 shows the detailed code for creating a derived datatype,4In this �gure, levels 1 and 2 represent the same amount of data per request, but, ingeneral, when the number of noncontiguous accesses per process is greater than the numberof processes, level 2 represents more data than level 1.

CHAPTER 13. PARALLEL I/O 21
File
Space

collective contiguous
requests (level 1)

0 1 2 3 Processes

request (level 0)
independent contiguous

independent, noncontiguous
request using a derived
datatype (level 2)

 collective, noncontiguous requests
 using derived datatypes (level 3)Figure 13.9: The four levels representing increasing amounts of data per requestde�ning a �le view, and making a level-3 I/O request for the distributed-arrayexample of Figure 13.3.If an application needs to access only large, contiguous pieces of data, level 0is equivalent to level 2, and level 1 is equivalent to level 3. Users need notcreate derived datatypes in such cases, as level-0 requests themselves will likelyperform well. Many real parallel applications, however, do not fall into thiscategory [3, 12, 36, 50, 51, 56].We note that the MPI standard does not require an implementation to per-form any of these optimizations. Nevertheless, even if an implementation doesnot perform any optimization and instead translates level-3 requests into severallevel-0 requests to the �le system, the performance would be no worse than ifthe user directly made level-0 requests. Therefore, there is no reason not to uselevel-3 requests (or level-2 requests where level-3 requests are not possible).Performance ResultsWe present some performance results to demonstrate how the choice of levelof request a�ects performance. We wrote the distributed-array access exampleusing level-0, level-2, and level-3 requests and ran the three versions portably on�ve di�erent parallel machines|HP Exemplar, SGI Origin2000, IBM SP, IntelParagon, and NEC SX-4|using ROMIO. (For this particular application, level-1 requests do not contain su�cient information for any useful optimizations, andROMIO therefore internally translates level-1 requests into level-0 requests.) Weused the native �le systems on each machine: HFS on the Exemplar, XFS onthe Origin2000, PIOFS on the SP, PFS on the Paragon, and SFS on the SX-4.We note that the machines had varying amounts of I/O hardware. Some

CHAPTER 13. PARALLEL I/O 22gsizes[0] = num_global_rows;gsizes[1] = num_global_cols;distribs[0] = distribs[1] = MPI_DISTRIBUTE_BLOCK;dargs[0] = dargs[1] = MPI_DISTRIBUTE_DFLT_DARG;psizes[0] = psizes[1] = 4;MPI_Comm_rank(MPI_COMM_WORLD, &rank);MPI_Type_create_darray(16, rank, 2, gsizes, distribs, dargs,psizes, MPI_ORDER_C, MPI_FLOAT,&filetype);MPI_Type_commit(&filetype);local_array_size = num_local_rows * num_local_cols;MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", MPI_MODE_RDONLY,MPI_INFO_NULL, &fh);MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",MPI_INFO_NULL);MPI_File_read_all(fh, local_array, local_array_size,MPI_FLOAT, &status);MPI_File_close(&fh);Figure 13.10: Detailed code for the distributed-array example of Figure 13.3using a level-3 requestof the di�erences in performance results among the machines are due to thesevariations. Our goal in this experiment was to compare the performance ofthe di�erent levels of requests on a given machine, rather than comparing theperformance of di�erent machines.Figures 13.11 and 13.12 show the read and write bandwidths. The per-formance with level-0 requests was, in general, very poor because level-0 re-quests result in too many small read/write calls. For level-2 requests|for whichROMIO performs data sieving|the read bandwidth improved over level-0 re-quests by a factor ranging from 2.6 on the HP Exemplar to 453 on the NECSX-4. Similarly, the write bandwidth improved by a factor ranging from 2.3 onthe HP Exemplar to 121 on the NEC SX-4. The performance improved con-siderably with level-3 requests because ROMIO performs collective I/O in thiscase. The read bandwidth improved by a factor of as much as 793 over level-0requests (NEC SX-4) and as much as 14 over level-2 requests (Intel Paragon).Similarly, with level-3 requests, the write performance improved by a factor ofas much as 721 over level-0 requests (NEC SX-4) and as much as 40 over level-2 requests (HP Exemplar). It is clearly advantageous to use level-3 requestsrather than any other kind of request.We obtained similar results with other applications as well; see [58] for de-tails.

