
High-Performance File I/O in Java: Existing Approachesand Bulk I/O ExtensionsDan Bonachea� Phillip Dickensy Rajeev ThakurzAbstractThere is a growing interest in using Java as the language for developing high-performance computingapplications. To be successful in the high-performance computing domain, however, Java must not onlybe able to provide high computational performance, but also high-performance I/O. In this paper, we �rstexamine several approaches that attempt to provide high-performance I/O in Java|many of which arenot obvious at �rst glance|and evaluate their performance on two parallel machines, the IBM SP andthe SGI Origin2000. We then propose extensions to the Java I/O library that address the de�ciencies inthe Java I/O API and improve performance dramatically. The extensions add bulk (array) I/O operationsto Java, thereby removing much of the overhead currently associated with array I/O in Java. We haveimplemented the extensions in two ways: in a standard JVM using the Java Native Interface (JNI) andin a high-performance parallel dialect of Java called Titanium. We describe the two implementations andpresent performance results that demonstrate the bene�ts of the proposed extensions.1 IntroductionThere is a growing interest in using Java for high-performance computing because of the many advantages thatJava o�ers as a programming language. To be useful as a language for high-performance computing, however,Java must not only have good support for computation but must also be able to provide high-performance �leI/O, as many scienti�c applications have signi�cant I/O requirements [6, 22, 34]. In this paper, we investigatethe I/O capabilities of Java for high-performance computing and provide suggestions for relatively simplechanges to the Java I/O model that can improve performance signi�cantly.We �rst examine several approaches that attempt to provide high-performance I/O in Java|many of whichare not obvious at �rst glance|and evaluate their performance. We perform experiments on two di�erentparallel machines, a distributed-memory system (IBM SP) and a shared-memory system (SGI Origin2000),both of which employ modern parallel/high-performance �le systems. We then propose extensions to theJava I/O library that address the de�ciencies in the Java I/O API and improve performance dramatically.The extensions add bulk (array) I/O operations to Java, thereby removing much of the overhead currentlyassociated with array I/O in Java. We have implemented the extensions in two ways: in a standard JVMusing the Java Native Interface (JNI) [24] and in a high-performance parallel dialect of Java developed at U.C.Berkeley called Titanium [35, 38]. We describe the two implementations and present performance results thatdemonstrate the bene�ts of these extensions.�EECS Department, University of California at Berkeley, Berkeley, CA 94720. bonachea@cs.berkeley.eduyDept. of Computer Science, Illinois Institute of Technology, 10 West 31st Street, Chicago, IL 60616. pmd@work.csam.iit.eduzMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439. thakur@mcs.anl.gov1



1.1 I/O in High-Performance ComputingMany computationally intensive scienti�c applications also need to access large amounts of data, and I/O isoften the bottleneck in such applications [6, 22, 34]. A common I/O requirement is as follows. The applicationhas some large data structures, say multidimensional arrays, distributed among processes in some fashion. Thearrays must be read from or written to a �le containing the global array. The program may begin by readingin an input array and may then write arrays to �les several times during the course of the computation. Thearrays in these applications are not just byte arrays, but rather consist of integers, or 
oating-point numbers,or some other data type. As we shall see in this paper, the fact that they are not just byte arrays is importantin the context of using Java for I/O in such applications. In addition, the �les are usually random-access �les,and processes seek to di�erent locations in the �les to read/write data.In this paper, we focus on the problem of concurrent reading or writing of data frommultiple processes/threadsto a common �le in Java. We assume that a large one-dimensional array of integers is block-distributed amongprocesses and must be read from or written to a common �le containing the global array. While simple,this example is su�cient to demonstrate the strengths and weaknesses of the Java I/O model as applicableto the basic needs of high-performance computing applications. Our experiments assume (and employ) arandom-access �le that is striped across the disks of a parallel �le system.Much of the research related to parallel I/O has been performed in the context of C, and C provides excellentsupport for such operations. In particular, C allows the casting of an array of any type into an array ofbytes, and multidimensional arrays can be treated as one-dimensional arrays of the same size. The Unix I/Ofunctions simply take a pointer to a one-dimensional array, the number of bytes to be read or written, and theo�set into the �le, and they carry out the request as a single I/O operation. It is also quite simple to performparallel reads and writes in C without the need for synchronization (on �le systems that support such access).In particular, each process can seek to an independent (non-overlapping) region of a shared random-access �leand then perform its reads or writes to disjoint regions of the �le in parallel.There are other advantages of C/Unix based I/O as well. One advantage is that local (nonportable) hooks toa parallel �le system can provide excellent performance enhancements on some machines. For example, theO DIRECT option available on the XFS �le system on the SGI Origin2000 allows the application to bypass thesystem �le cache and write directly to disk. On systems with high disk bandwidth, this option can improveperformance signi�cantly [12]. The disadvantage of this approach, of course, is that it is not portable. Anotheradvantage of C-based I/O is that there are portable APIs, such as MPI-IO [17], that are implemented in anoptimized fashion for di�erent machines and �le systems.The situation in Java, however, is quite di�erent. Achieving high-performance parallel �le I/O in Java iscurrently a very di�cult issue, primarily because of the constraints imposed by the interface design of theJava I/O library. However, the widespread standardization and platform independence of Java provide anideal vehicle for deploying a high-performance I/O library interface whose implementation can be individuallytuned to fully utilize the capabilities of each underlying architecture.1.2 Contributions of this PaperThe contributions of this paper are mainly twofold. First, we provide a detailed discussion and performanceanalysis of several approaches to parallel �le I/O available in Java and do so across two di�erent parallelarchitectures and �le systems. To date, there has been relatively little research focusing on the I/O capabilitiesof Java in general, and on its capabilities to perform parallel �le I/O in particular. Second, we proposeextensions to the Java I/O API that can improve performance signi�cantly. These extensions allow users toperform bulk (array) I/O operations with a single method call. We have implemented these extensions andvalidated their performance bene�ts. 2



