
Computational Grids?Ian Foster1 and Carl Kesselman21 Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439itf@mcs.anl.gov2 Information Sciences InstituteUniversity of Southern CaliforniaMarina de Rey, CA 90292carl@isi.eduAbstract. In this introductory chapter, we lay the groundwork for therest of the book by providing a more detailed picture of the expectedpurpose, shape, and architecture of future grid systems. We structurethe chapter in terms of six questions that we believe are central to thisdiscussion: Why do we need computational grids? What types of appli-cations will grids be used for? Who will use grids? How will grids beused? What is involved in building a grid? And, what problems mustbe solved to make grids commonplace? We provide an overview of eachof these issues here, referring to subsequent chapters for more detaileddiscussion.1 Reasons for Computational GridsWhy do we need computational grids? Computational approaches to problemsolving have proven their worth in almost every �eld of human endeavor. Com-puters are used for modeling and simulating complex scienti�c and engineeringproblems, diagnosing medical conditions, controlling industrial equipment, fore-casting the weather, managing stock portfolios, and many other purposes. Yet,although there are certainly challenging problems that exceed our ability to solvethem, computers are still used much less extensively than they could be. To pickjust one example, university researchers make extensive use of computers whenstudying the impact of changes in land use on biodiversity, but city plannersselecting routes for new roads or planning new zoning ordinances do not. Yet itis local decisions such as these that, ultimately, shape our future.There are a variety of reasons for this relative lack of use of computationalproblem-solvingmethods, including lack of appropriate education and tools. Butone important factor is that the average computing environment remains inad-equate for such computationally sophisticated purposes. While today's PC is? This work was supported by the Mathematical, Information, and Computational Sci-ences Division subprogram of the O�ce of Advanced Scienti�c Computing Research,U.S. Department of Energy, under Contract W-31-109-Eng-38.

faster than the Cray supercomputer of 10 years ago, it is still far from adequatefor predicting the outcome of complex actions or selecting from among manychoices. That, after all, is why supercomputers have continued to evolve.1.1 Increasing Delivered ComputationWe believe that the opportunity exists to provide users|whether city plan-ners, engineers, or scientists|with substantially more computational power: anincrease of three orders of magnitude within �ve years, and �ve orders of magni-tude within a decade. These dramatic increases will be achieved by innovationsin a wide range of areas:1. Technology improvement: Evolutionary changes in VLSI technology and mi-croprocessor architecture can be expected to result in a factor of 10 increasein computational capabilities in the next �ve years, and a factor of 100 in-crease in the next ten.2. Increase in demand-driven access to computational power:Many applicationshave only episodic requirements for substantial computational resources. Forexample, a medical diagnosis system may be run only when a cardiogramis performed, a stockmarket simulation only when a user recomputes re-tirement bene�ts, or a seismic simulation only after a major earthquake. Ifmechanisms are in place to allow reliable, instantaneous, and transparentaccess to high-end resources, then from the perspective of these applicationsit is as if those resources are dedicated to them. Given the existence of mul-titeraFLOPS systems, an increase in apparent computational power of threeor more orders of magnitude is feasible.3. Increased utilization of idle capacity: Most low-end computers (PCs andworkstations) are often idle: various studies report utilizations of around30% in academic and commercial environments [47],[21]. Utilization can beincreased by a factor of two, even for parallel programs [4], without im-pinging signi�cantly on productivity. The bene�t to individual users can besubstantially greater: factors of 100 or 1,000 increase in peak computationalcapacity have been reported [41], [75].4. Greater sharing of computational results: The daily weather forecast involvesperhaps 1014 numerical operations. If we assume that the forecast is of ben-e�t to 107 people, we have 1021 e�ective operations|comparable to thecomputation performed each day on all the world's PCs. Few other compu-tational results or facilities are shared so e�ectively today, but they may bein the future as other scienti�c communities adopt a \big science" approachto computation. The key to more sharing may be the development of collab-oratories: \: : : center[s] without walls, in which the nation's researchers canperform their research without regard to geographical location|interactingwith colleagues, accessing instrumentation, sharing data and computationalresources, and accessing information in digital libraries" [48].5. New problem-solving techniques and tools: A variety of approaches can im-prove the e�ciency or ease with which computation is applied to problem

