Chapter 13
Parallel 1/0

Rajeev Thakur & William Gropp

Many parallel applications need to access large amounts of data. In such
applications, the I/O performance can play a significant role in the overall time
to completion. Although I/0 is always much slower than computation, it is still
possible to achieve good I/O performance in parallel applications by using a
combination of sufficient amount of high-speed 1/O hardware, appropriate file-
system software, appropriate API for 1/O, a high-performance implementation
of the API, and by using that API the right way. We explain these points in
further detail in this chapter.

We begin by explaining what parallel I/O means, how it arises, and why it
is a problem. We give an overview of the infrastructure that currently exists for
parallel /O on modern parallel systems, including /O architecture, parallel file
systems, high-level libraries, and application programming interfaces (APIs) for
parallel I/O. We explain how the API plays a key role in enabling (or preventing)
high performance and how the lack of an appropriate standard API for parallel
I/0 has hindered performance and portability.

Much of the research in parallel I/O over the last several years has con-
tributed to the definition of the new standard API for parallel I/O that is part
of the MPI-2 standard [31]. We discuss the evolution and emergence of this API,
often just called MPI-10, and introduce it with a simple example program. We
also describe some optimizations enabled by MPI-IO that are critical for high
performance. Finally, we provide guidelines on what users can do to achieve
high I/0 performance in their applications.

Our focus is mainly on the type of parallel I/O commonly seen in high-end
scientific computing and not on the I/O that arises in databases, transaction
processing, and other commercial applications. I/O in parallel scientific com-
puting often involves large data objects, such as a single large array, distributed
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across hundreds of processors. In contrast, while the amount of data stored
and accessed in a commercial database may be larger than the data stored as a
result of a scientific simulation, each record in a commercial database is usually
very small.

13.1 Introduction

Any application, sequential or parallel, may need to access data stored in files
for many reasons, such as reading the initial input, writing the results, check-
pointing for later restart, data analysis, and visualization [18]. In this chapter
we are concerned mainly with parallel applications consisting of multiple pro-
cesses (or threads!) that need to access data stored in files. We define parallel
I/O as concurrent requests from multiple processes of a parallel program for
data stored in files. Accordingly, at least two scenarios are possible:

e Each process accesses a separate file; that is, no file is shared among
processes, or

e All processes access a single, shared file.

While the former scenario can be considered as parallel I/O in some sense be-
cause it represents I/O performed by a parallel program, it is actually just
sequential (uniprocess) I/0O performed independently by a number of processes.
The latter case, where all processes access a shared file, is true parallel I/O and
represents what the term “parallel 1I/O” means as used in this chapter. In other
words, the I/O is parallel from the application’s perspective.

In recent years, although great advances have been made in the CPU and
communication performance of parallel machines, similar advances have not
been made in their I/O performance. The densities and capacities of disks have
increased significantly, but improvement in performance of individual disks has
not followed the same pace. Although parallel machines with peak performance
of 1 Tflops/sec or more are available, applications running on parallel machines
usually achieve I/O bandwidths of at most a few hundred Mbytes/sec. In fact,
many applications achieve less than 10 Mbytes/sec [12].

As parallel computers get bigger and faster, scientists are increasingly us-
ing them to solve problems that not only need a large amount of computing
power but also need to access large amounts of data. (See [14, 26, 38] for a
list of many such applications.) Since I/0 is slow, the I/O speed, and not the
CPU or communication speed, is often the bottleneck in such applications. For
parallel computers to be truly usable for solving real, large-scale problems, the
I/0O performance must be scalable and balanced with respect to the CPU and
communication performance of the system.

The rest of this chapter is organized as follows. In Section 13.2 we describe
the existing infrastructure for parallel 1/O, including architecture, file systems,

I The discussion in this chapter refers to multiple processes rather than threads because
our focus is on the MPI-IO model for parallel I/O. Nonetheless, the issues we discuss apply
equally well to a parallel-programming model based on multiple threads within a process.
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Figure 13.1: Schematic of a typical disk

and high-level libraries. We also discuss the issue of application programming
interfaces (APIs) for parallel I/O and explain how the lack of an appropriate
standard API has hindered performance and portability in the past. In Sec-
tion 13.3 we introduce the new MPI-IO standard API, which has the potential to
solve the API problem and deliver performance and portability. In Section 13.4
we describe some optimizations that are critical to parallel /O performance.
In Section 13.5 we provide some guidelines on how users can achieve high I/0
performance in their applications. We summarize the chapter in Section 13.6.

13.2 Parallel 1/0 Infrastructure

In this section we give a brief overview of the infrastructure for parallel I/O that
currently exists on parallel machines. We begin by reviewing basic, nonparallel

1/0.
13.2.1 Basic Disk Architecture

The most common secondary-storage device is a disk. A disk consists of one or
more platters coated with a magnetic medium. The disk spins at a relatively
high rate; 5,000-10,000 RPM (revolutions per minute) are common. A platter
is divided into a number of concentric tracks, which are themselves divided into
smaller arcs called sectors. A sector is the smallest addressable unit on the disk,
and a typical sector size is 512 bytes [61]. Data is read by one or more heads
that can move across the platters. A schematic of a disk is shown in Figure 13.1.

Data from a disk is typically accessed in multiples of sectors stored contigu-
ously, sometimes called a cluster. On commodity disks, a minimum of 32 sectors
(16 Kbytes) or more are accessed in a single operation. As a result, reading or
writing a single byte of data from or to a disk actually causes thousands of
bytes to be moved. In other words, there can be a huge difference between the
amount of data logically accessed by an application and the amount of data
physically moved, as demonstrated in [49]. In addition, a substantial latency is
introduced by the need to wait for the right sector to move under a read or write
head—even at 10,000 RPM, it takes 6 milliseconds for the disk to complete one
revolution. To avoid accessing the disk for each 1/O request, an operating sys-
tem typically maintains a cache in main memory, called the file-system cache,
that contains parts of the disk that have been recently accessed. Data written
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Figure 13.2: General parallel 1/O architecture of distributed-memory systems

to the cache is periodically flushed to the disk by an operating-system daemon.
Despite the cache, it is inefficient to read or write small amounts of data from
an application. Applications that need high I/O performance must ensure that
all /O operations access large amounts of data.

Further details about disk architecture can be found in [7, 61].