1.3 Related WorkOther than the large body of work related to parallel I/O [4, 8, 9, 13, 23, 27, 28, 32, 33], the work mostclosely related to ours is the Jaguar project [36, 37], which aims to improve Java I/O performance as one ofits goals. Jaguar allows the Java runtime system to be extended with new primitive operations that enablee�cient access to hardware resources. These primitives are speci�ed as short machine code segments thatare directly inlined into the Java bytecode as it is compiled. The Jaguar project is, in fact, complementaryto the work discussed in this paper, the di�erence being the level at which performance improvement istargeted. This paper deals with the Java I/O facilities available to the user at the application level. TheJaguar project provides performance enhancements at a lower system level. Another interesting aspect of theJaguar project is the idea of pre-serialized objects, where objects are stored in a pre-serialized format readyfor communication or I/O. A similar idea could be applied to arrays of Java primitive data types, with therequired encoding/decoding being performed by threads executing in the background while the main threadengages in other computation/communication.A preliminary version of our work was presented in [2, 11].1.4 OrganizationThe rest of this paper is organized as follows. In Section 2 we describe the basic I/O mechanisms de�nedin Java. In Section 3 we discuss several approaches for performing parallel �le I/O in Java. We study theperformance of these approaches in Section 4. Suggestions for improving the Java I/O model are presentedin Section 5. The implementation of these extensions is discussed in Section 6. Performance results with theextensions are presented in Section 7. Conclusions and and ideas for future work are presented in Section 8.2 I/O in JavaTo understand the issues associated with performing parallel I/O in Java, it is necessary to brie
y review theJava I/O model [18].Generally, I/O in Java is divided into two parts: byte-oriented I/O, which includes bytes, integers, 
oats,doubles and so forth, and text-oriented I/O, which includes characters and text. In this paper, we are concernedonly with byte-oriented (binary) �le I/O. In Java, byte-oriented I/O is handled by input streams and outputstreams, where a stream is an ordered sequence of bytes of unknown length.Java provides a rich set of classes and methods for operating on byte input and output streams. These classesare hierarchical, and at the base of this hierarchy are the abstract classes InputStream and OutputStream.It is useful to brie
y discuss this class hierarchy in order to clarify the possible approaches to performinghigh-performance I/O in Java. To facilitate this discussion, Figure 1 provides a graphical representation ofthis I/O hierarchy. We note that we have not included every class that deals with byte-oriented I/O but haveincluded only those classes that are pertinent to our discussion.2.1 InputStream and OutputStream ClassesThe abstract classes InputStream and OutputStream are the foundation for all input and output streams.They de�ne methods for reading/writing raw byte input/output streams.The InputStream class provides three methods for reading bytes from an input stream. One method reads a3
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DataOutputStreamFigure 1: This �gure shows the I/O class hierarchy pertinent to this investigation. Note that theRandomAccessFile class is completely outside of the InputStream and OutputStream hierarchy. As discussedin Section 2.5, however, a connection can be made between a RandomAccessFile and a FileInputStream orFileOutputStream.single byte, another method reads available data into a byte array, and the third method reads the availabledata into a particular region of a byte array. We are interested in the third method since it allows distinctthreads to read into distinct regions of the same byte array in parallel. The signature for this method is:public int read(byte[] buf, int offset, int length) throws IOExceptionIn addition to the three read methods, the InputStream class de�nes methods to skip over bytes in the inputstream, to determine the number of bytes available in an input stream, and to close an input stream.The OutputStream class provides methods for writing that are analogous to those of InputStream. In partic-ular, it provides three write methods: one to write a single byte to an output stream, one to write an arrayof bytes to an output stream, and one to write a subarray of bytes to an output stream. We are interestedprimarily in the third method, which can be used as the basis for performing parallel writes (when used in thecontext of random-access �les, as discussed below). The signature for this method is:public void write(byte[] buf, int offset, int length) throws IOExceptionIn addition to the three write methods, this class also supports methods to 
ush and close output streams. Avery signi�cant feature of the OutputStream class is that, unlike the InputStream class, it does not supportskipping (or seeking) over bytes in the output stream. This precludes multiple threads from writing to distinctregions of the output stream, which basically precludes performing parallel writes. The solution to this problemis discussed in Section 3.2.2 File Input and Output StreamsThe FileInputStreamand FileOutputStream classes are concrete subclasses of InputStream and OutputStream,respectively, and provide a mechanism to read from and write to �les. FileInputStream provides all the meth-ods of the InputStream class and de�nes only one new method, which can be used to obtain an opaque �ledescriptor object. The signature for this method is: 4



public final FileDescriptor getFD() throws IOExceptionNote that the ability to skip over bytes in a �le input stream means that multiple threads can seek to disjointregions in an input �le. This feature, in addition to the fact that multiple threads can read into disjointsections of a byte array in parallel, provides the basis for parallel reads into a common array.There are three constructors for �le input streams. One constructor takes as a parameter a string representingthe �le name. Another constructor takes as a parameter a Java.io.File object. The third constructorrequires a FileDescriptor object. For reasons discussed below, the third constructor is most pertinent tothis discussion and has the following signature:public FileInputStream(FileDescriptor fd)Similar to the FileInputStream class, the FileOutputStream class also provides the three write methodsavailable in its superclass and de�nes only one new method for obtaining a FileDescriptor object. Theconstructor for this class most pertinent to our discussion takes as a parameter a FileDescriptor and hasthe following signature:public FileOutputStream(FileDescriptor fd)We note that it is not possible for multiple threads to seek to di�erent locations in a �le output stream sincethe class provides no method to do so.2.3 Byte Array StreamsThe ByteArrayInputStream class reads data from a byte array using the methods of the superclass. Itprovides two constructors: one that takes a byte array as its parameter (and uses this byte array as the inputsource), and one that takes a byte array plus