solving. For example, network-enabled solvers [17], [11] allow users to invokeadvanced numerical solution methods without having to install sophisticatedsoftware. Teleimmersion techniques [50] facilitate the sharing of computa-tional results by supporting collaborative steering of simulations and explo-ration of data sets.Underlying each of these advances is the synergistic use of high-performancenetworking, computing, and advanced software to provide access to advancedcomputational capabilities, regardless of the location of users and resources.1.2 De�nition of Computational GridsThe current status of computation is analogous in some respects to that ofelectricity around 1910. At that time, electric power generation was possible,and new devices were being devised that depended on electric power, but theneed for each user to build and operate a new generator hindered use. The trulyrevolutionary development was not, in fact, electricity, but the electric power gridand the associated transmission and distribution technologies. Together, thesedevelopments provided reliable, low-cost access to a standardized service, withthe result that power|which for most of human history has been accessibleonly in crude and not especially portable forms (human e�ort, horses, waterpower, steam engines, candles)|became universally accessible. By allowing bothindividuals and industries to take for granted the availability of cheap, reliablepower, the electric power grid made possible both new devices and the newindustries that manufactured them.By analogy, we adopt the term computational grid for the infrastructure thatwill enable the increases in computation discussed above. A computational gridis a hardware and software infrastructure that provides dependable, consistent,pervasive, and inexpensive access to high-end computational capabilities.We talk about an infrastructure because a computational grid is concerned,above all, with large-scale pooling of resources, whether compute cycles, data,sensors, or people. Such pooling requires signi�cant hardware infrastructure toachieve the necessary interconnections and software infrastructure to monitorand control the resulting ensemble. In the rest of this chapter, and throughoutthe book, we discuss in detail the nature of this infrastructure.The need for dependable service is fundamental. Users require assurances thatthey will receive predictable, sustained, and often high levels of performance fromthe diverse components that constitute the grid; in the absence of such assur-ances, applications will not be written or used. The performance characteristicsthat are of interest will vary widely from application to application, but mayinclude network bandwidth, latency, jitter, computer power, software services,security, and reliability.The need for consistency of service is a second fundamental concern. As withelectric power, we need standard services, accessible via standard interfaces,and operating within standard parameters. Without such standards, application

development and pervasive use are impractical. A signi�cant challenge when de-veloping standards is to encapsulate heterogeneity without compromising high-performance execution.Pervasive access allows us to count on services always being available, withinwhatever environment we expect to move. Pervasiveness does not imply thatresources are everywhere or are universally accessible. We cannot access electricpower in a new home until wire has been laid and an account established with thelocal utility; computational grids will have similarly circumscribed availabilityand controlled access. However, we will be able to count on universal accesswithin the con�nes of whatever environment the grid is designed to support.Finally, an infrastructure must o�er inexpensive (relative to income) accessif it is to be broadly accepted and used. Homeowners and industrialists bothmake use of remote billion-dollar power plants on a daily basis because the costto them is reasonable. A computational grid must achieve similarly attractiveeconomics.It is the combination of dependability, consistency, and pervasiveness thatwill cause computational grids to have a transforming e�ect on how computa-tion is performed and used. By increasing the set of capabilities that can betaken for granted to the extent that they are noticed only by their absence,grids allow new tools to be developed and widely deployed. Much as pervasiveaccess to bitmapped displays changed our baseline assumptions for the design ofapplication interfaces, computational grids can fundamentally change the waywe think about computation and resources.1.3 The Impact of GridsThe history of network computing (see Chapters ?? and ??) shows that orders-of-magnitude improvements in underlying technology invariably enable revolution-ary, often unanticipated, applications of that technology, which in turn motivatefurther technological improvements. As a result, our view of network computinghas undergone repeated transformations over the past 40 years.There is considerable evidence that another such revolution is imminent. Thecapabilities of both computers and networks continue to increase dramatically.Ten years of research on metacomputing has created a solid base of experience innew applications that couple high-speed networking and computing. The timeseems ripe for a transition from the heroic days of metacomputing to moreintegrated computational grids with dependable and pervasive computationalcapabilities and consistent interfaces. In such grids, today's metacomputing ap-plications will be routine, and programmers will be able to explore a new gen-eration of yet more interesting applications that leverage teraFLOP computersand petabyte storage systems interconnected by gigabit networks. We presenttwo simple examples to illustrate how grid functionality may transform di�erentaspects of our lives.Today's home �nance software packages leverage the pervasive availability ofcommunication technologies such as modems, Internet service providers, and theWeb to integrate up-to-date stock prices obtained from remote services into local