13.2.2 Parallel 1/0 Architecture

Let us now consider the I/O architectures of parallel machines. We first consider
distributed-memory machines, examples of which include the IBM SP, ASCI
Red (Intel Tflops), Cray T3E, clusters of workstations, and older machines such
as the Thinking Machines CM-5 and Intel Paragon and iPSC hypercubes. Fig-
ure 13.2 shows the general I/O architecture of a distributed-memory machine.
In addition to the compute nodes, the machine has a set of I/O nodes. The
I/0O nodes are connected to each other and to the compute nodes usually by
the same interconnection network that connects the compute nodes. Each 1/0
node is connected to one or more storage devices, each of which could be either
an individual disk or an array of disks, such as a RAID (Redundant Array of
Inexpensive Disks) [7, 40]. The I/O nodes function as servers for the parallel
file system. The parallel file system typically stripes files across the I/O nodes
and disks by dividing the file into a number of smaller units called striping units
and assigning the striping units to disks in a round-robin manner. File strip-
ing provides higher bandwidth and enables multiple compute nodes to access
distinct portions of a file concurrently.

Usually, but not always, the I/O nodes are dedicated for I/O and no compute
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jobs are run on them. On many machines, each of the compute nodes also has
a local disk of its own, which is usually not directly accessible from other nodes.
These disks are not part of the common “parallel /O system” but are used to
store scratch files local to each process and other files used by the operating
system.

This kind of architecture allows concurrent requests from multiple compute
nodes to be serviced simultaneously. Parallelism comes about in multiple ways:
parallel data paths from the compute nodes to the I/O nodes, multiple I/O
nodes and file-system servers, and multiple storage devices (disks). If each
storage device is a disk array, it provides even more parallelism.

Shared-memory machines typically do not have this kind of 1/O architecture;
they do not have separate 1/O nodes. Examples of such machines are the SGI
Origin2000, Cray T90, HP Exemplar, and NEC SX-4. On these machines,
the operating system schedules the file-system server on the compute nodes.
Nonetheless, these machines can be configured with multiple disks, and the file
system can stripe files across the disks. The disks are connected to the machine
via SCSI or Fibre Channel connections, just as they are in distributed memory
machines.

For further information on parallel I/O architecture we refer readers to the
excellent surveys in [15] and [27].

A relatively new area of research is that of network-attached storage devices
(NASD) [19]. In NASD, storage devices are not directly connected to their host
systems via a specialized I/O bus, but instead communicate with their host
systems through a high-performance network such as Fibre Channel [16]. This
approach has the potential to improve performance and scalability by providing
direct data transfer between client and storage and eliminating the server, which
can be a bottleneck.

13.2.3 File Systems

A number of commercial and research file systems have been developed over the
last few years to meet the needs of parallel I/O. We briefly describe some of
them below and provide pointers to additional information.

One of the first commercial parallel file systems was the Intel Concurrent
File System (CFS) for the Intel iPSC hypercubes. Tt had a Unix-like APT with
the addition of various file-pointer modes [42]. CFS evolved into the Parallel
File System (PFS) on the Intel Paragon, but retained the same API. The CM-
5, nCUBE, and Meiko CS-2 also had their own parallel file systems [15]. A
different API was introduced by the Vesta file system, developed at the IBM
Watson Research Center [10]. Vesta provided the initial parallel file system
for the IBM SP. The unique feature of Vesta was that it supported logical file
views and noncontiguous file accesses—a departure from the traditional Unix
API. Vesta evolved into an IBM product called PIOFS, which remained the
parallel file system on the SP until recently. The current parallel file system
on the IBM SP is called GPFS [1], which, interestingly, is not backward com-
patible with PIOFS. It does not support PIOFS file views or noncontiguous
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file accesses; instead, it supports the POSIX I/0 interface [24]. However, for
noncontiguous accesses, users can use the MPI-1O interface on top of GPFS by
using either IBM’s implementation of MPI-IO or other implementations, such
as ROMIO [45]. Unlike other parallel file systems, GPFS follows a shared-disk
model rather than a client-server model [1]. Shared-memory multiprocessors
also have high-performance file systems that allow concurrent access to files.
Examples of such file systems are XFS on the SGI Origin2000, HFS on the HP
Exemplar, and SFS on the NEC SX-4. Sun has developed a parallel file system,
Sun PFS, for clusters of Sun SMPs [66].

A number of parallel file systems have also been developed by various re-
search groups. The Galley parallel file system developed at Dartmouth Col-
lege supports a three-dimensional file structure consisting of files, subfiles, and
forks [35]. PPFS is a parallel file system developed at the University of Tllinois
for clusters of workstations [23]. The developers use it as a testbed for research
on various aspects of file-system design, such as caching/prefetching policies and
automatic/adaptive policy selection [29, 30]. PVFS is a parallel file system for
Linux clusters developed at Clemson University [64]. PVFS stripes files across
the local disks of machines in a Linux cluster and provides the look-and-feel
of a single Unix file system. The regular Unix commands, such as rm, 1s, and
mv, can be used on PVFS files, and the files can be accessed from a (parallel)
program by using the regular Unix I/O functions. PVFS is also packaged in a
way that makes it very easy to download, install, and use.

Distributed /networked file systems are a rich area of research. Examples of
such file systems are xFS [2], AFS/Coda [8], and GFS [60]. We do not discuss
them in this chapter; interested readers can find further information in the
papers cited above.

13.2.4 The API Problem

Most commercial parallel file systems have evolved out of uniprocessor file sys-
tems, and they retain the same API, namely, the Unix I/O API. The Unix API,
however, is not an appropriate API for parallel 1/O for two main reasons: it
does not allow noncontiguous file accesses and it does not support collective
I/O. We explain these reasons below.