an o�set and a length, and uses this subarray as the input source.Otherwise, it de�nes no new methods.The ByteArrayOutputStream class writes bytes into successive components of an internal byte array. Thesize of this internal byte array is determined by the class constructors. One constructor takes no argumentsand employs a default bu�er size of 32 bytes. The second constructor takes as an argument the initial size ofthe bu�er. In either case, the size of the byte array grows to accommodate additional data. A copy of theinternal byte array can be obtained through the toByteArray method. The signature for this method is:public synchronized byte[] toByteArray()2.4 Filter StreamsFilter streams provide methods to chain streams together to build composite streams. For example, aBufferedOutputStream can be chained to a FileOutputStream to reduce the number of calls to the �lesystem.The FilterInputStream and FilterOutputStream classes de�ne a number of subclasses that manipulatethe data of an underlying stream. The constructor for a FilterInputStream object takes as a parameteran InputStream object, and the constructor for a FilterOutputStream object takes as a parameter an5



OutputStream object. Otherwise, these classes provide the same methods de�ned by the InputStream andOutputStream classes.Two subclasses of �lter streams are pertinent to this investigation. One subclass is DataInputStream, which al-lows raw byte input to be treated at the level of Java primitive types. The other subclass, BufferedInputStream,provides bu�ering for an underlying stream. Similar subclasses are de�ned by FilterOutputStream. It isworthwhile to brie
y discuss these two subclasses.2.4.1 Bu�ered StreamsThe BufferedInputStream and BufferedOutputStream classes provide bu�ering for an underlying stream,where the stream to be bu�ered is passed as an argument to the constructor. The bu�ering is provided by aninternal system bu�er whose size can (optionally) be speci�ed by the user.2.4.2 Data StreamsAll the classes discussed thus far manipulate raw byte data only. Applications, however, deal with higher-level data types, such as integers, 
oats, doubles, and so forth. Java de�nes two interfaces, DataInput andDataOutput, that de�ne methods to treat raw byte streams as these higher-level Java data types. Together,these interfaces de�ne methods for reading and writing all Java data types. The DataInputStream andDataOutputStream classes provide default implementations for these interfaces. For example, the two methodsthat read and write integers are the following:public final int readInt() throws IOExceptionpublic final void writeInt(int i) throws IOExceptionIt is important to note that these methods read or write a single integer at a time. No method exists in Javafor reading or writing an array of integers (or an array of any data type other than bytes).2.5 Random-Access FilesAs mentioned above, it is not possible to seek to some location in the �le when writing with the FileOutputStreamclass because, unlike FileInputStream, FileOutputStream provides no methods for seeking. To overcomethis problem, we use the RandomAccessFile class that provides more sophisticated �le I/O. In particular, itprovides the seek method that we require.public void seek(long position) throws IOExceptionIt is interesting to note that the RandomAccessFile class sits alone in the I/O hierarchy and duplicates, ratherthan inherits, methods from the stream I/O hierarchy. In particular, RandomAccessFile duplicates the readand write methods de�ned by the InputStream and OutputStream classes and implements the DataInput andDataOutput interfaces that are implemented by the data stream classes. However, since RandomAccessFileis not in the stream hierarchy, it cannot be directly used where input or output streams are required.There is, however, a (not entirely obvious) way to form a connection between the RandomAccessFile classand the rest of the stream hierarchy. This can be done by getting the �le descriptor of a random-access�le with getFD() and using the �le descriptor as a parameter to the constructor for a FileInputStream or6



FileOutputStream object. Once this connection is made, a random-access �le can be chained to �lter streamsand byte-array streams.3 Approaches to Parallel File I/O in JavaIn this section we describe six di�erent approaches for performing parallel �le I/O in Java. Most of theseapproaches are di�erent ways of working around the problem that Java does not directly support the readingor writing of arrays of any data type other than bytes.3.1 Using Raw Byte ArraysIf the data to be read or written is already in the form of a byte array, it is trivial to read or write the datausing the Java methods for reading/writing byte arrays. As noted above, however, byte is the only data typefor which such array operations are de�ned.Let us assume that multiple threads of a parallel program need to write di�erent parts of a byte array toa common �le. Assume further that the �le system permits concurrent writes to disjoint locations in a �le.We can perform the I/O as follows. Each thread in the parallel program creates a RandomAccessFile object,calculates its o�set in the shared �le, and seeks to that position. It then uses the write method de�ned bythe RandomAccessFile to write its portion of the byte array in a single operation, as shown below.// this is executed by the main threadbyte buf[] = new byte[buf_size];// this code is executed by all of the threads.// First create a RandomAccessFile object, then// calculate offset in fileRandomAccessFile raf = new RandomAccessFile (filename,access);raf.seek(position);// calculate offset within byte array and number// of bytes to write, then perform writeraf.write(buf,my_start_buf,num_bytes);It is important to note that this approach works correctly both when an existing �le is overwritten and whena new �le is created, because of the semantics of the seek method. In particular, a seek to a location pastthe end of the �le, followed by a write, extends the length of the �le [30].13.2 Converting to/from an Array of BytesAs we shall see in Section 4, I/O involving byte arrays is simple and also performs well. The problem, however,is that real applications do not operate on arrays of bytes. Rather, they deal with arrays of other data types,1These semantics were introduced in the Java 1.1 language speci�cation.7



such as integers, 
