
The 2-D Poisson Problem

William D. Gropp�
In this chapter we briefly describe how an approximate solution to a simple

partial differential equation can be found when using parallel computing. This sec-
tion will allow us to illustrate the issues of parallelizingan application and contrast
the two major approaches.

1 The Mathematical Model

The Poisson problem is a simple elliptic partial differential equation. The Poisson
problem occurs in many physical problems, including fluid flow, electrostatics,
and equilibrium heat flow. In two dimensions, the Poisson problem is given by the
following equations:@2u(x; y)@x2 + @2u(x; y)@y2 = f(x; y) in the interior (1)u(x; y) = g(x; y) on the boundary (2)

To compute an approximation solution to this problem, we define a discrete
mesh of points(xi; yj) on which we will approximateu. To keep things simple,
we will assume that the mesh is uniformly spaced in both thex andy directions,
and that the distance between adjancent mesh points ish. That is,xi+1 � xi = h
andyj+1 � yj = h. We can then use a simple centered-difference approximation
to the derivatives in Equation 2 [IK66] to getu(xi+1; yj)� 2u(xi; yj) + u(xi�1; yj)h2 +u(xi; yj+1)� 2u(xi; yj) + u(xi; yj�1)h2 = f(xi; yj) (3)

at each point(xi; yj) of the mesh. To simplify rest of the discussion, we will
replaceu(xi; yj) by ui;j .�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
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real u(0:n,0:n), unew(0:n,0:n), f(1:n, 1:n), h

! Code to initialize f, u(0,*), u(n:*), u(*,0), and
! u(*,n) with g

h = 1.0 / n
do k=1, maxiter

do j=1, n-1
do i=1, n-1

unew(i,j) = 0.25 * ( u(i+1,j) + u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h * h * f(i,j) )

enddo
enddo
! code to check for convergence of unew to u.
! Make the new value the old value for the next iteration
u = unew

enddo

Figure 1: Sequential version of the Jacobi algorithm

2 A Simple Algorithm

Many numerical methods have been developed for approximating the solution of
the partial differential equation in Equation 2 and for solving the approximation
in Equation 3. In this section we will describe a very simple algorithm so that we
can concentrate on the issues related to the parallel version of the algorithm. In
practice, the algorithm we describe here should not be used.However, many of the
more modern algorithms use the same approach to achieve parallelism.

The algorithm that we will use is called theJacobi Method. This method is an
iterative approach for solving Equation 3 that can be written asuk+1i;j = 14 �uki+1;j + uki�1;j + uki;j+1 + uki;j�1 � h2fi;j� : (4)

This equation defines the value ofu(xi; yj) at thek + 1st step in terms ofu at thekth step; it also ignores the boundary conditions.
We can translate this into a simple Fortran program by defining the array

u(0:n,0:n) to holduk andunew(0:n,0:n) to holduk+1. This is shown
in Figure 1; details of initialization and convergence testing have been left out.

In the next two sections we will look at two different approaches to making this
a parallel program.
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Figure 2: Simple decomposition of the mesh across processes. Part (a) shows the
entire mesh, divided among three processes. Open circles correspond to points on
the boundary. Part (b) shows the part of this array owned by the second process;
the grey circles represent the ghost or halo cells.

3 Message-Passing and the Distributed Memory Model

One of the two major classes of parallel programming models is the distrbuted
memory model, as discussed in Section??. In this model, a parallel program is
made up of many processes, each of which has its own address space and (usually)
variables. Because each process has its own address space, special steps must be
taken to communication information between processes. Oneof the most widely
used approaches ismessage passing. In message passing, information is communi-
cated between processes by sending messages using a cooperative approach where
both the sender and the receiver make subroutine calls to arrange for the transfer
of data between them. Variables in one process are not directly accessible by any
other process.

In creating a parallel program for this programming model, the first question
to ask is: what data structures in my program must bedistributed or partitioned
among these processes? In our example, in order to achieve any parallelism, each
process must do part of the computation ofunew. This suggests that we should
distributeu, unew, andf. One such partition is shown in Figure 2(a). The part of
the distributed data structure that is held by a particular process is said to beowned
by that process.