CHAPTER 13. PARALLEL I/O 23
0

100

200

300

400

500

600
Re

ad
 Ba

nd
wid

th
(M

by
tes

/s)

HP E xem plar IB M S P Intel P aragon NE C S X4 S GI O rigin2000

level 0

level 2

level 3

64 procs 64 procs 256 procs 8 procs 32 procsFigure 13.11: Read performance of distributed array access (array size512x512x512 integers = 512 Mbytes)
0

50

100

150

200

250

300

350

400

450

Wr
ite

 Ba
nd

wid
th

(M
by

tes
/s)

HP E xem plar IB M S P Intel P aragon NE C S X4 S GI O rigin2000

level 0

level 2

level 3

64 procs 64 procs 256 procs 8 procs 32 procsFigure 13.12: Write performance of distributed array access (array size512x512x512 integers = 512 Mbytes)

CHAPTER 13. PARALLEL I/O 24Upshot GraphsWe present some graphs that illustrate the reduction in time obtained by us-ing level-2 and level-3 requests instead of level-0 requests for writing a three-dimensional distributed array of size 128 � 128 � 128 on 32 processors on theIntel Paragon at Caltech. We instrumented the ROMIO source code to mea-sure the time taken for each �le-system call made by ROMIO and also for thecomputation and communication required for collective I/O. The instrumentedcode created trace �les, which we visualized using a performance-visualizationtool called Upshot [22].Figure 13.13 shows the Upshot plot for level-0 requests, where each processmakes a separate write function call to write each row of its local array. Thenumerous small bands represent the numerous writes in the program, as a resultof which the total time taken is about 125 seconds. The large white portionsare actually lots of writes clustered together, which become visible when youzoom in to the region using Upshot.Figure 13.14 shows the Upshot plot for level-2 requests, for which ROMIOperforms performs data sieving. In this case it performed data sieving in blocksof 4 Mbytes at a time. Notice that the total time has decreased to about16 seconds compared with 125 seconds for level-0 requests. For writing withdata sieving, each process must perform a read-modify-write and also lock theregion of the �le being written. Because of the need for �le locking and abu�er size of 4 Mbytes, many processes remain idle waiting to acquire locks.Therefore, only a few write operations take place concurrently. It should bepossible to increase parallelism, however, by decreasing the size of the bu�er usedfor data sieving. Figure 13.15 shows the results for a bu�er size of 512 Kbytes.Since more I/O operations take place in parallel, the total time decreased to10.5 seconds. A further reduction in bu�er size to 64 Kbytes (Figure 13.16)resulted in even greater parallelism, but the I/O time increased because of thesmaller granularity of each I/O operation. The performance of data sieving canthus be tuned by varying the size of the bu�er used for data sieving, which canbe done via the hints mechanism in MPI-IO.Figure 13.17 shows the Upshot plot for level-3 requests, for which ROMIOperforms collective I/O. The total time decreased to about 2.75 seconds, whichmeans that level-3 requests were about 45 times faster than level-0 requestsand about four times faster than the best performance with level-2 requests.The reason for the improvement is that the numerous writes of each processwere coalesced into a single write at the expense of some extra computation (to�gure out how to merge the requests) and interprocess communication. Withcollective I/O, the actual write time was only a small fraction of the total I/Otime; for example, �le open took longer than the write.

CHAPTER 13. PARALLEL I/O 25

Figure 13.13: Writing a 128� 128� 128 distributed array on the Intel Paragonusing level-0 requests (Unix-style independent writes). Elapsed time = 125 sec-onds.

CHAPTER 13. PARALLEL I/O 26

Figure 13.14: Writing a 128� 128� 128 distributed array on the Intel Paragonusing level-2 requests, with the bu�er size for data sieving = 4 Mbytes. Elapsedtime = 16 seconds.

CHAPTER 13. PARALLEL I/O 27

Figure 13.15: Writing a 128�128�128 distributed array on the Intel Paragon us-ing level-2 requests, with the bu�er size for data sieving = 512 Kbytes. Elapsedtime = 10.5 seconds.

CHAPTER 13. PARALLEL I/O 28

Figure 13.16: Writing a 128� 128� 128 distributed array on the Intel Paragonusing level-2 requests, with the bu�er size for data sieving = 64 Kbytes. Elapsedtime = 20 seconds.

CHAPTER 13. PARALLEL I/O 29

Figure 13.17: Writing a 128� 128� 128 distributed array on the Intel Paragonusing level-3 requests. Elapsed time = 2.75 seconds.

CHAPTER 13. PARALLEL I/O 3013.6 SummaryI/O on parallel computers has always been slow compared with computationand communication. As computers get larger and faster, I/O becomes evenmore of a problem. In this chapter we have provided a general introductionto the �eld of parallel I/O. Our emphasis has been on the practical aspects ofusing parallel I/O and achieving high performance. By following the guidelinespresented, we believe that users can achieve high I/O performance in parallelapplications.AcknowledgmentsThis work was supported by the Mathematical, Information, and ComputationalSciences Division subprogram of the O�ce of Advanced Scienti�c ComputingResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.