portfolio value calculations. However, the actual computations performed onthis data are relatively simple. In tomorrow's grid environment, we can imagineindividuals making stock-purchasing decisions on the basis of detailed MonteCarlo analyses of future asset value, performed on remote teraFLOP computers.The instantaneous use of three orders of magnitude more computing power thantoday will go unnoticed by prospective retirees, but their lives will be di�erentbecause of more accurate information.Today, citizen groups evaluating a proposed new urban development muststudy uninspiring blueprints or perspective drawings at city hall. A computa-tional grid will allow them to call on powerful graphics computers and databasesto transform the architect's plans into realistic virtual reality depictions and toexplore such design issues as energy consumption, lighting e�ciency, or soundquality. Meeting online to walk through and discuss the impact of the new de-velopment on their community, they can arrive at better urban design and henceimproved quality of life. Virtual reality-based simulation models of Los Ange-les, produced by William Jepson [?], and the walkthrough model of Soda Hallat the University of California{Berkeley, constructed by Carlo Seguin and hiscolleagues, are interesting exemplars of this use of computing [9].1.4 Electric Power GridsWe conclude this section by reviewing briey some salient features of the com-putational grid's namesake. The electric power grid is remarkable in terms ofits construction and function, which together make it one of the technologicalmarvels of the 20th century. Within large geographical regions (e.g., North Amer-ica), it forms essentially a single entity that provides power to billions of devices,in a relatively e�cient, low-cost, and reliable fashion. The North American gridalone links more than ten thousand generators with billions of outlets via a com-plex web of physical connections and trading mechanisms [12]. The componentsfrom which the grid is constructed are highly heterogeneous in terms of theirphysical characteristics and are owned and operated by di�erent organizations.Consumers di�er signi�cantly in terms of the amount of power they consume,the service guarantees they require, and the amount they are prepared to pay.Analogies are dangerous things, and electricity is certainly very di�erent fromcomputation in many respects. Nevertheless, the following aspects of the powergrid seem particularly relevant to the current discussion.Importance of Economics The role and structure of the power grid are drivento a large extent by economic factors. Oil- and coal-�red generators have signif-icant economies of scale. A power company must be able to call upon reservecapacity equal to its largest generator in case that generator fails; intercon-nections between regions allow for sharing of such reserve capacity, as well asenabling trading of excess power. The impact of economic factors on computa-tional grids is not well understood [34]. Where and when are there economiesof scale to be obtained in computational capabilities? Might economic factors

lead us away from today's model of a \computer on every desktop"? We note anintriguing development. Recent advances in power generation technology (e.g.,small gas turbines) and the deregulation of the power industry are leading someanalysts to look to the Internet for lessons regarding the future evolution of theelectric power grid!Importance of Politics The developers of large-scale grids tell us that theirsuccess depended on regulatory, political, and institutional developments asmuch as on technical innovation [12]. This lesson should be taken to heart bydevelopers of future computational grids.Complexity of Control The principal technical challenges in power grids|once technology issues relating to e�cient generation and high-voltage trans-mission had been overcome|relate to the management of a complex ensemblein which changes at a single location can have far-reaching consequences [12].Hence, we �nd that the power grid includes a sophisticated infrastructure formonitoring, management, and control. Again, there appear to be many paral-lels between this control problem and the problem of providing performanceguarantees in large-scale, dynamic, and heterogeneous computational grid envi-ronments.2 Grid ApplicationsWhat types of applications will grids be used for? Building on experiences in gi-gabit testbeds [42],[59], the I-WAY network [19], and other experimental systems(see Chapter ??), we have identi�ed �ve major application classes for computa-tional grids, listed in Table 1 and described briey in this section. More detailsabout applications and their technical requirements are provided in the refer-enced chapters.2.1 Distributed SupercomputingDistributed supercomputing applications use grids to aggregate substantial com-putational resources in order to tackle problems that cannot be solved on a singlesystem. Depending on the grid on which we are working (see Section 3), theseaggregated resources might comprise the majority of the supercomputers in thecountry or simply all of the workstations within a company. Here are some con-temporary examples:{ Distributed interactive simulation (DIS) is a technique used for training andplanning in the military. Realistic scenarios may involve hundreds of thou-sands of entities, each with potentially complex behavior patterns. Yet eventhe largest current supercomputers can handle at most 20,000 entities. In re-cent work, researchers at the California Institute of Technology have shownhow multiple supercomputers can be coupled to achieve record-breaking lev-els of performance (see Section ??).

Table 1. Five major classes of grid applications. ChapterCategory Examples Characteristics referenceDistributed su-percomputing DISStellar dynamicsAb initio chem-istry Very large problemsneeding lots of CPU,memory, etc. 2High through-put Chip designParameter stud-ies Crypto-graphic prob-lems Harnessing many oth-erwise idle resourcesto increase aggregatethroughput 12On demand Medical instrumentationNetwork-enabled solversCloud detection Remote resources integrated with lo-cal computation, often for boundedamount of time 3, 6Data intensive Sky surveyPhysics dataData assimila-tion Synthesis of new informa-tion from many or largedata sources 4Collaborative Collaborative designData exploration Educa-tion Support communication or collabora-tive work between multiple partici-pants 5