The Unix read/write functions allow users to access only a single contigu-
ous piece of data at a time.? While such an API may be sufficient for the
needs of uniprocess programs, it is not sufficient for the kinds of access pat-
terns common in parallel programs. Many studies of the I/O access patterns
in parallel programs have shown that each process of a parallel program may
need to access several relatively small, noncontiguous pieces of data from a
file [3, 12, 36, 50, 51, 56]. In addition, many/all processes may need to access
the file at about the same time, and, although the accesses of each process may

2Unix does have functions readv and writev, but they allow noncontiguity only in memory
and not in the file. POSIX has a function lio_listio that allows users to specify a list of
requests at a time, but each request is treated internally as a separate asynchronous I/O
request, the requests can be a mixture of reads and writes, and the interface is not collective.
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be small and noncontiguous, the accesses of different processes may be inter-
leaved in the file and together may span large contiguous chunks. Such access
patterns occur because of the manner in which data stored in a shared file 1s dis-
tributed among processes. With the Unix I/O interface, the programmer has no
means of conveying this “big picture” of the access pattern to the I/O system.
Each process must seek to a particular location in the file, read or write a small
contiguous piece, then seek to the start of the next contiguous piece, read or
write that piece, and so on. The result is that each process makes hundreds or
thousands of requests for small amounts of data. Numerous small I/O requests
arriving in any order from multiple processes results in very poor performance,
not just because I/O latency is high but also because the file-system cache gets
poorly utilized.

The example in Figure 13.3 illustrates this point. The figure shows an ac-
cess pattern commonly found in parallel applications, namely, distributed-array
access. A two-dimensional array is distributed among 16 processes in a (block,
block) fashion. The array is stored in a file corresponding to the global array
in row-major order, and each process needs to read its local array from the file.
The data distribution among processes and the array storage order in the file are
such that the file contains the first row of the local array of process 0, followed
by the first row of the local array of process 1, the first row of the local array of
process 2, the first row of the local array of process 3, then the second row of the
local array of process 0, the second row of the local array of process 1, and so
on. In other words, the local array of each process is not located contiguously
in the file. To read its local array with a Unix-like API, each process must
seek to the appropriate location in the file, read one row, seek to the next row,
read that row, and so on. Each process must make as many read requests as
the number of rows in its local array. If the array is large, the file system may
receive thousands of read requests.

Instead, if the I/O API allows the user to convey the entire access infor-
mation of each process as well as the fact that all processes need to access the
file simultaneously, the implementation (of the API) can read the entire file
contiguously and simply send the right pieces of data to the right processes.
This optimization, known as collective 1/O, can improve performance signif-
icantly [13, 28, 48, 58]. The I/O API thus plays a critical role in enabling
the user to express 1/O operations conveniently and also in conveying sufficient
information about access patterns to the I/O system so that the system can
perform I/O efficiently.

Another problem with commercial parallel-file-system APIs is the lack of
portability. Although parallel file systems have Unix-like APIs, many vendors
support variations of the Unix (or POSIX [24]) API, and, consequently, pro-
grams written with these APIs are not portable.

13.2.5 1/0 Libraries

A number of I/O libraries have also been developed over the last several years,
mostly as part of research projects. These libraries either provide a better API
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Figure 13.3: Common access pattern in parallel applications: distributed-array
access. The numbers on the line indicate the process that needs a particular
portion of the file.

than Unix I/O and perform I/O optimizations enabled by the API or provide
some convenience features useful to applications that file systems do not provide.
We list some of these libraries below.

The PASSION library, developed at Syracuse University, supports efficient
to arrays and sections of arrays stored in files [55]. Tt uses data sieving, two-
phase collective T/O, and (recently) compression as the main optimizations.
The Panda library, developed at the University of Illinois, also supports high-
performance array access [48]. Tt uses server-directed collective I/O and chun-
ked storage as the main optimizations. SOLAR is a library for out-of-core
linear-algebra operations, developed at IBM Watson Research Center [65]. The
ChemlO library, developed at Pacific Northwest National Laboratory, provides
I/0 support for computational-chemistry applications [34].

HDF [63], netCDF [33], and DMF [47] are libraries designed to provide even
higher level of /O support to applications. For example, they can directly
read/write meshes and grids. Such libraries also try to hide I/O parallelism
from the application, often to the detriment of performance. Nonetheless, these
libraries are very popular among application developers because they provide a
level of abstraction that application developers need.

Because all the libraries mentioned above support their own API, usually
much different from the Unix I/O API, they do not solve the API portability
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problem.

13.2.6 Language-Based Parallel 1/0

Some efforts have been made to support parallel I/O directly in the parallel
programming language. For example, the Fortran D and Fortran 90D research
projects explored the use of language-based parallel 1/O with a combination
of compiler directives and runtime library calls [4, 5, 39]. CM Fortran from
Thinking Machines Corp. also supported reading and writing of parallel arrays.
Although parallel I/O was discussed during the deliberations of the High Per-
formance Fortran (HPF) Forum, it does not appear in the final HPF standard.
In all, language-based parallel /O remains mainly a research effort.

13.2.7 Need for a Standard 1/0 API

Although great strides were made in parallel I/O research in the early 1990s,
there remained a critical need for a single, standard, language-neutral API de-
signed specifically for parallel I/O performance and portability. Fortunately,
such an API now exists. It is the I/O interface defined as part of the MPI-2
standard, often referred to as MPI-1O [21, 31].

13.3 Overview of MPI-10

In this section we give a brief overview of MPI-10, describe its main features,
and elaborate on one important feature—the ability to specify noncontiguous
I/0 requests by using MPT’s derived datatypes.

13.3.1 Background

MPI-IO originated in an effort begun in 1994 at IBM Watson Research Center
to investigate the impact of the (then) new MPI message-passing standard on
parallel I/O. A group at IBM wrote an important paper [44] that explores the
analogy between MPI message passing and I/0O. Roughly speaking, one can
consider reads and writes to a file system as receives and sends of messages.
This paper was the starting point of MPI-IO in that it was the first attempt
to exploit this analogy by applying the (then relatively new) MPI concepts for
message passing to the realm of parallel T/O.

The idea of using message-passing concepts in an I/O library appeared suc-
cessful, and the effort was expanded into a collaboration with parallel 1/O re-
searchers from NASA Ames Research Center. The resulting specification ap-
peared in [9]. At this point a large email discussion group was formed, with
participation from a wide variety of institutions. This group, calling itself the
MPI-TO Committee, pushed the idea further in a series of proposals, culminating
in [62].