Note that the code to computeunew(i,j) requiresu(i,j+1) andu(i,j-
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1). This means that in addition to the part ofu andunew that each process has (as
part of the decomposition), it also needs a small amount of data from its neighbor-
ing processes. This data is usually copied into a slightly expanded array that holds
both the part of the distributed array managed (orowned) by a process withghost
or halo points that hold the values of these neighbors. This is shownin Figure 2(b).
A process gets these values by communicating with its neighbors.

The code in Figure 3 shows the distributed memory, message-passing version
of our original code in Figure 1.

The values ofjs andje are the values ofj for the bottom and top of the
part ofu owned by a process. The routineMPI Sendrecv is part of the MPI
message-passing standard [Mes94], and both sends and receives data. In this case,
the first call sends the valuesu(1:n-1,js) to the process below or down, where
it is received intou(1:n-1,je+1).

Note that though each process has variablesjs, je, u, and so on, these are all
different variables (precisely, they are different memory locations).

There are many other ways to describe the communication needed for this al-
gorithm and algorithms like it. See [GLS99, Chapter 4] for more details.

4 The Single Name-Space Distributed-Memory Model

High Performance Fortran (HPF) [KLS+93] provides an extension of Fortran (For-
tran 90) to distributed-memory parallel environments. Unlike the message-passing
model, a single variable may be declared as distributed across all processes. For
example, rather than declaring the part of theu variable owned by each process, in
HPF, the program simply declaresu in the same way as for the sequential program,
and adds an HPFdirective that describes how the variable should be distributed
across the processes. All communication required to accessneighbor values is
handled for the programmer by the HPF compiler. The HPF version of the Jacobi
iteration is shown in Figure 4.

Variables that are not specifically distributed by the programmer with an HPF
directive behave just like variables in the message-passing program: each process
has a separate version of the variable. For example, the variableh is in a different
memory location on each process (even though we give it the same value).

Note also that the details of the distribution are controlled by HPF: theBLOCK
distribution is specifically defined by HPF and does not exactly match the decom-
position shown in Figure 2. For values ofn that are much greater than the number
of processes (the only case where parallelism makes any sense), however, the HPF
choice is as good as any.

An advantage of HPF is that by changing the single line
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use mpi
real u(0:n,js-1:je+1), unew(0:n,js-1:je+1)
real f(1:n-1, js:je), h
integer nbr_down, nbr_up, status(MPI_STATUS_SIZE), ierr

! Code to initialize f, u(0,*), u(n:*), u(*,0), and
! u(*,n) with g

h = 1.0 / n
do k=1, maxiter

! Send down
call MPI_Sendrecv( u(1,js), n-1, MPI_REAL, nbr_down, k &

u(1,je+1), n-
1, MPI_REAL, nbr_up, k, &

MPI_COMM_WORLD, status, ierr )
! Send up
call MPI_Sendrecv( u(1,je), n-1, MPI_REAL, nbr_up, k+1, &

u(1,js-1), n-
1, MPI_REAL, nbr_down, k+1,&

MPI_COMM_WORLD, status, ierr )
do j=js, je
do i=1, n-1

unew(i,j) = 0.25 * ( u(i+1,j) + u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h * h * f(i,j) )

enddo
enddo
! code to check for convergence of unew to u.
! Make the new value the old value for the next iteration
u = unew

enddo

Figure 3: Message-passing version of Figure 1
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real u(0:n,0:n), unew(0:n,0:n), f(0:n, 0:n), h
!HPF$ DISTRIBUTE u(:,BLOCK)
!HPF$ ALIGN unew WITH u
!HPF$ ALIGN f WITH u