{ The accurate simulation of complex physical processes can require high spa-tial and temporal resolution in order to resolve �ne-scale detail. Coupledsupercomputers can be used in such situations to overcome resolution bar-riers and hence to obtain qualitatively new scienti�c results. Although highlatencies can pose signi�cant obstacles, coupled supercomputers have beenused successfully in cosmology [54], high-resolution ab initio computationalchemistry computations [52], and climate modeling [45].Challenging issues from a grid architecture perspective include the need tocoschedule what are often scarce and expensive resources, the scalability of pro-tocols and algorithms to tens or hundreds of thousands of nodes, latency-tolerantalgorithms, and achieving and maintaining high levels of performance across het-erogeneous systems.2.2 High-Throughput ComputingIn high-throughput computing, the grid is used to schedule large numbers ofloosely coupled or independent tasks, with the goal of putting unused processorcycles (often from idle workstations) to work. The result may be, as in distributedsupercomputing, the focusing of available resources on a single problem, but thequasi-independent nature of the tasks involved leads to very di�erent types ofproblems and problem-solving methods. Here are some examples:{ Platform Computing Corporation reports that the microprocessor manufac-turer Advanced Micro Devices used high-throughput computing techniquesto exploit over a thousand computers during the peak design phases of theirK6 and K7 microprocessors. These computers are located on the desktopsof AMD engineers at a number of AMD sites and were used for design veri-�cation only when not in use by engineers.{ The Condor system from the University of Wisconsin is used to managepools of hundreds of workstations at universities and laboratories around theworld [41]. These resources have been used for studies as diverse as molecularsimulations of liquid crystals, studies of ground-penetrating radar, and thedesign of diesel engines.{ More loosely organized e�orts have harnessed tens of thousands of computersdistributed worldwide to tackle hard cryptographic problems [40].2.3 On-Demand ComputingOn-demand applications use grid capabilities to meet short-term requirementsfor resources that cannot be cost-e�ectively or conveniently located locally. Theseresources may be computation, software, data repositories, specialized sensors,and so on. In contrast to distributed supercomputing applications, these ap-plications are often driven by cost-performance concerns rather than absoluteperformance. For example:

{ The NEOS [17] and NetSolve [11] network-enhanced numerical solver sys-tems allow users to couple remote software and resources into desktop appli-cations, dispatching to remote servers calculations that are computationallydemanding or that require specialized software.{ A computer-enhanced MRImachine and scanning tunneling microscope (STM)developed at the National Center for Supercomputing Applications use su-percomputers to achieve realtime image processing [57],[58]. The result is asigni�cant enhancement in the ability to understand what we are seeing and,in the case of the microscope, to steer the instrument. (See also Section ??.){ A system developed at the Aerospace Corporation for processing of data frommeteorological satellites uses dynamically acquired supercomputer resourcesto deliver the results of a cloud detection algorithm to remote meteorologistsin quasi real time [38].The challenging issues in on-demand applications derive primarily from thedynamic nature of resource requirements and the potentially large populationsof users and resources. These issues include resource location, scheduling, codemanagement, con�guration, fault tolerance, security, and payment mechanisms.2.4 Data-Intensive ComputingIn data-intensive applications, the focus is on synthesizing new informationfrom data that is maintained in geographically distributed repositories, digi-tal libraries, and databases. This synthesis process is often computationally andcommunication intensive as well.{ Future high-energy physics experiments will generate terabytes of data perday, or around a petabyte per year (see Section ??). The complex queriesused to detect \interesting" events may need to access large fractions of thisdata [43]. The scienti�c collaborators who will access this data are widelydistributed, and hence the data systems in which data is placed are likely tobe distributed as well.{ The Digital Sky Survey (Section ??) will, ultimately, make many terabytesof astronomical photographic data available in numerous network-accessibledatabases. This facility enables new approaches to astronomical researchbased on distributed analysis, assuming that appropriate computational gridfacilities exist.{ Modern meteorological forecasting systems make extensive use of data as-similation to incorporate remote satellite observations (see Section ??). Thecomplete process involves the movement and processing of many gigabytesof data.Challenging issues in data-intensive applications are the scheduling and con-�guration of complex, high-volume data ows through multiple levels of hierar-chy.