During this time, the MPI Forum had resumed meeting to address a number
of topics that had been deliberately left out of the original MPI Standard,
including parallel I/O. The MPI Forum initially recognized that both the MPI-
IO Committee and the Scalable I/O Initiative [46] represented efforts to develop
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Figure 13.4: Each process needs to read a chunk of data from a common file

a standard parallel T/O interface and therefore decided not to address I/0 in its
deliberations. In the long run, however, the three threads of development—by
the MPI-IO Committee, the Scalable 1/O Initiative, and the MPI Forum—
merged because of a number of considerations. The result was that, from the
summer of 1996, the MPI-IO design activities took place in the context of the
MPI Forum meetings. The MPI Forum used the latest version of the existing
MPI-IO specification [62] as a starting point for the I/O chapter in MPI-2. The
I/O chapter evolved over many meetings of the Forum and was released in its
final form along with the rest of MPI-2 in July 1997 [31]. MPI-IO now refers to
this I/O chapter in MPI-2.

13.3.2 Simple MPI-10 Example

To get a flavor of what MPI-1O looks like, let us consider a simple example: a
parallel program in which processes need to read data from a common file. Let
us assume that there are n processes, each needing to read (1/n)th of the file
as shown in Figure 13.4. Figure 13.5 shows one way of writing such a program
with MPI-TO. Tt has the usual functions one would expect for I/O: an open, a
seek, a read, and a close. Let us look at each of the functions closely.

MPI File_open is the function for opening a file. The first argument to this
function is a communicator that indicates the group of processes that need to
access the file and that are calling this function. This communicator also repre-
sents the group of processes that will participate in any collective I/O operations
on the open file. In this simple example, however, we don’t use collective I/O
functions. We pass MPI_COMM _WORLD as the communicator, meaning that all pro-
cesses need to open and thereafter access the file. The file name is passed as
the second argument to MPI _File open. The third argument to MPI_File_open
specifies the mode of access; we use MPI_MODE_RDONLY because this program only
reads from the file. The fourth argument, called the info argument, allows the
user to pass hints to the implementation. In this example, we don’t pass any
hints; instead, we pass a null info argument, MPI_INFO NULL. MPI File_open
returns a file handle in the last argument. This file handle is to be used for
future operations on the open file.

After opening the file, each process moves its local file pointer, called an
individual file pointer, to the location in the file from which the process needs
to read data. We use the function MPI File_seek for this purpose. The first
argument to MPI File seek is the file handle returned by MPI File_open. The
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/* read from a common file using individual file pointers */
#include "mpi.h"

#define FILESIZE (1024 * 1024)

int main(int argc, char **argv)

{
int *buf, rank, nprocs, nints, bufsize;
MPI_File fh;
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;
buf = (int *) malloc(bufsize);
nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, '"/pfs/datafile",

MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);
MPI_File_seek(fh, rank*bufsize, MPI_SEEK_SET);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh);

free(buf);
MPI_Finalize();
return 0O;

Figure 13.5: Simple MPI-IO program to perform the I/O needed in Figure 13.4

second argument specifies the offset in the file to seek to, and the third argument
MPI _SEEK_SET specifies that the offset must be calculated from the head of the
file. We specify the offset to MPI File seek as a product of the rank of the
process and the amount of data to be read by each process

We use the function MPI File read for reading data. On each process,
this function reads data from the current location of the process’s individual
file pointer for the open file. The first argument to MPI_File read is the file
handle. The second argument is the address of the buffer in memory into which
data must be read. The next two arguments specify the amount of data to
be read. Since the data i1s of type integer, we specify it as a count of the
number of integers to be read. The final argument is a status argument, which
is the same as the status argument in MPI communication functions, such as
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MPI Recv. One can determine the amount of data actually read by using the
functions MPI_Get _count or MPI_Get_elements on the status object returned by
MPI File_read, but we don’t bother to do so in this example. MPI File read
increments the individual file pointer on each process by the amount of data read
by that process. Finally, we close the file using the function MPI File close.
The five functions, MPI File open, MPI File seek, MPI File read, MPI File write ]

and MPI File close, are actually sufficient to write any I/O program. The
other MPI-T1O functions are for performance, portability, and convenience. Al-
though these five functions® can be used as a quick start to using MPI-IO and
for easily porting Unix I/O programs to MPI-IO, users must not stop here. For
real benefits with using MPI-1O, users must use its special features, such as
support for noncontiguous accesses and collective I/O. This issue is discussed
further in Section 13.5 and in [21].

13.3.3 Main Features of MPI-10

MPI-TO is a rich interface with many features specifically intended for portable,
high-performance parallel I/O. Tt has bindings in three languages: C, Fortran,
and C++.

MPI-TO supports three kinds of basic data-access functions: using an explicit
offset, individual file pointer, and shared file pointer. The explicit-offset func-
tions take as argument the offset in the file from which the read/write should
begin. The individual-file-pointer functions read/write data from the current
location of a file pointer that is local to each process. The shared-file-pointer
functions read/write data from the location specified by a common file pointer
shared by the group of processes that together opened the file. In all these func-
tions, users can specify a noncontiguous data layout in memory and file. Both
blocking and nonblocking versions of these functions exist. MPI-IO also has
collective versions of these functions, which must be called by all processes that
together opened the file. The collective functions enable an implementation to
perform collective I/O. A restricted form of nonblocking collective 1/O, called
split collective T/0O, is supported.

A unique feature of MPI-IO is that it supports multiple data-storage repre-
sentations: native, internal, external32, and also user-defined representa-
tions. native means that data is stored in the file as it is in memory; no data
conversion 1s performed. internal is an implementation-defined data represen-
tation that may provide some (implementation-defined) degree of file portability.
external32 is a specific, portable data representation defined in MPI-10. A file
written in external32 format on one machine is guaranteed to be readable on
any machine with any MPI-IO implementation. MPI-1O also includes a mecha-
nism for users to define a new data representation by providing data-conversion
functions, which MPI-1O uses to convert data from file format to memory format

3The reader familiar with threads will note that the seek operation is not thread-safe: it
effectively sets a global variable (the position in the file) that another thread could change be-
fore the subsequent read or write operation. MPI-10 has thread-safe variants of MPI File read
and MPI File write, called MPI File read_at and MPI File write_at, that combine the seek
and read/write operation.
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and vice versa.

MPI-TO provides a mechanism, called info, that enables users to pass hints
to the implementation in a portable and extensible manner. Examples of hints
include parameters for file striping, prefetching/caching information, and access-
pattern information. Hints do not affect the semantics of a program, but they
may enable the MPI-IO implementation or underlying file system to improve
performance or minimize the use of system resources [6, 41].

MPI-TO also has a set of rigorously defined consistency and atomicity se-
mantics that specify the results of concurrent file accesses.