! Code to initialize f, u(0,*), u(n:*), u(*,0),
! and u(*,n) with g

h = 1.0 / n
do k=1, maxiter

unew(1:n-1,1:n-1) = 0.25 * &
( u(2:n,1:n-1) + u(0:n-2,1:n-1) + &

u(1:n-1,2:n) + u(1:n-1,0:n-2) - &
h * h * f(1:n-1,1:n-1) )

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration
u = unew

enddo

Figure 4: HPF version of the Jacobi algorithm

!HPF$ DISTRIBUTE u(:,BLOCK)

to

!HPF$ DISTRIBUTE u(BLOCK,BLOCK)

we can change the distribution of the arrays to that shown in Figure 5.
We call this the single name-space, distributed memory model because all com-

munication between processes is handled with variables (likeu) that are declared
globally, that is, they are declared as if they were accessible to all processes. This
allows many programs to be written so that they are very similar to the sequential
version of the same program. In fact, the program in Figure 4 is nearly identical to
Figure 1, particularly if thei andj loops in Figure 1 are replaced with the Fortran
90 array expression used in Figure 4.

5 The Shared Memory Model

The shared memory model, in contrast to the distributed memory model, has only
one process but multiple threads. All threads can access all1 of the memory of the

1Well, nearly all.
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Figure 5: Decomposition of the mesh across a two-dimensional array of four pro-
cesses, corresponding to an HPF BLOCK,BLOCK distribution.

process. This means that there is only single version of eachvariable. This is very
convenient; in some cases, a parallel, shared memory version of Figure 1 looks
exactly the same: the compiler may be able to create a parallel version directly
from the sequential code.

However, it can be helpful, both in terms of code clarity and the generation of
efficient parallel code, to include some code that describesthe desired parallelism.
One method that was designed for this kind of code is OpenMP [ope97]. The
OpenMP version is shown in Figure 6.

See Section?? for a more detailed discussion of OpenMP. A complete Open-
MPI code for the Jacobi example is available at the OpenMP website [ope].

6 Comments

This section has described very briefly the steps required when parallelizing code
to approximate the solution of a partial differential equation. While the algorithm
used in this discussion is inefficient by modern standards, the approach to par-
allelism is very similar to what is needed by state-of-the-art approaches for both
implicit and explicit solution methods. Sections?? and?? in this book discuss
more modern techniques.

Because of the simplicity of the algorithm and the data-structures in this exam-
ple, these examples are very simple and do not address the many issues that can
arise in more complex situations, such as unstructured grids, dynamic (run-time)
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real u(0:n,0:n), unew(0:n,0:n), f(1:n-1, 1:n-1), h

! Code to initialize f, u(0,*), u(n:*), u(*,0),
! and u(*,n) with g

h = 1.0 / n
do k=1, maxiter

!$omp parallel
!$omp do

do j=1, n-1
do i=1, n-1

unew(i,j) = 0.25 * ( u(i+1,j) + u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h * h * f(i,j) )

enddo
enddo

!$omp enddo
! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration
u = unew

!$omp end parallel
enddo

Figure 6: OpenMP (shared memory) version of the Jacobi algorithm
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real u(0:n,0:n), unew(0:n,0:n), twonorm

! ...
twonorm = 0.0
do j=1, n-1
do i=1, n-1

twonorm = twonorm + (unew(i,j) - u(i,j))**2
enddo

enddo
twonorm = sqrt(twonorm)
if (twonorm .le. tol) ! ... declare convergence

Figure 7: Sequential code to compute the two-norm of the difference between two
iterations of the Jacobi algorithm

allocation and management of data structures, and more complex data dependen-
cies between shared data-structures (either between processes or threads). Some of
these issues are discussed in more detail in Sections??. Even the convergence test,
a necessary part of this algorithm that we have left out for simplicity, requires care,
since the result is a single value that all processes/threads contribute to and that
must be available to all processes. Computing this scalablyand correctly requires
care; each of the programming models illustrated above provides special features
to handle this and similar problems. These are discussed in the next section.