2.5 Collaborative ComputingCollaborative applications are concerned primarily with enabling and enhancinghuman-to-human interactions. Such applications are often structured in termsof a virtual shared space. Many collaborative applications are concerned withenabling the shared use of computational resources such as data archives andsimulations; in this case, they also have characteristics of the other applicationclasses just described. For example:{ The BoilerMaker system developed at Argonne National Laboratory allowsmultiple users to collaborate on the design of emission control systems inindustrial incinerators [20]. The di�erent users interact with each other andwith a simulation of the incinerator.{ The CAVE5D system supports remote, collaborative exploration of largegeophysical data sets and the models that generate them|for example, acoupled physical/biological model of the Chesapeake Bay [74].{ The NICE system developed at the University of Illinois at Chicago allowschildren to participate in the creation and maintenance of realistic virtualworlds, for entertainment and education [60].Challenging aspects of collaborative applications from a grid architectureperspective are the realtime requirements imposed by human perceptual capa-bilities and the rich variety of interactions that can take place.We conclude this section with three general observations. First, we note thateven in this brief survey we see a tremendous variety of already successful appli-cations. This rich set has been developed despite the signi�cant di�culties facedby programmers developing grid applications in the absence of a mature gridinfrastructure. As grids evolve, we expect the range and sophistication of appli-cations to increase dramatically. Second, we observe that almost all of the appli-cations demonstrate a tremendous appetite for computational resources (CPU,memory, disk, etc.) that cannot be met in a timely fashion by expected growth insingle-system performance. This emphasizes the importance of grid technologiesas a means of sharing computation as well as a data access and communicationmedium. Third, we see that many of the applications are interactive, or dependon tight synchronization with computational components, and hence dependon the availability of a grid infrastructure able to provide robust performanceguarantees.3 Grid CommunitiesWho will use grids? One approach to understanding computational grids is toconsider the communities that they serve. Because grids are above all a mech-anism for sharing resources, we ask, What groups of people will have su�cientincentive to invest in the infrastructure required to enable sharing, and whatresources will these communities want to share?

One perspective on these questions holds that the bene�ts of sharing willalmost always outweigh the costs and, hence, that we will see grids that linklarge communities with few common interests, within which resource sharingwill extend to individual PCs and workstations. If we compare a computationalgrid to an electric power grid, then in this view, the grid is quasi-universal, andevery user has the potential to act as a cogenerator. Skeptics respond that thetechnical and political costs of sharing resources will rarely outweigh the bene�ts,especially when coupling must cross institutional boundaries. Hence, they arguethat resources will be shared only when there is considerable incentive to do so:because the resource is expensive, or scarce, or because sharing enables humaninteractions that are otherwise di�cult to achieve. In this view, grids will bespecialized, designed to support speci�c user communities with speci�c goals.Rather than take a particular position on how grids will evolve, we proposewhat we see as four plausible scenarios, each serving a di�erent community.Future grids will probably include elements of all four.3.1 GovernmentThe �rst community that we consider comprises the relatively small number|thousands or perhaps tens of thousands|of o�cials, planners, and scientistsconcerned with problems traditionally assigned to national government, such asdisaster response, national defense, and long-term research and planning. Therecan be signi�cant advantage to applying the collective power of the nation'sfastest computers, data archives, and intellect to the solution of these problems.Hence, we envision a grid that uses the fastest networks to couple relativelysmall numbers of high-end resources across the nation|perhaps tens of ter-aFLOP computers, petabytes of storage, hundreds of sites, thousands of smallersystems|for two principal purposes:1. To provide a \strategic computing reserve," allowing substantial computingresources to be applied to large problems in times of crisis, such as to planresponses to a major environmental disaster, earthquake, or terrorist attack2. To act as a \national collaboratory," supporting collaborative investigationsof complex scienti�c and engineering problems, such as global change, spacestation design, and environmental cleanupAn important secondary bene�t of this high-end national supercomputinggrid is to support resource trading between the various operators of high-endresources, hence increasing the e�ciency with which those resources are used.This national grid is distinguished by its need to integrate diverse high-end(and hence complex) resources, the strategic importance of its overall mission,and the diversity of competing interests that must be balanced when allocatingresources.3.2 A Health Maintenance OrganizationIn our second example, the community supported by the grid comprises admin-istrators and medical personnel located at a small number of hospitals within a

metropolitan area. The resources to be shared are a small number of high-endcomputers, hundreds of workstations, administrative databases, medical imagearchives, and specialized instruments such as MRI machines, CAT scanners, andcardioangiography devices (see Chapter ??). The coupling of these resourcesinto an integrated grid enables a wide range of new, computationally enhancedapplications: desktop tools that use centralized supercomputer resources to runcomputer-aided diagnosis procedures on mammograms or to search centralizedmedical image archives for similar cases; life-critical applications such as teler-obotic surgery and remote cardiac monitoring and analysis; auditing softwarethat uses the many workstations across the hospital to run fraud detection al-gorithms on �nancial records; and research software that uses supercomputersand idle workstations for epidemiological research. Each of these applicationsexists today in research laboratories, but has rarely been deployed in ordinaryhospitals because of the high cost of computation.This private grid is distinguished by its relatively small scale, central man-agement, and common purpose on the one hand, and on the other hand by thecomplexity inherent in using common infrastructure for both life-critical applica-tions and less reliability-sensitive purposes and by the need to integrate low-costcommodity technologies. We can expect grids with similar characteristics to beuseful in many institutions.3.3 A Materials Science CollaboratoryThe community in our third example is a group of scientists who operate anduse a variety of instruments, such as electron microscopes, particle accelera-tors, and X-ray sources, for the characterization of materials. This community isuid and highly distributed, comprising many hundreds of university researchersand students from around the world, in addition to the operators of the vari-ous instruments (tens of instruments, at perhaps ten centers). The resourcesthat are being shared include the instruments themselves, data archives contain-ing the collective knowledge of this community, sophisticated analysis softwaredeveloped by di�erent groups, and various supercomputers used for analysis.Applications enabled by this grid include remote operation of instruments, col-laborative analysis, and supercomputer-based online analysis.This virtual grid is characterized by a strong unifying focus and relativelynarrow goals on the one hand, and on the other hand by dynamic membership, alack of central control, and a frequent need to coexist with other uses of the sameresources. We can imagine similar grids arising to meet the needs of a variety ofmulti-institutional research groups and multicompany virtual teams created topursue long- or short-term goals.3.4 Computational Market EconomyThe fourth community that we consider comprises the participants in a broad-based market economy for computational services. This is a potentially enormouscommunity with no connections beyond the usual market-oriented relationships.