oats, and doubles. Java, unfortunately, provides no methods for performing I/O operationson such arrays. Furthermore, unlike C, Java does not allow users to simply cast an array of some other typeinto an array of bytes. Nonetheless, we can still use the byte-array methods by explicitly converting an arrayof some other data type into an array of bytes, and vice versa.For example, we can write an array of integers by �rst right-shifting one byte at a time into a byte array andthen writing the byte array. Similarly, we can read an array of integers by �rst reading into a byte array andthen converting the bytes into integers. The only issue encountered in the conversion from bytes to integersstems from the fact that Java does not have unsigned data types. Thus, if the high bit of a given byte is set,it is interpreted as a negative number when converted to an integer. More precisely, the lower eight bits ofthe integer are copied from the eight bits of the byte, and the upper 24 bits are set to 1 (sign extension). Wemust, therefore, take care of the sign bit when converting bytes to integers. The conversion can be done asfollows without explicitly checking the sign bit (that is, without a branch):// Assume we are converting the byte array, buf, into integers in// an integer array, int_array.for (int i=0; i < int_array.length; i++) {int_array[i] = (((int)buf[4*i+3]) & 255)| ( (((int)buf[4*i+2]) & 255) << 8 )| ( (((int)buf[4*i+1]) & 255) << 16 )| ( (((int)buf[4*i+0]) & 255) << 24 );}3.3 Using Data StreamsIt is possible to read/write a single integer at a time by using the methods de�ned in the DataInput andDataOutput interfaces. As noted above, the RandomAccessFile class implements these interfaces, making itrelatively easy to perform parallel I/O operations using data streams. The pseudo-code for this approach isshown below. Note that the writeInt method is called several times in a loop, writing one integer at a time,which is very expensive. (It induces a method-call overhead linear in the number of primitive data values tobe written.)// main programint[] int_array = new int[num_ints];// each thread calculates its position in the// file and the array, and calculates the number of// integers it needs to read or write.RandomAccessFile raf = new RandomAccessFile(filename,access);raf.seek(position);for (int i = start_buf; i < (start_buf+num_ints_to_write); i++)raf.writeInt(int_array[i]);3.4 Using Bu�ered Data StreamsAs we shall see in Section 4, using regular (unbu�ered) data streams results in the poorest performance acrossall approaches studied, because a call to the I/O subsystem is made for every integer read or written. It is thus8



desirable to seek approaches that internally bu�er data before reading/writing. The problem, however, is thatthe RandomAccessFile class does not implement bu�ering, and the FilterInput and FilterOutput streams(of which bu�ered streams are a subclass) only work with objects of type InputStream and OutputStream.There is a way to use system bu�ering for a RandomAccessFile object as follows. A RandomAccessFile can bechained to a FileInputStream or FileOutputStream object through its �le descriptor. The FileInputStreamor FileOutputStream object can be chained to a BufferedInputStream orBufferedOutputStream object, which can then be chained to a DataInputStream or DataOutputStreamobject.2We note, however, that it is not safe to use bu�ered data streams for writing concurrently from multipleprocesses or threads to overlapping regions of a common random-access �le. This is because each threador process maintains its own local bu�er, and the bu�ers of di�erent processes may not be coherent. Thisproblem does not exist in the case of concurrent reads, of course.The pseudo code for using bu�ered streams is shown below, with the caveat that, depending on the imple-mentation, there is potential for erroneous results. Speci�cally, it is probably a bad idea to call seek() onthe RandomAccessFile object after any reads or writes take place on the associated stream objects, as thiswill most likely result in bu�er-consistency errors, leading to data corruption. (One can avoid this particulardi�culty by closing and reopening all the �le objects when a seek is necessary.) It is also advisable to explicitlyflush() the DataOutputStream object before closing any �le objects to prevent the possibility of losing the�nal bu�er of data written.RandomAccessFile raf = new RandomAccessFile(filename,access);FileDescriptor fd = raf.getFD();FileOutputStream fos = new FileOutputStream(fd);BufferedOutputStream bos= new BufferedOutputStream(fos);DataOutputStream dos = new DataOutputStream(bos);// each thread calculates its offset within the array,// its offset in the file, and the number of// elements to write to disk.raf.seek(position);for (int i = start_buf; i < (start_buf + num_ints_to_write; i++)dos.writeInt(int_array[i]);Although this approach has introduced bu�ering, the Java method-call overhead is still linear in the numberof primitive data values being read or written, which we shall see is a performance problem.3.5 Using Bu�ering with Byte Array StreamsAnother approach to bu�ering a data input or output stream is to chain it to an underlying byte array stream.Then the read and write methods invoked on the data stream will be directed to the underlying byte arraystream rather than directly to disk. This composite stream is de�ned as follows:RandomAccessFile raf = new RandomAccessFile(filename,access);ByteArrayOutputStream bos = new ByteArrayOutputStream(size);DataOutputStream dos = new DataOutputStream(bos);2This trick relies on some under-speci�ed aspects of the Java I/O subsystem. Speci�cally, it assumes an implementation wherethe seek pointer state is associated with the opaque FileDescriptor object and not the enclosing RandomAccessFile object.9



Note that it is advantageous to specify the correct bu�er size to the ByteArrayOutputStream constructor,instead of just using the default bu�er size of 32 bytes, in order to avoid the cost of having the implementationgrow (reallocate) the bu�er as needed.As in the previous cases, the individual threads seek to their correct position in the integer array and the shared�le. In the case of a write, the thread simply writes all its data to the output data stream, which in turnwrites it to the underlying byte array stream. Once the write is complete, the thread uses the toByteArraymethod to write the data from the byte array to the shared �le. This is shown below.for(int i = start_buf; i < (start_buf + num_ints_to_write; i++)dos.writeInt(int_array[i]);raf.seek(position);raf.write(bos.toByteArray());Note that the toByteArray() method returns a newly allocated copy of the internal byte array maintainedby the ByteArrayOutputStream; therefore, this approach imposes the CPU and memory-footprint overheadsof an additional data copy.It is slightly more complicated to use byte array streams for read operations. First, each thread declares its ownbyte array, creates the ByteArrayInputStream and DataInputStream objects, and seeks to the appropriatelocation in the �le. Next, each thread reads from the �le into its byte array using the low-level read method.Finally, the data is transfered from the byte array into the integer array using the read method of the datainput stream class. The pseudo-code for this operation is given below.// each thread allocates its own bufferbyte[] buf = new byte[num_bytes_to_read];ByteArrayInputStream bis = new ByteArrayInputStream(buf);DataInputStream dis = new DataInputStream(bis);raf.seek(position);raf.readFully(buf, 0, num_bytes_to_read);for (int i = start_buf; i < (start_buf + num_ints_to_read); i++)int_array[i] = dis.readInt();Note that, in both cases, the method-call overhead is still linear in the number of primitive data values beingread or written.3.6 Other ApproachesThere are at least two other ways of performing I/O in Java. One way is to use object serialization [18]. Weexplored this approach initially, but found that Java adds some additional bytes to the �le in order to storeobject-related information. This makes it di�cult to perform parallel reads or writes because the threadswould not know where to seek in the �le. Object serialization in Java is also known to be very slow [5].Another way is to not use the I/O methods de�ned in Java, but rather to use the Java Native Interface(JNI) [24] to extend the existing libraries with new methods specialized for handling array-based I/O. Weused this method to implement the bulk I/O extensions proposed in this paper. See Section 6 for details.10