Another discussion that focuses on some of the more subtle issues, particularly
for the shared memory case is given in [Pfi98]. Suggestions for choosing between
different approaches to expressing parallel programs are given in Section??.

7 Adding Global Operations

In the examples above, the code to check for convergence was left out. This al-
lowed us to concentrate on how to compute with an array distributed across many
processes or processors. For computations such as a convergence test, a single
value is needed by all processes or threads. In this section,we discuss how each
approach to parallel computing provides this operation.

A simple convergence test is to compute the two-norm of the difference be-
tween two successive iterations. In the serial case, this can be accomplished with
the code shown in Figure 7.
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use mpi
real u(0:n,js-1:je+1), unew(0:n,js-1:je+1), twonorm
integer ierr

! ...

twonorm_local = 0.0
do j=js, je
do i=1, n-1

twonorm_local = twonorm_local + &
(unew(i,j) - u(i,j))**2

enddo
enddo
call MPI_Allreduce( twonorm_local, twonorm, 1, &

MPI_REAL, MPI_SUMM, MPI_COMM_WORLD, ierr )
twonorm = sqrt(twonorm)
if (twonorm .le. tol) ! ... declare convergence

Figure 8: Message-passing version of Figure 7

7.1 Collective operations in MPI

In the MPI case, computing the two norm of the difference ofunew andu re-
quires two steps. First, the sum of the squares of the differences of the local part of
unew andu are computed. These are then combined with the contributions from
all of the other processes and summed together. Because the operation of combin-
ing values from many processes is common and important, and because efficient
implementations of this operation can require very system-specific code and al-
gorithms, MPI provides a special routine,MPI Allreduce, to combine a value
from each process and return to all processes the result. This is shown in Figure 8.

This operation is called areduction because it combines values from many
sources into a single value. MPI provides many routines for communication and
computation on a collection of processes; these are calledcollective operations.

7.2 Reductions in HPF

Fortran 90 and hence HPF contain built-in functions for computing the sum of all
of the values in an array. In HPF, these functions work with distributed arrays, so
the code is very simple, as shown in Figure 9.
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real u(0:n,0:n), unew(0:n,0:n), twonorm
!HPF$ DISTRIBUTE u(:,BLOCK)
!HPF$ ALIGN unew with u
!HPF$ ALIGN f with u

! ...
twonorm = sqrt ( &

sum ( (unew(1:n-1,1:n-1) - u(1:n-1,1:n-
1))**2) )

if (twonorm .le. tol) ! ... declare convergence
enddo

Figure 9: HPF version of the convergence test for the Jacobi algorithm

7.3 Reductions in OpenMP

The approach taken in OpenMP is somewhat different from thatin HPF. Just like
MPI, OpenMP recognizes that reductions are a common operation. In OpenMP,
you can indicate that the result of a variable is to be formed by a reduction with a
particular operator. This is shown in Figure 10.

The effect of thereduction(+:twonorm) statement is to cause the OpenMP
compiler to create a separate, private version oftwonorm in each thread. When
the enclosing scope ends, OpenMP combines the contributions in each thread using
the specified operation to form the final value.

This code also illustrates the directiveprivate to create a variable that is
private to each thread (i.e., not shared). Without this directive, the value ofld-
iff added to the thread-private value oftwonorm could come from the “wrong”
thread.

7.4 Final Comments

All of these approaches to finding the two-norm exploit the associativity of real
arithmetic. Unfortunately, computers don’t use real numbers, they use an approx-
imation called floating-point numbers. Operations with floating-point number are
nearly but not exactly associative. (See any introductory book on Numerical Anal-
ysis.) Because of this lack of associativity, the value computed by these methods
may be different. In a well-designed algorithm, the difference will be small (in
relative terms). However, this difference can sometimes beunexpected and hence
confusing.
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real u(0:n,0:n), unew(0:n,0:n), twonorm

! ..
twonorm = 0.0

!$omp parallel
!$omp do private(ldiff) reduction(+:twonorm)

do j=1, n-1
do i=1, n-1

ldiff = (unew(i,j) - u(i,j))**2
twonorm = twonorm + ldiff

enddo
enddo

!$omp enddo
!$omp end parallel

twonorm = sqrt(twonorm)
enddo

Figure 10: OpenMP (shared memory) version of the convergence test for the Jacobi
algorithm

8 Unstructured Meshes

The preceeding sections have focused on regular meshes because these provide
the simplist code examples. Many computations, however, rely on unstructured
meshes, such as that in Figure 11.