We can expect participants to include consumers, with their diverse needs andinterests; providers of specialized services, such as �nancial modeling, graph-ics rendering, and interactive gaming; providers of compute resources; networkproviders, who contract to provide certain levels of network service; and variousother entities such as banks and licensing organizations.This public grid is in some respects the most intriguing of the four scenariosconsidered here, but is also the least concrete. One area of uncertainty con-cerns the extent to which the average consumer will also act as a producerof computational resources. The answer to this question seems to depend ontwo issues. Will applications emerge that can exploit loosely coupled compu-tational resources? And, will owners of resources be motivated to contributeresources? To date, large-scale activity in this area has been limited to fairlyesoteric computations|such as searching for prime numbers, breaking crypto-graphic codes [40], or detecting extraterrestrial communications [64]|with thebene�t to the individuals being the fun of participating and the potential mo-mentary fame if their computer solves the problem in question.We conclude this section by noting that, in our view, each of these scenar-ios seems quite feasible; indeed, substantial prototypes have been created foreach of the grids that we describe. Hence, we expect to see not just one singlecomputational grid, but rather many grids, each serving a di�erent communitywith its own requirements and objectives. Just which grids will evolve dependscritically on three issues: the evolving economics of computing and networking,and the services that these physical infrastructure elements are used to provide;the institutional, regulatory, and political frameworks within which grids maydevelop; and, above all, the emergence of applications able to motivate users toinvest in and use grid technologies.4 Using GridsHow will grids be used? In metacomputing experiments conducted to date, usershave been \heroic" programmers, willing to spend large amounts of time pro-gramming complex systems at a low level. The resulting applications have pro-vided compelling demonstrations of what might be, but in most cases are tooexpensive, unreliable, insecure, and fragile to be considered suitable for generaluse.For grids to become truly useful, we need to take a signi�cant step for-ward in grid programming, moving from the equivalent of assembly languageto high-level languages, from one-o� libraries to application toolkits, and fromhand-crafted codes to shrink-wrapped applications. These goals are familiar tous from conventional programming, but in a grid environment we are faced withthe additional di�culties associated with wide area operation|in particular,the need for grid applications to adapt to changes in resource properties in orderto meet performance requirements. As in conventional computing, an impor-tant step toward the realization of these goals is the development of standardsfor applications, programming models, tools, and services, so that a division of

labor can be achieved between the users and developers of di�erent types ofcomponents.We structure our discussion of grid tools and programming in terms of theclassi�cation illustrated in Table 2. At the lowest level, we have grid developers|the designers and implementors of what we might call the \Grid Protocol," byanalogy with the Internet Protocol that provides the lowest-level services in theInternet|who provide the basic services required to construct a grid. Above this,we have tool developers, who use grid services to construct programming modelsand associated tools, layering higher-level services and abstractions on top ofthe more fundamental services provided by the grid architecture. Applicationdevelopers, in turn, build on these programming models, tools, and services toconstruct grid-enabled applications for end users who, ideally, can use theseapplications without being concerned with the fact that they are operating in agrid environment. A �fth class of users, system administrators, is responsible formanaging grid components. We now examine this model in more detail.Table 2. Classes of grid users.Class Purpose Makes use of ConcernsEnd users Solve Applications Transparency,problems performanceApplication Develop Programming Ease of use,developers applications models, tools performanceTool Develop tools, Grid Adaptivity, exposure ofdevelopers programming models services performance, securityGrid Provide basic Local system Local simplicity,developers grid services services connectivity, securitySystem Manage Management Balancing localadministrators grid resources tools and global concerns4.1 Grid DevelopersA very small group of grid developers are responsible for implementing the basicservices referred to above. We discuss the concerns encountered at this level inSection 5.4.2 Tool DevelopersOur second group of users are the developers of the tools, compilers, libraries, andso on that implement the programming models and services used by applicationdevelopers. Today's small population of grid tool developers (e.g., the developersof Condor [41], Nimrod [1], NEOS [17], NetSolve [11], Horus [68], grid-enabledimplementations of the Message Passing Interface (MPI) [27], and CAVERN [39])must build their tools on a very narrow foundation, comprising little more than