4 Performance Results for Existing Java I/O MethodsIn this section we present the results of our experiments with the various approaches described above. We�rst describe the two machines used for our experiments.4.1 Computational Platforms and Experimental SetupWe conducted experiments on two parallel machines located at Argonne National Laboratory, an IBM SP andan SGI Origin2000. At the time we performed our experiments, the SP was con�gured with 80 compute nodesand 4 I/O processors. Each I/O processor controlled four SSA disks, each of 9 Gbyte capacity. The Originwas con�gured with 128 compute processors and ten Fibre Channel controllers connected to a total of 110disks of 9 Gbyte capacity each. On both machines, we used the native parallel/high-performance �le systems,namely, PIOFS on the SP and XFS on the Origin2000.The programs we ran on both machines were parallel multiprocess Java programs. Each process ran on adi�erent Java Virtual Machine. We could have simply spawned Java processes, but our parallel program alsoneeded some additional information that MPI [16] typically provides, such as the total number of processesin the computation and the rank of a process in the process group (in order to determine its position in theshared �le). One way to get around this problem is to use one of the several research projects in this area, suchas JavaNOW [31] or an MPI wrapper for Java [25]. We used a simpler approach, however, in which we invokedthe Java program from within a simple MPI program written in C. The MPI program used MPI functionsto determine the rank of the process and the number of processes, and then invoked the Java program usingthe system() call in C, passing the rank and number of processes as command-line arguments. The timingswere measured across the I/O calls in the Java program. Each Java process had its own private array, butall processes shared the global �le. On the SP, we used a 4 Mbyte array per process, whereas on the Originwe used a 32 Mbyte array per process. These sizes were chosen based on some experiments to determine theright size for good I/O performance on these machines. Each process read (or wrote) multiple times; the total�le size read (or written) was 1 Gbyte. On the SP, we used IBM's Java software, which was conformant withthe behavior of Sun's JDK 1.1.2. On the Origin, we used version 3.1.1 of SGI's Java software, which wasconformant with the behavior of Sun's JDK 1.1.6.4.2 ResultsThe results of our experiments are shown in Figure 2. We note that our intention was not to compareperformance between the two machines since they have very di�erent I/O con�gurations. Rather, we wantedto compare the performance of the various approaches on a particular machine, for two di�erent machines.The experiments can basically be divided into two categories. The �rst category, which includes the �rst twoapproaches discussed in Section 3, uses the Java I/O methods for reading/writing arrays of bytes. In the �rstcase of this category, we assume the data is already in byte form; in the second case (called encode/decode inFigure 2), we explicitly perform the conversion from integer arrays to byte arrays and vice versa. The secondcategory, which includes all the other experiments, uses the data stream classes either alone or chained tosome underlying stream that provides bu�ering.The I/O performance is quite poor when using the data stream classes and methods, even when bu�ered. Thepoor performance of the data stream classes stems from three factors. First, when used without bu�ering,this approach requires a call to the I/O subsystem for every element of the array. This may be acceptablewhen I/O requirements are small, but is certainly not acceptable for large scienti�c applications. Secondly,even when bu�ering is provided by an underlying stream, this approach still requires invoking a method for11
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Figure 2: The performance of various approaches to high-performance �le I/O in Java12



every element of the array. With 64 processes and a 1 Gbyte array, each process must make over four millioncalls to the readInt or writeInt methods. With a single process, this number increases to over 268,000,000.Clearly this is a signi�cant obstacle to achieving high-performance �le I/O. The third problem is that manyof the methods of the DataOutputStream class write to the underlying stream one byte at a time, and eachsuch write requires a lock acquisition [19].Although bu�ering improved the performance of data streams by orders of magnitude (for example, from0.00074 Mbytes/sec to 0.19 Mbytes/sec), it could not match the performance of writing byte arrays directly,which was more than 100 Mbytes/sec. We also observed that the size of the bu�er was quite importantwhen using the bu�ered data streams. In particular, choosing the correct bu�er size more than tripled thethroughput. (We should also note that a nontrivial amount of experimentation was required to �nd thebest bu�er size.) Again, the di�erence in performance, however, was only in the range of 1 Mbyte/sec to3 Mbytes/sec, for example.As expected, the best performance was obtained when using the Java I/O facilities for directly reading andwriting arrays of bytes. In fact, the �rst approach, which simply assumed the data was already in byte form,provided performance essentially identical to that obtained when using C. However, there was a signi�cantdrop in performance (for all but one experiment) when the application itself had to convert data from an arrayof integers to an array of bytes or vice versa (encode/decode). With this method, a more realistic scienti�c ap-plication that actually performs non-trivial computations may see an even larger performance degradation|inour test program, the CPU could be devoted more or less entirely to performing the encode/decode transfor-mations with no degradation to the overall running time.4.3 Results on the IBM SPOne striking result on the SP is the rather signi�cant drop in performance observed when moving from 32 to64 processors using raw byte arrays. The reason for this drop is the contention caused by the undercon�guredI/O subsystem with only four I/O processors. This trend was not observed for any other approach becausethey were not operating at a bandwidth approaching the hardware limit. The best write performance wasobtained using raw byte arrays with 32 processors (resulting in a bandwidth of 106 Mbytes/sec). The bestresult with encode/decode was 20 Mbytes/sec with 64 processors. The maximum throughput observed acrossall the other approaches was 7.5 Mbytes/sec, obtained with 64 processors and using byte array streams forbu�ering.The best performance obtained for the read operations was 96 Mbytes/sec when using raw byte arrays with16 processors. There was a small decrease in performance when the number of processors was increasedto 32 and 64, this again due to the undercon�gured I/O subsystem. The best performance obtained usingencode/decode was 30 Mbytes/sec with 64 processors. The best performance for all the data stream methodswas 7.5 Mbytes/sec, again obtained with 64 processors and using byte array streams for bu�ering.4.4 Results on the SGI Origin2000For writing on the Origin2000, encode/decode performed quite close to raw byte arrays. We believe this isbecause the bottleneck in the case of writing is the serialization that the XFS �le system imposes on concurrentwrites, rather than the extra computation and memory copy that encode/decode entails. With 64 processors,raw byte arrays achieved a throughput of 97 Mbytes/sec, while encode/decode resulted in a throughput of89 Mbytes/sec. The best performance observed using data streams was 4.1 Mbytes/sec, obtained using bu�eredoutput streams with a 0.5 Mbyte bu�er.Raw byte arrays achieved excellent performance for reading. For example, a throughput of 631 Mbytes/sec13