For details of all these features, we refer readers to [20, 21, 31]. We elaborate
further on only one feature—the ability to access noncontiguous data with a
single /O function by using MPI’s derived datatypes—because it is critical for
high performance in parallel applications. We emphasize this point because
achieving high performance requires both a proper API and proper use of that
API by the programmer. Other I/O efforts have also addressed the issue of
accessing noncontiguous data; one example is the low-level APT [11] developed
as part of the Scalable T/O Initiative [46]. MPI-IO, however, is the only widely
deployed API that supports noncontiguous access.

13.3.4 Noncontiguous Accesses in MPI-10

In MPI, the amount of data a function sends or receives is specified in terms of in-
stances of a datatype [32]. Datatypes in MPI are of two kinds: basic and derived.
Basic datatypes are those that correspond to the basic datatypes in the host
programming language—integers, floating-point numbers, and so forth. In addi-
tion, MPI provides datatype-constructor functions to create derived datatypes
consisting of multiple basic datatypes located either contiguously or noncontigu-
ously. The datatype created by a datatype constructor can be used as an input
datatype to another datatype constructor. Any noncontiguous data layout can
therefore be represented in terms of a derived datatype.

MPI-TO uses MPI datatypes for two purposes: to describe the data layout
in the user’s buffer in memory and to define the data layout in the file. The
data layout in memory is specified by the datatype argument in each read/write
function in MPI-1O. The data layout in the file is defined by the file view. When
the file is first opened, the default file view is the entire file; that is, the entire
file is visible to the process, and data will be read/written contiguously starting
from the location specified by the read/write function. A process can change
its file view at any time by using the function MPI File_set _view, which takes
as argument an MPI datatype, called the filetype. From then on, data will be
read /written only to those parts of the file specified by the filetype; any “holes”
will be skipped. The file view and the data layout in memory can be defined by
using any MPI datatype; therefore, any general, noncontiguous access pattern
can be compactly represented.
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13.3.5 MPI-10 Implementations

Several implementations of MPI-10 are available, including portable and vendor-
specific implementations. ROMIO is a freely available, portable implementation
that we have developed at Argonne [45, 59]. Tt runs on most parallel comput-
ers and networks of workstations and uses the native parallel/high-performance
file systems on each machine. It is designed to be used with multiple MPI-1
implementations. Another freely available, portable MPI-IO implementation is
PMPIO from NASA Ames Research Center [17, 43]. A group at Lawrence Liver-
more National Laboratory has implemented MPI-IO on the HPSS mass-storage
system [25]. Most vendors either already have an MPI-IO implementation or
are actively developing one. SGI and HP have included ROMIO into their MPI
product. Sun [66] and Fujitsu have their own (complete) MPI-IO implementa-
tions. IBM, Compaq (DEC), NEC, and Hitachi are in various stages of MPI-1O
development.

13.4 Parallel /O Optimizations

In this section we describe some key optimizations in parallel I/O that are crit-
ical for high performance. These optimizations include data sieving, collective
I/0, and hints and adaptive file-system policies. With the advent of MPI-TO,
these optimizations are now supported in the API in a standard, portable way.
This in turn enables a library or file system to actually perform these optimiza-
tions.

13.4.1 Data Sieving

As mentioned above, in many parallel applications each process may need to
access small, noncontiguous pieces of data. Since I/O latency is very high,
accessing each contiguous piece separately is very expensive: it involves too
many system calls for small amounts of data. Instead, if the user conveys
the entire noncontiguous access pattern within a single read or write function,
the implementation can perform an optimization called data sieving and read
or write data with much higher performance. Data sieving was first used in
PASSION in the context of accessing sections of out-of-core arrays [53, 55].
We use a very general implementation of data sieving (for any general access
pattern) in our MPI-IO implementation, ROMIO. We explain data sieving in
the context of its implementation in ROMIO [58].

To reduce the effect of high I/O latency, it is critical to make as few requests
to the file system as possible. Data sieving is a technique that enables an
implementation to make a few large, contiguous requests to the file system even
if the user’s request consists of several small, noncontiguous accesses. Figure 13.6
illustrates the basic idea of data sieving. Assume that the user has made a
single read request for five noncontiguous pieces of data. Instead of reading
each noncontiguous piece separately, ROMIO reads a single contiguous chunk
of data starting from the first requested byte up to the last requested byte into
a temporary buffer in memory. It then extracts the requested portions from



CHAPTER 13. PARALLEL 1/0 15

user’s request for noncontiguous
. datafromafile

v v read a contiguous chunk
= . T L R < into memory

"\ v v copy requested portions
into user’s buffer

Figure 13.6: Data sieving

the temporary buffer and places them in the user’s buffer. The user’s buffer
happens to be contiguous in this example, but it could well be noncontiguous.

A potential problem with this simple algorithm is 1ts memory requirement.
The temporary buffer into which data is first read must be as large as the
extent of the user’s request, where extent is defined as the total number of bytes
between the first and last byte requested (including holes). The extent can
potentially be very large—much larger than the amount of memory available for
the temporary buffer—because the holes (unwanted data) between the requested
data segments could be very large. The basic algorithm, therefore, must be
modified to make its memory requirement independent of the extent of the
user’s request.

ROMIO uses a user-controllable parameter that defines the maximum amountlil
of contiguous data that a process can read at a time during data sieving. This
value also represents the maximum size of the temporary buffer. The user can
change this size at run time via MPI-IO’s hints mechanism. If the extent of
the user’s request is larger than the value of this parameter, ROMIO performs
data sieving in parts, reading only as much data at a time as defined by the
parameter.

The advantage of data sieving is that data is always accessed in large chunks,
although at the cost of reading more data than needed. For many common access
patterns, the holes between useful data are not unduly large, and the advantage
of accessing large chunks far outweighs the cost of reading extra data. In some
access patterns, however, the holes are so large that the cost of reading the extra
data outweighs the cost of accessing large chunks. An “intelligent” data-sieving
algorithm can handle such cases as well. The algorithm can analyze the user’s
request and decide whether to perform data sieving or access each contiguous
data segment separately. We plan to add this feature to ROMIO.