Bibliography[1] An introduction to GPFS 1.2. http://www.rs6000.ibm.com/resource/technology/paper1.html.[2] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Pat-terson, Drew S. Roselli, and Randolph Y. Wang. Serverless network �lesystems. In Proceedings of the Fifteenth ACM Symposium on OperatingSystems Principles, pages 109{126. ACM Press, December 1995.[3] Sandra Johnson Baylor and C. Eric Wu. Parallel I/O workload characteris-tics using Vesta. In R. Jain, J. Werth, and J. Browne, editors, Input/Outputin Parallel and Distributed Computer Systems, chapter 7, pages 167{185.Kluwer Academic Publishers, 1996.[4] Rajesh Bordawekar. Techniques for Compiling I/O Intensive Parallel Pro-grams. PhD thesis, Electrical and Computer Engineering Dept., SyracuseUniversity, April 1996. Also available as Caltech technical report CACR-118.[5] Rajesh Bordawekar, Alok Choudhary, Ken Kennedy, Charles Koelbel, andMichael Paleczny. A model and compilation strategy for out-of-core dataparallel programs. In Proceedings of the Fifth ACM SIGPLAN Symposiumon Principles and Practices of Parallel Programming, pages 1{10. ACMPress, July 1995.[6] Pei Cao, Edward Felten, Anna Karlin, and Kai Li. Implementation andperformance of integrated application-controlled �le caching, prefetching,and disk scheduling. ACM Transactions on Computer Systems, 14(4):311{343, November 1996.[7] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, andDavid A. Patterson. RAID: high-performance, reliable secondary storage.ACM Computing Surveys, 26(2):145{185, June 1994.[8] Coda �le system. http://www.coda.cs.cmu.edu.[9] Peter Corbett, Dror Feitelson, Yarsun Hsu, Jean-Pierre Prost, Marc Snir,Sam Fineberg, Bill Nitzberg, Bernard Traversat, and Parkson Wong. MPI-IO: a parallel �le I/O interface for MPI. Technical Report IBM Research31

BIBLIOGRAPHY 32Report RC 19841(87784), IBM T.J. Watson Research Center, November1994.[10] Peter F. Corbett and Dror G. Feitelson. The Vesta parallel �le system.ACM Transactions on Computer Systems, 14(3):225{264, August 1996.[11] Peter F. Corbett, Jean-Pierre Prost, Chris Demetriou, Garth Gibson, ErikReidel, Jim Zelenka, Yuqun Chen, Ed Felten, Kai Li, John Hartman,Larry Peterson, Brian Bershad, Alec Wolman, and Ruth Aydt. Pro-posal for a common parallel �le system programming interface. WWWhttp://www.cs.arizona.edu/sio/api1.0.ps, September 1996. Version 1.0.[12] Phyllis E. Crandall, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed.Input-output characteristics of scalable parallel applications. In Proceedingsof Supercomputing '95. ACM Press, December 1995.[13] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Im-proved parallel I/O via a two-phase run-time access strategy. In Proceed-ings of the Workshop on I/O in Parallel Computer Systems at IPPS '93,pages 56{70, April 1993. Also published in Computer Architecture News,21(5):31{38, December 1993.[14] Juan Miguel del Rosario and Alok Choudhary. High performance I/Ofor parallel computers: Problems and prospects. Computer, 27(3):59{68,March 1994.[15] Dror G. Feitelson, Peter F. Corbett, Sandra Johnson Baylor, and YarsunHsu. Parallel I/O subsystems in massively parallel supercomputers. IEEEParallel and Distributed Technology, 3(3):33{47, Fall 1995.[16] Fibre channel industry association. http://www.fibrechannel.com.[17] Samuel A. Fineberg, Parkson Wong, Bill Nitzberg, and Chris Kuszmaul.PMPIO|a portable implementation of MPI-IO. In Proceedings of the SixthSymposium on the Frontiers of Massively Parallel Computation, pages 188{195. IEEE Computer Society Press, October 1996.[18] N. Galbreath, W. Gropp, and D. Levine. Applications-driven parallel I/O.In Proceedings of Supercomputing '93, pages 462{471. IEEE Computer So-ciety Press, November 1993.[19] Garth A. Gibson, David P. Nagle, Khalil Amiri, Fay W. Chang, EugeneFeinberg, Howard Gobio� Chen Lee, Berend Ozceri, Erik Riedel, and DavidRochberg. A case for network-attached secure disks. Technical ReportCMU{CS-96-142, Carnegie-Mellon University, June 1996.[20] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk,Bill Nitzberg, William Saphir, and Marc Snir. MPI|The Complete Ref-erence: Volume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA,1998.