was observed when using 16 processors. We see a decrease in performance when the number of processorswas increased to 64 because of increased contention for I/O resources. Encode/decode resulted in a maximumthroughput of 158 Mbytes/sec with 64 processors. The maximum throughput obtained using the data streammethods was 4 Mbytes/sec, when either byte arrays or bu�ered streams were used to bu�er the data streams.5 Improving Java I/O PerformanceThe above results demonstrate that the I/O methods that directly read/write arrays of bytes are the onlyexisting methods in Java that provide reasonable I/O performance. Real applications, however, do not operateon byte arrays; they need the ability to read or write arrays of other data types, such as integers and 
oats.The data stream methods that operate on such data types do not allow users to read or write arrays of datatypes. One can read or write only a single data item at a time, resulting in poor I/O performance.We propose a straightforward extension to the Java I/O libraries that alleviates this problem. The extensionadds bulk (array) I/O operations to the existing libraries, thereby removing most of the method-call overheadcurrently associated with array I/O.5.1 Bulk I/O ExtensionsWe propose adding the three new subclasses (BulkDataInputStream, BulkDataOutputStream, andBulkRandomAccessFile) to the java.io hierarchy as pictured in Figure 3. These new classes implementthe methods from two new interfaces, BulkDataInput and BulkDataOutput, which are subinterfaces ofthe DataInput and DataOutput interfaces that currently provide single-primitive I/O. BulkDataInput andBulkDataOutput are both very simple. Each class adds two new methods for performing array-based I/O(with overloads to handle the di�erent data types): one method for performing I/O on an entire array and asecond for performing I/O on a contiguous subset of the elements in an array. The interfaces are shown belowwith the methods for int[] and float[] (the overloaded methods for boolean[], char[], byte[], short[],long[], and double[] have been omitted for brevity).public interface BulkDataInput extends DataInput {public void readArray(int[] array) throws IOException;public void readArray(int[] array, int arrayoffset, int count) throws IOException;public void readArray(float[] array) throws IOException;public void readArray(float[] array, int arrayoffset, int count) throws IOException;}public interface BulkDataOutput extends DataOutput {public void writeArray(int[] array) throws IOException;public void writeArray(int[] array, int arrayoffset, int count) throws IOException;public void writeArray(float[] array) throws IOException;public void writeArray(float[] array, int arrayoffset, int count) throws IOException;}The BulkDataInputStream class implements the methods from BulkDataInput; BulkDataOutputStream im-plements the methods from BulkDataOutput; and BulkRandomAccessFile implements both interfaces.14
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FilterInputStreamFigure 3: I/O class hierarchy with the bulk I/O extensions5.2 Design MotivationThe extensions use subclassing to add support for bulk I/O to the java.io.* classes that implement theDataInput/DataOutput abstract interfaces. The new bulk classes add support for performing bulk I/O on asingle-dimensional array of any primitive type, while inheriting all the traditional single-element I/O methodsfrom their respective superclasses. To use the extensions, programmers merely change the declaration of theirtop-level I/O object to the new bulk equivalent and add calls to the readArray and writeArray methods,where appropriate, to perform bulk I/O on arrays of arbitrary length with a constant method-call overhead.Below is a simple example using the BulkRandomAccessFile object that reads some header information (usingthe inherited single-value method readInt()) and then calls a bulk read into a array of doubles:BulkRandomAccessFile braf = new BulkRandomAccessFile("myfile","r");int numEntries = braf.readInt();double[] myArray = new double[numEntries];braf.readArray(myArray);Note that the bulk extensions do not directly support arrays of multiple dimensions or whose elements are ofreference type. However, multidimensional arrays can be accessed by calling the methods for one-dimensionalarrays several times.Finally, we note that the two new stream-based classes (BulkDataInputStream and BulkDataOutputStream)are not only useful for �le I/O, but could also be used with network I/O streams; therefore, these extensionscould also bene�t high-bandwidth networking applications.6 Implementation of the ExtensionsWhile it is certainly possible to na��vely implement these methods entirely at the application level, it is best toimplement them with a small amount of help from native code to achieve the desired performance improvement.As demonstrated in the previous sections, Java already provides relatively high-performance routines for I/Ooperations on byte arrays, so all we really need is a way to e�ciently convert an array of regular primitivetypes to or from an array of bytes. Once this is accomplished, the converted array of bytes can be passed tothe appropriate byte array I/O method of the superclass to execute the operation.15



Leveraging the existing functionality of the parent classes in this way makes the implementation relativelysimple and portable. Moreover, this implementation strategy is essential in the case of BulkDataInputStreamand BulkDataOutputStream where the programmer is free to construct the object by composing it with anyarbitrary object implementing the stream interface. In the case of BulkRandomAccessFile (which is notcomposable as a stream), we have the option of directly making calls to the underlying �le system, but thisapproach requires intimate knowledge of the native code that implements the RandomAccessFile methodsand is therefore inherently JVM-speci�c and nonportable. For this reason, we did not explore that option.Nonetheless, it is an optimization that should probably be considered when implementing the extensions for aparticular JVM. In general, encapsulating array I/O within specialized bulk methods as we have done providesthe Java library implementation the opportunity to optimize such methods for a particular JVM, architecture,and �le system.The only general implementation complexity that arises is maintaining the platform-independent on-diskrepresentation required by the Java standard. Speci�cally, implementations of the writeArray() methodson a little-endian architecture (such as Intel x86) must perform a byte-swapping pass on the array datato ensure that data is written out in big-endian order as required by the Java standard [15]; an analogoustransformation must take place during input using readArray() on little-endian machines. We implementedthe bulk I/O extensions in two environments to evaluate their e�ectiveness: in a standard JVM using the JavaNative Interface (JNI) and in a high-performance parallel dialect of Java called Titanium. We discuss eachimplementation below.6.1 Implementation Using JNIThe JNI speci�cation [24] describes an interface to native code libraries that is provided by all fully compliantJVM implementations. The JNI routines used to access arrays provide the JVM a great deal of 