Data sieving can similarly be used for writing data. A read-modify-write
must be performed, however, to avoid destroying the data already present in the
holes between contiguous data segments. The portion of the file being accessed
must also be locked during the read-modify-write to prevent concurrent updates
by other processes. The size of the write buffer can also be changed by the user
via hints.
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One could argue that most file systems perform data sieving anyway because
they perform caching. That is, even if the user makes many small I/O requests,
the file system always reads multiples of disk blocks and may also perform a
read-ahead. The user’s requests, therefore, may be satisfied out of the file-
system cache. Our experience, however, has been that the cost of making many
system calls, each for small amounts of data, is extremely high, despite the
caching performed by the file system. In most cases, it is more efficient to make
a few system calls for large amounts of data and extract the needed data.

13.4.2 Collective I/O

In many cases, the data to be read or written represents a single object, dis-
tributed across many processors. An exampleis a single array, distributed across
all processes in a parallel application. As we have seen, when this array 1s writ-
ten to a file, each process must write many relatively small segments. Yet once
the data is in the file, the array is stored in a single, contiguous block in the
file. How can we exploit the fact that the entire data to be written fills a large,
contiguous block in the file?

If the entire noncontiguous access information of all processes is known, an
implementation can optimize the access even further. Instead of reading large
chunks and discarding the unwanted data as in data sieving, the unwanted data
can be communicated to other processes that need it. Such optimization is
broadly referred to as collective I/0, and it has been shown to improve perfor-
mance significantly [13, 28, 48 58, 66].

Collective I/O can be performed in different ways and has been studied
by many researchers in recent years. It can be done at the disk level (disk-
directed T/0 [28]), at the server level (server-directed 1/0 [48]), or at the client
level (two-phase T/O [13] or collective buffering [37]). Each method has its
advantages and disadvantages. Since ROMIO is a portable, user-level library
with no separate I/O servers, ROMIO performs collective I/O at the client level
using a generalized version of two-phase I/O. We explain the basic concept of
two-phase 1/0 below; details of ROMIO’s implementation can be found in [58].

Two-Phase 1/0

Two-phase I/O was first proposed in [13] in the context of accessing distributed
arrays from files. The basic idea in two-phase I/O is to avoid making lots of
small T/O requests by splitting the access into two phases: an I/O phase and a
communication phase. Let us consider the example of reading a (block,block)
distributed array from a file using two-phase I/0, illustrated in Figure 13.7. In
the first phase of two-phase 1/0, all processes access data assuming a distribu-
tion that results in each process making a single, large, contiguous access. In
this example, such a distribution is a row-block or (block,*) distribution. In
the second phase, processes redistribute data among themselves to the desired
distribution. The advantage of this method is that by making all file accesses
large and contiguous, the I/O time is reduced significantly. The added cost
of interprocess communication for redistribution is (almost always) small com-
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Figure 13.7: Reading a distributed array by using two-phase 1/0

pared with the savings in I/O time. The overall performance, therefore, is close
to what can be obtained by making large I/O requests in parallel.

The basic two-phase method was extended in [54] to access sections of out-
of-core arrays. An even more general version of two-phase 1/0 is implemented
in ROMIO [58]. It supports any access pattern, and the user can also control
via hints the amount of temporary memory ROMIO uses as well as the number
of processes that actually perform I/O in the I/O phase.

13.4.3 Hints and Adaptive File-System Policies

Parallel applications exhibit such a wide variation in access patterns that any
single file-system policy (regarding file-striping parameters, caching/prefetching,
etc.) is unlikely to perform well for all applications. Two solutions exist for
this problem: either the user can inform the file system (via hints) about the
application’s access pattern, the desired striping parameters; or the desired
caching/prefetching policies, or the file system can be designed to automatically
detect and adapt its policies to the access pattern of the application. Various re-
search efforts have demonstrated the benefits of such optimization [6, 29, 30, 41].

As mentioned above, hints can also be used to vary the sizes of temporary
buffers used internally by the implementation for various optimizations. Choos-
ing the right buffer size can improve performance considerably, as demonstrated
in Section 13.5.2 and in [66].

The hints mechanism in MPI-IO also allows users to specify machine-specific
options and optimizations in a portable way. That is, the same program can be
run everywhere, and the implementation will simply ignore the hints that are
not applicable to the machine on which the program is being run. An example of
the use of machine-specific hints are the hints ROMIO accepts for using “direct
I/0” on SGI’s XFS file system. Direct I/O is an XFS option that can be specified
via the 0 DIRECT flag to the open function. In direct I/O, the file system moves
data directly between the user’s buffer and the storage devices, bypassing the
file-system cache and thereby saving an extra copy. Another advantage is that
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in direct I/O the file system allows writes from multiple processes and threads
to a common file to proceed concurrently rather than serializing them as it
does with regular buffered 1/0. Direct 1/O, however, performs well only if the
machine has sufficient I/O hardware for high disk bandwidth. If not, regular
buffered I/O through the file-system cache performs better. ROMIO, therefore,
does not use direct I/O by default. Tt uses direct 1/O only if the user (who
knows whether the machine has high disk bandwidth) recommends it via a
hint. On the Argonne Origin2000 configured with 10 Fibre Channel controllers
and a total of 100 disks, we obtained bandwidths of around 720 Mbytes/sec
for parallel writes and 650 Mbytes/sec for parallel reads with the direct 1/O
hint specified. Without this hint, the bandwidth was only 100 Mbytes/sec for
parallel writes and 300 Mbytes/sec for parallel reads.

Direct I/O can be used only if certain restrictions regarding the memory
alignment of the user’s buffer, minimum and maximum I/O sizes, alignment of
file offset, etc., are met. ROMIO determines whether these restrictions are met
for a particular request and only then uses direct I/O; otherwise it uses regular
buffered T/O (even if the user specified the direct I/O hint). We plan to add
an optimization to ROMIO in which even though the user’s request does not
meet the restrictions, ROMIO will try to meet the restrictions by reorganizing
the data internally, at least in the case of collective I/O routines.

13.5 How Can Users Achieve High 1/O Performance?

We provide some general guidelines for achieving high 1/O performance and
some specific guidelines for achieving high performance with MPI-10.

13.5.1 General Guidelines

Following are some general guidelines for achieving high /O performance. Al-
though many of them seem obvious, the reason for poor performance is often
that one or more of these simple guidelines are not being followed.