BIBLIOGRAPHY 33[21] WilliamGropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: AdvancedFeatures of the Message-Passing Interface. MIT Press, Cambridge, MA,1999.[22] Virginia Herrarte and Ewing Lusk. Studying parallel program behaviorwith upshot. Technical Report ANL{91/15, Argonne National Laboratory,1991.[23] Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, andDavid S. Blumenthal. PPFS: A high performance portable parallel �lesystem. In Proceedings of the 9th ACM International Conference on Su-percomputing, pages 385{394. ACM Press, July 1995.[24] IEEE/ANSI Std. 1003.1. Portable operating system interface (POSIX){part 1: System application program interface (API) [C language], 1996edition.[25] Terry Jones, Richard Mark, Jeanne Martin, John May, Elsie Pierce,and Linda Stanberry. An MPI-IO interface to HPSS. In Pro-ceedings of the Fifth NASA Goddard Conference on Mass Stor-age Systems, pages I:37{50, September 1996. Also available fromhttp://esdis-it.gsfc.nasa.gov/MSST/conf1998.html.[26] David Kotz. Applications of parallel I/O. Technical Report PCS-TR96-297,Dept. of Computer Science, Dartmouth College, October 1996. Release 1.http://www.cs.dartmouth.edu/reports/abstracts/TR96-297.[27] David Kotz. Introduction to multiprocessor I/O architecture. In Ravi Jain,John Werth, and James C. Browne, editors, Input/Output in Parallel andDistributed Computer Systems, chapter 4, pages 97{123. Kluwer AcademicPublishers, 1996.[28] David Kotz. Disk-directed I/O for MIMD multiprocessors. ACM Transac-tions on Computer Systems, 15(1):41{74, February 1997.[29] Tara M. Madhyastha and Daniel A. Reed. Intelligent, adaptive �le systempolicy selection. In Proceedings of the Sixth Symposium on the Frontiers ofMassively Parallel Computation, pages 172{179. IEEE Computer SocietyPress, October 1996.[30] Tara M. Madhyastha and Daniel A. Reed. Exploiting global input/outputaccess pattern classi�cation. In Proceedings of SC97: High PerformanceNetworking and Computing. ACM Press, November 1997.[31] Message Passing Interface Forum. MPI-2: Extensions to themessage-passing interface, July 1997. http://www.mpi-forum.org/docs/docs.html.

BIBLIOGRAPHY 34[32] Message Passing Interface Forum. MPI: A message-passing interfacestandard, version 1.1, June 1995. http://www.mpi-forum.org/docs/docs.html.[33] NetCDF. http://www.unidata.ucar.edu/packages/netcdf.[34] Jarek Nieplocha, Ian Foster, and Rick Kendall. ChemIO: High-performanceparallel I/O for computational chemistry applications. The InternationalJournal of High Performance Computing Applications, 12(3):345{363, Fall1998.[35] Nils Nieuwejaar and David Kotz. The Galley parallel �le system. ParallelComputing, 23(4):447{476, June 1997.[36] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis,and Michael Best. File-access characteristics of parallel scienti�c workloads.IEEE Transactions on Parallel and Distributed Systems, 7(10):1075{1089,October 1996.[37] Bill Nitzberg and Virginia Lo. Collective bu�ering: Improving parallel I/Operformance. In Proceedings of the Sixth IEEE International Symposium onHigh Performance Distributed Computing, pages 148{157. IEEE ComputerSociety Press, August 1997.[38] Applications Working Group of the Scalable I/O Initiative. Preliminarysurvey of I/O intensive applications. Scalable I/O Initiative Working Pa-per Number 1. http://www.cacr.caltech.edu/SIO/pubs/SIO apps.ps,1994.[39] Michael Paleczny, Ken Kennedy, and Charles Koelbel. Compiler supportfor out-of-core arrays on data parallel machines. In Proceedings of the FifthSymposium on the Frontiers of Massively Parallel Computation, pages 110{118, February 1995.[40] David Patterson, Garth Gibson, and Randy Katz. A case for redundantarrays of inexpensive disks. In Proceedings of ACM SIGMOD InternationalConference on Management of Data, pages 109{116. ACM Press, June1988.[41] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, andJim Zelenka. Informed prefetching and caching. In Proceedings of the15th Symposium on Operating System Principles, pages 79{95. ACM Press,December 1995.[42] Paul Pierce. A concurrent �le system for a highly parallel mass storagesubsystem. In Proceedings of 4th Conference on Hypercubes, ConcurrentComputers and Applications, pages 155{160. Golden Gate Enterprises, LosAltos, CA, March 1989.