exibility toavoid constraining the implementation. For example, when native code requests a pointer to the elements ofan array, the JVM may freely choose to return a direct pointer to the elements or return a pointer to a copyof the elements (although it must report which option it chose).3Implementing the extensions using JNI was relatively straightforward; the only challenge was in reducing thenumber of data copies to the absolute minimum to reduce CPU and memory overheads. It turns out that,at the very least, one data copy is required to convert an array of primitive type (such as int[]) into a bytearray. This is due to the fact that JNI abstracts away the internal in-memory representation of arrays, whichprevents an in-place, zero-copy type cast. If the JVM insists on performing copies rather than providing nativecode with direct pointers to array elements, then the number of copies may be increased to at most threecopies. However, in all the JVMs we have tested thus far, our extensions operate in single-copy mode.An underlying assumption in the JNI implementation is that the single required copy can be performedfaster than the encode/decode approach presented in Section 3. The implementation uses the memcpy()routine provided in the standard C library, which presumably operates close to the full memory bandwidthof the underlying architecture and, in general, should be faster than a lengthy computational loop in Java.Performance results for the JNI implementation of the extensions are presented in Section 7.Our JNI implementation of the bulk extensions should work without modi�cation on any standard JVM andis available for public download from [3].3The JNI 1.1 speci�cation (which corresponds to Java 1.2) adds a new GetPrimitiveArrayCritical() function that increasesthe probability of obtaining a direct pointer to an array's elements in a JVM that employs a copying garbage collector. Ourimplementation uses this function when it is available. 16



6.2 Implementation in TitaniumTitanium is a high-performance, explicitly parallel, SPMD dialect of Java developed at U.C. Berkeley forprogramming shared-memory and distributed-memory parallel systems. Titanium incorporates the power ofSplit-C [29], a low-level SPMD language, into a high-level object-oriented programming language that freesthe programmer from much of the tedium associated with writing and debugging parallel programs. Titaniumis almost a superset of Java 1.0 [15], including all the expressiveness and safety features of that language, witha wealth of new features that support high-performance SPMD programming, such as user-de�ned immutableclasses, zone-based memory management, local and global references, 
exible and e�cient multi-dimensionalarrays, unordered loop iteration, and a library of useful parallel primitives including barrier, broadcast, ex-change, and various reductions [1, 20, 38]. The compiler performs extensive static analysis (with some as-sistance from programmer-inserted type quali�ers) to statically guarantee freedom from deadlock on barriersynchronization [14]. The primary goals of the language, in order of importance, are performance, safety, andexpressiveness. Titanium is especially well adapted for writing grid-based scienti�c parallel applications, andseveral such major applications have been written and continue to be further developed [35].The Titanium compiler performs various optimizations using knowledge of the parallel control 
ow and trans-lates programs entirely to C, where they are compiled (and optimized further) by a C compiler and then linkedto the proper Titanium runtime libraries (there is no JVM). The Titanium backend has been ported to severalplatforms, including SMPs running Solaris or POSIX threads, Solaris and Linux uniprocessors, Cray T3E,IBM SP2, IBM SPPower3, Tera MTA, SGI Origin2000, and the Berkeley NOW (a shared-nothing cluster ofUltra-SPARCs [7, 26]).The bulk I/O extensions described in the previous section were integrated into the Titanium I/O libraries witha minimal amount of e�ort. The Titanium runtime system exposes the in-memory representation of arrays tonative code, which allows the extensions to be implemented as a direct type cast with zero data copies in thecommon case (however, a single data copy is still required on little-endian platforms where byte-swapping isnecessary). Note that this zero-copy implementation strategy is only valid because of the restriction to single-dimensional arrays of nonreference type; this restriction guarantees that the array element data all residescontiguously in memory and can be cast to a byte array with no data motion.4Bonachea [2] investigates the performance of the Titanium implementation of the extensions on an Ultra-SPARC with a single-disk local �lesystem. They report that the extensions provide a performance improvementexceeding 2x for sequential access and 40x for random access over the fastest con�gurations that the legacy I/Olibraries have to o�er. Furthermore, they show that the I/O performance of the bulk extensions is virtuallyidentical to the I/O performance of C on that platform|this is not a terribly surprising result, because theJava code using the bulk I/O extensions is compiled by Titanium down to C code that looks very similar tothe I/O code that a programmer would hand-write in C. Performance results of the Titanium implementationof the extensions on our two parallel architectures are shown in Section 7.6.3 Safety IssuesThe new bulk I/O extensions maintain the level of language safety present in the legacy Java I/O library.Safety is a very important feature of Java, and when evaluating a change or extension to the language, it iscrucial to stop and consider whether the change compromises the existing safety of the language. We nowsketch the reasoning why the bulk extensions don't a�ect the safety of Java.Intuitively, the new bulk methods accomplish what can already be done given the existing Java I/O li-4The single-dimensional restriction of the bulk I/O methods is not a serious limitation in Titanium because the languageincludes a more powerful structured-array abstraction called grids that provide better support for multidimensional calculations.Bonachea [2] reports the bulk I/O extension described in this paper has also been successfully adapted to work with grids andthe I/O performance gains are comparable. 17