the Internet Protocol. We envision that future grid systems will provide a richerset of basic services, hence making it possible to build more sophisticated androbust tools. We discuss the nature and implementation of those basic servicesin Section 5; briey, they comprise versions of those services that have provene�ective on today's end systems and clusters, such as authentication, processmanagement, data access, and communication, plus new services that addressspeci�c concerns of the grid environment, such as resource location, information,fault detection, security, and electronic payment.Tool developers must use these basic services to provide e�cient implemen-tations of the programming models that will be used by application developers.In constructing these translations, the tool developer must be concerned notonly with translating the existing model to the grid environment, but also withrevealing to the programmer those aspects of the grid environment that impactperformance. For example, a grid-enabled MPI [27] can seek to adapt the MPImodel for grid execution by incorporating specialized techniques for point-to-point and collective communication in highly heterogeneous environments; im-plementations of collective operations might use multicast protocols and adapt acombining tree structure in response to changing network loads. It should prob-ably also extend the MPI model to provide programmers with access to resourcelocation services, information about grid topology, and group communicationprotocols.4.3 Application DevelopersOur third class of users comprises those who construct grid-enabled applicationsand components. Today, these programmers write applications in what is, ine�ect, an assembly language: explicit calls to the Internet Protocol's User Data-gram Protocol (UDP) or Transmission Control Protocol (TCP), explicit or nomanagement of failure, hard-coded con�guration decisions for speci�c comput-ing systems, and so on. We are far removed from the portable, e�cient, high-level languages that are used to develop sequential programs, and the advancedservices that programmers can rely upon when using these languages, such asdynamic memory management and high-level I/O libraries.Future grids will need to address the needs of application developers in twoways. They must provide programming models (supported by languages, libraries,and tools) that are appropriate for grid environments and a range of services(for security, fault detection, resource management, data access, communication,etc.) that programmers can call upon when developing applications.The purpose of both programmingmodels and services is to simplify thinkingabout and implementing complex algorithmic structures, by providing a set ofabstractions that hide details unrelated to the application, while exposing designdecisions that have a signi�cant impact on program performance or correctness.In sequential programming, commonly used programming models provide uswith abstractions such as subroutines and scoping; in parallel programming, wehave threads and condition variables (in shared-memory parallelism), messagepassing, distributed arrays, and single-assignment variables. Associated services

ensure that resources are allocated to processes in a reasonable fashion, provideconvenient abstractions for tertiary storage, and so forth.There is no consensus on what programming model is appropriate for a gridenvironment, although it seems clear that many models will be used. Table 3summarizes some of the models that have been proposed; new models will emergeas our understanding of grid programming evolves. These models are discussed inmore detail in Chapters ??, ??, and ??, while Chapter ?? discusses the relatedquestion of tools.As Table 3 makes clear, one approach to grid programming is to adapt mod-els that have already proved successful in sequential or parallel environments.For example, a grid-enabled distributed shared-memory (DSM) system wouldsupport a shared-memory programming model in a grid environment, allowingprogrammers to specify parallelism in terms of threads and shared-memory oper-ations. Similarly, a grid-enabled MPI would extend the popular message-passingmodel [27], and a grid-enabled �le system would permit remote �les to be ac-cessed via the standard UNIX application programming interface (API) [66].These approaches have the advantage of potentially allowing existing applica-tions to be reused unchanged, but can introduce signi�cant performance prob-lems if the models in question do not adapt well to high-latency, dynamic, het-erogeneous grid environments.Table 3. Potential grid programming models and their advantages and disadvantages.Model Examples Pros ConsDatagram/stream UDP, TCP, Low overhead Low levelcommunication MulticastShared memory, POSIX Threads High level Scalabilitymultithreading DSMData parallelism HPF, HPC++ Automatic Restrictedparallelization applicabilityMessage passing MPI, PVM High performance Low levelObject-oriented CORBA, DCOM, Support for PerformanceJava RMI large-system designRemote procedure DCE, ONC Simplicity Restrictedcall applicabilityHigh throughput Condor, LSF, Ease of use RestrictedNimrod applicabilityGroup ordered Isis, Totem Robustness Performance,scalabilityAgents Aglets, Flexibility Performance,Telescript robustnessAnother approach is to build on technologies that have proven e�ective indistributed computing, such as Remote Procedure Call (RPC) or related object-based techniques such as the Common Object Request Broker Architecture(CORBA). These technologies have signi�cant software engineering advantages,