BIBLIOGRAPHY 35[43] PMPIO - a portable MPI-2 I/O library. http://parallel.nas.nasa.gov/MPI-IO/pmpio/pmpio.html.[44] Jean-Pierre Prost, Marc Snir, Peter Corbett, and Dror Feitelson. MPI-IO,a message-passing interface for concurrent I/O. Technical Report RC 19712(87394), IBM T.J. Watson Research Center, August 1994.[45] ROMIO: A high-performance, portable MPI-IO implementation.http://www.mcs.anl.gov/romio.[46] Scalable I/O initiative. http://www.cacr.caltech.edu/SIO.[47] Scienti�c data management. http://www.ca.sandia.gov/asci-sdm.[48] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective I/O in Panda. In Proceedings of Supercomputing '95.ACM Press, December 1995.[49] Huseyin Simitci and Daniel Reed. A comparison of logical and physical par-allel I/O patterns. The International Journal of High Performance Com-puting Applications, 12(3):364{380, Fall 1998.[50] E. Smirni and D. A. Reed. Lessons from characterizing the input/outputbehavior of parallel scienti�c applications. Performance Evaluation: AnInternational Journal, 33(1):27{44, June 1998.[51] Evgenia Smirni, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed.I/O requirements of scienti�c applications: An evolutionary view. In Pro-ceedings of the Fifth IEEE International Symposium on High PerformanceDistributed Computing, pages 49{59. IEEE Computer Society Press, 1996.[52] Hal Stern. Managing NFS and NIS. O'Reilly & Associates, Inc., 1991.[53] Rajeev Thakur, Rajesh Bordawekar, Alok Choudhary, Ravi Ponnusamy,and Tarvinder Singh. PASSION runtime library for parallel I/O. In Pro-ceedings of the Scalable Parallel Libraries Conference, pages 119{128. IEEEComputer Society Press, October 1994.[54] Rajeev Thakur and Alok Choudhary. An extended two-phase method foraccessing sections of out-of-core arrays. Scienti�c Programming, 5(4):301{317, Winter 1996.[55] Rajeev Thakur, Alok Choudhary, Rajesh Bordawekar, Sachin More, andSivaramakrishna Kuditipudi. Passion: Optimized I/O for parallel applica-tions. Computer, 29(6):70{78, June 1996.[56] Rajeev Thakur, William Gropp, and Ewing Lusk. An experimental evalu-ation of the parallel I/O systems of the IBM SP and Intel Paragon using aproduction application. In Proceedings of the 3rd International Conferenceof the Austrian Center for Parallel Computation (ACPC) with Special Em-phasis on Parallel Databases and Parallel I/O, pages 24{35. Lecture Notesin Computer Science 1127. Springer-Verlag, September 1996.

BIBLIOGRAPHY 36[57] Rajeev Thakur, William Gropp, and Ewing Lusk. A case for using MPI'sderived datatypes to improve I/O performance. In Proceedings of SC98:High Performance Networking and Computing, November 1998.[58] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and collec-tive I/O in ROMIO. In Proceedings of the 7th Symposium on the Frontiersof Massively Parallel Computation, pages 182{189. IEEE Computer SocietyPress, February 1999.[59] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO portably and with high performance. In Proceedings of the 6th Workshopon I/O in Parallel and Distributed Systems, pages 23{32. ACM Press, May1999.[60] The global �le system. http://gfs.lcse.umn.edu.[61] The hard disk drive guide. http://www.storagereview.com/guide.[62] The MPI-IO Committee. MPI-IO: A parallel �le I/O interface for MPI,version 0.5.[63] The NCSA HDF home page. http://hdf.ncsa.uiuc.edu.[64] The parallel virtual �le system. http://www.parl.clemson.edu/pvfs.[65] Sivan Toledo and Fred G. Gustavson. The design and implementation ofSOLAR, a portable library for scalable out-of-core linear algebra computa-tions. In Proceedings of Fourth Workshop on Input/Output in Parallel andDistributed Systems, pages 28{40. ACM Press, May 1996.[66] Len Wisniewski, Brad Smislo�, and Nils Nieuwejaar. Sun MPI I/O: E�-cient I/O for parallel applications. In Proceedings of SC99: High Perfor-mance Networking and Computing, November 1999.