¢ Buy Sufficient I/O0 Hardware for the Machine: Machines tend to
be purchased for high computation and communication performance but
are often underconfigured for the I/O requirements of the applications
being run on them. It is impossible to achieve good 1/O performance with
insufficient I/O hardware (for example, too few disks). Tt is difficult to
say how much I/O hardware is sufficient—it depends on the application’s
requirements, system architecture, performance of the I/O hardware, etc.
The vendor of the machine may be able to provide guidance in this regard.
Some useful guidelines on how to configure an 1/O subsystem are provided

in [15].

e Use Fast File Systems, Not NFS: On many installations of high-
performance machines, the home directories of users are NFS (Network
File System [52]) mounted so that they can be accessed directly from
other machines. This is a good convenience feature, but users must not
use the same directory for reading or writing large amounts of data from
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parallel applications, because NFS is terribly slow. They must use the
directory that corresponds to the native high-performance file system on
the machine.

e Do Not Perform I/O From One Process Only: Many parallel ap-
plications still perform I/O by having all processes send their data to
one process that gathers all the data and writes it to a file. Application
developers have chosen this approach because of historical limitations in
the T/O capabilities of many parallel systems: either parallel I/O from
multiple processes to a common file was not supported, or, if supported,
the performance was poor. On modern parallel systems, however, these
limitations no longer exist. With sufficient and appropriately configured
I/0 hardware and modern high-performance file systems, one can achieve
higher performance by having multiple processes directly access a com-
mon file. The MPI-IO interface is specifically designed to support such
accesses and to enable implementations to deliver high performance for
such accesses.

¢ Make Large Requests Wherever Possible: 1/0 performance is much
higher for large requests than for small requests. Application developers
must therefore make an attempt to write their programs in a way that
they make large I/O requests rather than lots of small requests, wherever
possible.

e Use MPI-10 and Use it the Right Way: MPI-10 offers great potential
in terms of portability and high performance. It gives implementations
an opportunity to optimize 1/0O. Therefore, we recommend that users use
MPI-TO and use it the right way. The right way is explained in more detail
below, but, in short, whenever each process needs to access noncontiguous
data and multiple processes need to perform such I/O, users must use
MPI derived datatypes, define a file view, and use a single collective 1/0O
function. They must not access each small contiguous piece separately as

they would with Unix I/0.
13.5.2 Achieving High Performance with MPI-10

Let us examine the different ways of writing an application with MPI-IO and
see how this choice affects performance.

Any application has a particular “I/O access pattern” based on its 1/O
needs. The same I/O access pattern, however, can be presented to the I/0
system in different ways, depending on which I/O functions the application
uses and how. The different ways of expressing I/O access patterns in MPI-
IO can be classified into four levels, level 0 through level 3 [57]. We explain
this classification with the help of the same example we considered in previous
sections, namely, accessing a distributed array from a file (Figure 13.3). The
principle applies to other access patterns as well.

Recall that in this example the local array of each process is not contiguous
in the file; each row of the local array is separated by rows of the local arrays of
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MPI_File_open(..., "filename", ..., &fh) MPI_File_open(MPI_COMM_WORLD, "filename", ..., &fh)
for (i=0; i<n_local_rows; i++) { for (i=0; i<n_local_rows; i++) {

MPI_File_seek(fh, ...) MPI_File_seek(fh, ...)

MPI_File_read(fh, row(i], ...) MPI_File_read_all(fh, row[i], ...)
} }
MPI_File_close(&fh) MPI_File_close(&fh)

Level O Level 1
(many independent, contiguous requests) (many collective, contiguous requests)

MPI_Type create_subarray(..., &subarray, ...) | MPI_Type create _subarray(.., &subarray, ...)

MPI_Type_commit(&subarray) MPI_Type_commit(& subarray)
MPI_File_open(..., "filename", ..., &fh) MPI_File_open(MPI_COMM_WORLD, "filename", ..., &fh)
MPI_File_set_view(fh, ..., subarray, ...) MPI_File_set_view(fh, ..., subarray, ...)
MPI_File_read(fh, local_array, ...) MPI_File_read_all(fh, local_array, ...)
MPI_File_close(&fh) MPI_File_close(&fh)
Level 2 Lev
(single independent, noncontiguous request) (single collective, noncontiguous request)

Figure 13.8: Pseudo-code that shows four ways of accessing the data in Fig-
ure 13.3 with MPI-10

other processes. Figure 13.8 shows four ways in which a user can express this
access pattern in MPI-10. In level 0, each process does Unix-style accesses—one
independent read request for each row in the local array. Level 1 is similar
to level 0 except that it uses collective I/O functions, which indicate to the
implementation that all processes that together opened the file will call this
function, each with its own access information. Independent I/O functions, on
the other hand, convey no information about what other processes will do. In
level 2, each process creates a derived datatype to describe the noncontiguous
access pattern, defines a file view, and calls independent I/O functions. Level 3
is similar to level 2 except that it uses collective I/O functions.

The four levels represent increasing amounts of data per request, as illus-
trated in Figure 13.9.* The more the amount of data per request, the greater is
the opportunity for the implementation to deliver higher performance. How
good the performance is at each level depends, of course, on how well the
implementation takes advantage of the extra access information at each level.
ROMIO, for example, performs data sieving for level-2 requests and collective
I/0 for level-3 requests. However, it cannot perform these optimizations if the
user does not express the access pattern in terms of level-2 or level-3 requests.
Users must therefore strive to express their I/O requests as level 3 rather than
level 0. Figure 13.10 shows the detailed code for creating a derived datatype,

4In this figure, levels 1 and 2 represent the same amount of data per request, but, in
general, when the number of noncontiguous accesses per process is greater than the number
of processes, level 2 represents more data than level 1.
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Figure 13.9: The four levels representing increasing amounts of data per request

defining a file view, and making a level-3 1/O request for the distributed-array
example of Figure 13.3.

If an application needs to access only large, contiguous pieces of data, level 0
is equivalent to level 2, and level 1 is equivalent to level 3. Users need not
create derived datatypes in such cases, as level-0 requests themselves will likely
perform well. Many real parallel applications, however, do not fall into this
category [3, 12, 36, 50, 51, 56].

We note that the MPI standard does not require an implementation to per-
form any of these optimizations. Nevertheless, even if an implementation does
not perform any optimization and instead translates level-3 requests into several
level-0 requests to the file system, the performance would be no worse than if
the user directly made level-0 requests. Therefore, there is no reason not to use
level-3 requests (or level-2 requests where level-3 requests are not possible).