brary, albeit much faster. In Section 3 we demonstrated that one could use an appropriate compositionof DataOutputStream and ByteArrayOutputStream objects to change an arbitrary list of Java primitivevalues into a single dimensional, untyped byte array using the write*() methods and a loop. Similarly,DataInputStream and ByteArrayInputStream allow one to extract an arbitrary list of Java primitive valuesfrom an untyped byte array. These untyped byte arrays can be used to perform bulk I/O using the existingmethods in the DataInput/DataOutput interface (which as noted, currently only provide bulk I/O methodsfor byte arrays).The bulk extensions accomplish exactly this behavior,5 except they do it much faster by reducing the numberof method calls necessary to a small constant, providing enormous speedups in practice.7 Performance of the ExtensionsWe ran the same set of experiments used in Section 4 to test the performance of the bulk I/O extensionsimplemented with JNI and in Titanium. We compare the results for the bulk extensions to the performanceof the encode/decode approach, which provided the best integer-array performance within the con�nes of thelegacy Java I/O libraries (recall that this is the approach where the application itself performs the conversionbetween integers and bytes). We also measured the performance of an MPI-based, native C implementationof the same test program (with identical bu�er sizes) that directly uses the read() and write() system callsto perform I/O. The results are shown in Figure 4.For read operations on the SP, the performance of the bulk extensions in Titanium was almost identical tothe native C performance. The performance using JNI was slightly degraded due to the extra copy thatthe JVM performs when using JNI. The performance of both implementations was vastly superior to that ofencode/decode.For writing on the SP, we observe similar results. When executing on 32 processors, Titanium achieved athoughput of 117 MBytes/sec compared with 121 MBytes/sec for native C code. When executing on 64 pro-cessors, however, the relative performance of Titanium dropped rather signi�cantly from 104 MBytes/sec to75 MBytes/sec. (The reason for this drop in relative performance is unclear, and we are currently investi-gating it.) The JNI extensions also performed quite well, resulting in a throughput of 96 MBytes/sec with32 processors and 87 MBytes/sec with 64 processors.On the Origin2000, bulk I/O with Titaniumagain performed almost as well as native C, achieving a throughputof 536 Mbytes/sec with 16 processors and 511 Mbytes/sec with 64 processors. The JNI version performedworse than the native C and Titanium implementations, due to the extra data copy involved. However, asexpected, the JNI implementation still outperformed the encode/decode approach by a signi�cant margin. Forwrites on the Origin, both Titanium and JNI performed much better than encode/decode up to 16 processors,but for 32 and 64 processors, encode/decode performed slightly better. We are investigating this anomaly, butwe believe we can tune the implementations of the bulk I/O extensions to achieve comparable performance.8 Conclusions and Future WorkThis work demonstrates that using the data stream methods in Java generally provides poor results, evenwith careful bu�er size selection. Thus, to obtain reasonable performance, the application is forced to use the5There is actually a very subtle di�erence that may arise depending on how the bulk extensions are implemented. If the"casting" operation is implemented as a literal type-cast (as in the Titanium implementation), then the byte array produced willbe an alias of the typed array. Implementations in safety-critical dialects can allocate a temporary bu�er and perform a singlememcpy() operation to remedy this detail (the way arrays are handled by JNI requires this copy of any JNI-based implementation).18
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low-level I/O methods that read and write arrays of bytes. To use these methods, the application must itselfconvert the array of integers (for instance) to an array of bytes. A better solution is for Java to provide datastream methods that operate on arrays of integers and other primitive data types. This would signi�cantlysimplify the implementation of array I/O operations in Java, and would provide the Java implementation theopportunity to optimize such methods for each di�erent platform. We have proposed extensions to the JavaI/O API that support bulk (array) I/O. We have implemented these extensions using JNI and in Titanium,and our performance results indicate that they perform as well as native C code for reading/writing arrays.A limitation of the proposed extensions is that they support �le I/O on one-dimensional arrays of nonrefer-ence types only. The basic reason is that multidimensional arrays in Java are unstructured and their dataelements are stored noncontiguously (multidimensional arrays are represented as a hierarchy of references toone-dimensional arrays which could possibly di�er in size). In any case, a programmer could certainly performI/O on the constituent one-dimensional fragments of a multidimensional Java array with the caveat that theapplication may have to store some additional application-dependent meta-information in order to recoverthe shape of a multidimensional array read in this fashion. It is not clear what it means to perform I/O onnonprimitive (that is, reference) types, although the object serialization approach pioneered in Java 1.1 isprobably a good start.Another limitation of the Java I/O API is that it does not support asynchronous (or nonblocking) I/O.Asynchronous I/O can be useful for overlapping I/O with computation and communication in the programand is supported by other I/O APIs such as MPI-IO [17] and POSIX [21]. We are currently working onde�ning bulk asynchronous I/O extensions to Java and implementing them using JNI and in Titanium.The bulk I/O extensions we have presented overcome the performance limitations of the lowest-level I/Omethods in Java. For high-performance computing, application developers may also bene�t from a higher-level parallel I/O library (such as MPI-IO [17]) for Java. Such libraries, if implemented in Java, wouldundoubtedly bene�t from the proposed bulk extensions.One optimization not yet explored in the JNI implementation of the bulk extensions is to recycle the internaltemporary byte-array bu�er in subsequent calls to the bulk I/O methods, thereby amortizing the allocationcosts over many calls. We expect the results of this optimization to be somewhat application dependent;therefore, one possibility is to support it as an application-tunable option.AcknowledgmentsThis work was supported in part by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy, underContract W-31-109-Eng-38. This material is based in part on work supported by DARPA contract No.F30602-95-C-0136 and a Sloan fellowship. We would like to thank the entire Titanium team, especially KathyYelick and Ben Liblit, for their invaluable help.References[1] Aiken, A. and D. Gay. Memory Management with Explicit Regions. In Proceedings of ProgrammingLanguage Design and Implementation Conference, Montreal, June 1998.[2] Bonachea, D. Bulk File I/O Extensions to Java. In Proceedings of the ACM 2000 Java Grande Conference,pages 16{25, June 2000.[3] Dan Bonachea's Home Page. http://www.cs.berkeley.edu/~bonachea.20
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