Parallelizing a code that uses an unstructured mesh followsa similar path to
parallelizing a structured-mesh code. For MPI, the first step is to partition the grid.
For parallel finite element calculations, it is necessary topartition the mesh across
the processors in such a way that each processor’s work load is balanced and the
communication between processors is minimized. There are many different ways
to partition meshes, and if done naively, the result can be aninefficient parallel
implementation. Consider a simple example using linear finite elements on an un-
structured, triangular mesh. In this case, the amount of work associated with each
element is the same and communication is required to transfer information to near-
est neighbor elements that have been assigned to a differentprocessor. Thus to
meet our partitioning objective of assigning equal work to all processors while si-
multaneously minimizing communication costs, we must assign an equal number
of elements to the processors and minimize the number of off-processor neighbor-
ing elements. In Figure 12, we show the results of two partitioning strategies for
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Figure 11: A simple unstructured grid

a triangular mesh. In the left figure, we sort the elements by they-coordinant of
their centroid and assign an equal number of elements to eachof four processors.
In the right figure, we sort the elements in they-direction and make one cut that
divides the set of elements in half. Each subset of elements is then sorted in thex-
direction and divided so that they have again been equally distributed to each of the
four processors. Although both partitioning strategies balance the work load, their
communication patterns are quite different. For example, consider processor P3;
the communication required for this processor is indicatedby the shaded elements
in each figure. There are roughly twice the number of off-processor neighbors in
the first partitioning which will result in larger communication costs and a less
efficient parallel implementation.

Many techniques have been developed for partitioning meshes; see Chapter??
for more information.

Once the mesh has been partitioned, neighbor data must be moved between
processes just as it was in the structure-mesh case. With MPI, this requires roughly
the same routines, though the appropriate data must be gathered from the unstructured-
mesh data structure, communicated to the neighboring process, and scattered to the
appropriate ghostcells. MPI also provides a way to combine the scatter and gather
operations with the communication through the use of MPI datatypes, though few
MPI implementations have made these efficient.
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Figure 12: The results of partitioning an unstructured meshusing two different
strategies

!HPF$ DISTRIBUTE ugather(*,BLOCK)
!HPF$ ALIGN uscatter WITH ugather

real ugather(n,2), uscatter(n,2)
! ... gather data into ugather(:,myprocess)
uscatter(:,myprocess) = ugather(:,neighbor)

Figure 13: Using HPF arrays to communicate data from processneighbor to the
calling process.

In HPF, similar steps must be used, since it is no longer possible to use HPF par-
titioning directives to partition the unstructured mesh. Communication of neighbor
data between processes can be managed by using a communication array as shown
in Figure 13.

In this example, each process sendsn data items. In an unstructured mesh
computation, the number of neighbor data values needed willprobably be different
for each neighboring process. With a little more work, each process can arrange to
communicate exactly the correct amount of data.

Since OpenMP is a fully shared-memory model, it is unnecessary to explicitly
communicate any data. An unstructured mesh often has a single loop (over all
mesh cells), rather than nested loops over each coordinate direction; further, the
mesh data is often accessed through indirect addressing (e.g.,A(IADD(K)) rather
thanA(K)). Partitioning the mesh and introducing an outer loop over the partitions
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can help the OpenMP compiler generate efficient code. Partitioning the mesh also
helps in maintaining memory locality, which is critical forperformance. To reduce
the performance consequences offalse sharing, it may also be necessary to make
copies of the neighboring data, similar to the gather/scatter steps that are required
for MPI and HPF.
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