Performance Results

We present some performance results to demonstrate how the choice of level
of request affects performance. We wrote the distributed-array access example
using level-0, level-2, and level-3 requests and ran the three versions portably on
five different parallel machines—HP Exemplar, SGI Origin2000, IBM SP, Intel
Paragon, and NEC SX-4—using ROMIO. (For this particular application, level-
1 requests do not contain sufficient information for any useful optimizations, and
ROMIO therefore internally translates level-1 requests into level-0 requests.) We
used the native file systems on each machine: HFS on the Exemplar, XFS on
the Origin2000, PIOFS on the SP, PFS on the Paragon, and SFS on the SX-4.

We note that the machines had varying amounts of I/O hardware. Some
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gsizes[0] = num_global_rowus;
gsizes[1] = num_global_cols;
distribs[0] = distribs[1] = MPI_DISTRIBUTE_BLOCK;
dargs[0] = dargs[1] = MPI_DISTRIBUTE_DFLT_DARG;
psizes[0] = psizes[1] = 4;
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Type_create_darray(16, rank, 2, gsizes, distribs, dargs,
psizes, MPI_ORDER_C, MPI_FLOAT,
&filetype);
MPI_Type_commit(&filetype);
local_array_size = num_local_rows * num_local_cols;
MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", MPI_MODE_RDONLY,
MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
MPI_INFO_NULL);
MPI_File_read_all(fh, local_array, local_array_size,
MPI_FLOAT, &status);
MPI_File_close(&fh);

Figure 13.10: Detailed code for the distributed-array example of Figure 13.3
using a level-3 request

of the differences in performance results among the machines are due to these
variations. Qur goal in this experiment was to compare the performance of
the different levels of requests on a given machine, rather than comparing the
performance of different machines.

Figures 13.11 and 13.12 show the read and write bandwidths. The per-
formance with level-0 requests was, in general, very poor because level-0 re-
quests result in too many small read /write calls. For level-2 requests—for which
ROMIO performs data sieving—the read bandwidth improved over level-0 re-
quests by a factor ranging from 2.6 on the HP Exemplar to 453 on the NEC
SX-4. Similarly, the write bandwidth improved by a factor ranging from 2.3 on
the HP Exemplar to 121 on the NEC SX-4. The performance improved con-
siderably with level-3 requests because ROMIO performs collective 1/O in this
case. The read bandwidth improved by a factor of as much as 793 over level-0
requests (NEC SX-4) and as much as 14 over level-2 requests (Intel Paragon).
Similarly, with level-3 requests, the write performance improved by a factor of
as much as 721 over level-0 requests (NEC SX-4) and as much as 40 over level-
2 requests (HP Exemplar). Tt is clearly advantageous to use level-3 requests
rather than any other kind of request.

We obtained similar results with other applications as well; see [58] for de-
tails.
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Figure 13.11: Read performance of distributed array access (array size
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Upshot Graphs

We present some graphs that illustrate the reduction in time obtained by us-
ing level-2 and level-3 requests instead of level-0 requests for writing a three-
dimensional distributed array of size 128 x 128 x 128 on 32 processors on the
Intel Paragon at Caltech. We instrumented the ROMIO source code to mea-
sure the time taken for each file-system call made by ROMIO and also for the
computation and communication required for collective I/O. The instrumented
code created trace files, which we visualized using a performance-visualization
tool called Upshot [22].

Figure 13.13 shows the Upshot plot for level-0 requests, where each process
makes a separate write function call to write each row of its local array. The
numerous small bands represent the numerous writes in the program, as a result
of which the total time taken is about 125 seconds. The large white portions
are actually lots of writes clustered together, which become visible when you
zoom in to the region using Upshot.

Figure 13.14 shows the Upshot plot for level-2 requests, for which ROMIO
performs performs data sieving. In this case it performed data sieving in blocks
of 4 Mbytes at a time. Notice that the total time has decreased to about
16 seconds compared with 125 seconds for level-0 requests. For writing with
data sieving, each process must perform a read-modify-write and also lock the
region of the file being written. Because of the need for file locking and a
buffer size of 4 Mbytes, many processes remain idle waiting to acquire locks.
Therefore, only a few write operations take place concurrently. It should be
possible to increase parallelism, however, by decreasing the size of the buffer used
for data sieving. Figure 13.15 shows the results for a buffer size of 512 Kbytes.
Since more I/O operations take place in parallel, the total time decreased to
10.5 seconds. A further reduction in buffer size to 64 Kbytes (Figure 13.16)
resulted in even greater parallelism, but the I/O time increased because of the
smaller granularity of each I/O operation. The performance of data sieving can
thus be tuned by varying the size of the buffer used for data sieving, which can
be done via the hints mechanism in MPI-10.

Figure 13.17 shows the Upshot plot for level-3 requests, for which ROMIO
performs collective 1/O. The total time decreased to about 2.75 seconds, which
means that level-3 requests were about 45 times faster than level-0 requests
and about four times faster than the best performance with level-2 requests.
The reason for the improvement is that the numerous writes of each process
were coalesced into a single write at the expense of some extra computation (to
figure out how to merge the requests) and interprocess communication. With
collective /O, the actual write time was only a small fraction of the total 1/0
time; for example, file open took longer than the write.
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Figure 13.13: Writing a 128 x 128 x 128 distributed array on the Intel Paragon
using level-0 requests (Unix-style independent writes). Elapsed time = 125 sec-
onds.
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ing level-2 requests, with the buffer size for data sieving = 512 Kbytes. Elapsed
time = 10.5 seconds.
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Figure 13.16: Writing a 128 x 128 x 128 distributed array on the Intel Paragon
using level-2 requests, with the buffer size for data sieving = 64 Kbytes. Elapsed
= 20 seconds.
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Figure 13.17: Writing a 128 x 128 x 128 distributed array on the Intel Paragon
using level-3 requests. Elapsed time = 2.75 seconds.
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13.6 Summary

I/O on parallel computers has always been slow compared with computation
and communication. As computers get larger and faster, I/O becomes even
more of a problem. In this chapter we have provided a general introduction
to the field of parallel I/O. Our emphasis has been on the practical aspects of
using parallel /O and achieving high performance. By following the guidelines
presented, we believe that users can achieve high I/0O performance in parallel
applications.
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