because their encapsulation properties facilitate the modular construction ofprograms and the reuse of existing components. However, it remains to be seenwhether these models can support performance-focused, complex applicationssuch as teleimmersion or the construction of dynamic computations that spanhundreds or thousands of processors.The grid environment can also motivate new programming models and ser-vices. For example, high-throughput computing systems (Chapter ??), as exem-pli�ed by Condor [41] and Nimrod [1], support problem-solving methods such asparameter studies in which complex problems are partitioned into many inde-pendent tasks. Group-ordered communication systems represent another modelthat is important in dynamic, unpredictable grid environments; they provideservices for managing groups of processes and for delivering messages reliably togroup members. Agent-based programming models represent another approachapparently well suited to grid environments; here, programs are constructed asindependent entities that roam the network searching for data or performingother tasks on behalf of a user.A wide range of new services can be expected to arise in grid environmentsto support the development of more complex grid applications. In addition togrid analogs of conventional services such as �le systems, we will see new ser-vices for resource discovery, resource brokering, electronic payments, licensing,fault tolerance, speci�cation of use conditions, con�guration, adaptation, anddistributed system management, to name just a few.4.4 End UsersMost grid users, like most users of computers or networks today, will not writeprograms. Instead, they will use grid-enabled applications that make use of gridresources and services. These applications may be chemistry packages or envi-ronmental models that use grid resources for computing or data; problem-solvingpackages that help set up parameter study experiments [1]; mathematical pack-ages augmented with calls to network-enabled solvers [17],[11]]; or collaborativeengineering packages that allow geographically separated users to cooperate onthe design of complex systems.End users typically place stringent requirements on their tools, in terms ofreliability, predictability, con�dentiality, and usability. The construction of ap-plications that can meet these requirements in complex grid environments rep-resents a major research and engineering challenge.4.5 System AdministratorsThe �nal group of users that we consider are the system administrators whomust manage the infrastructure on which computational grids operate. Thistask is complicated by the high degree of sharing that grids are designed tomake possible. The user communities and resources associated with a particu-lar grid will frequently span multiple administrative domains, and new serviceswill arise|such as accounting and resource brokering|that require distributed

management. Furthermore, individual resources may participate in several dif-ferent grids, each with its own particular user community, access policies, and soon. For a grid to be e�ective, each participating resource must be administeredso as to strike an appropriate balance between local policy requirements andthe needs of the larger grid community. This problem has a signi�cant politicaldimension, but new technical solutions are also required.The Internet experience suggests that two keys to scalability when adminis-tering large distributed systems are to decentralize administration and to auto-mate trans-site issues. For example, names and routes are administered locally,while essential trans-site services such as route discovery and name resolutionare automated. Grids will require a new generation of tools for automaticallymonitoring and managing many tasks that are currently handled manually.New administration issues that arise in grids include establishing, monitor-ing, and enforcing local policies in situations where the set of users may belarge and dynamic; negotiating policy with other sites and users; accountingand payment mechanisms; and the establishment and management of marketsand other resource-trading mechanisms. There are interesting parallels betweenthese problems and management issues that arise in the electric power and bank-ing industries (114, [31],[28]).5 Grid ArchitectureWhat is involved in building a grid? To address this question, we adopt a systemarchitect's perspective and examine the organization of the software infrastruc-ture required to support the grid users, applications, and services discussed inthe preceding sections.As noted above, computational grids will be created to serve di�erent com-munities with widely varying characteristics and requirements. Hence, it seemsunlikely that we will see a single grid architecture. However, we do believe thatwe can identify basic services that most grids will provide, with di�erent gridsadopting di�erent approaches to the realization of these services.One major driver for the techniques used to implement grid services is scale.Computational infrastructure, like other infrastructures, is fractal, or self-similarat di�erent scales. We have networks between countries, organizations, clusters,and computers; between components of a computer; and even within a singlecomponent. However, at di�erent scales, we often operate in di�erent physical,economic, and political regimes. For example, the access control solutions usedfor a laptop computer's system bus are probably not appropriate for a trans-Paci�c cable.In this section, we adopt scale as the major dimension for comparison. Weconsider four types of systems, of increasing scale and complexity, asking twoquestions for each: What new concerns does this increase in scale introduce?And how do these new concerns inuence how we provide basic services? Thesesystem types are as follows (see also Table ??):

1. The end system provides the best model we have for what it means to com-pute, because it is here that most research and development e�orts havefocused in the past four decades.2. The cluster introduces new issues of parallelism and distributed manage-ment, albeit of homogeneous systems.3. The intranet introduces the additional issues of heterogeneity and geograph-ical distribution.4. The internet introduces issues associated with a lack of centralized control.An important secondary driver for architectural solutions is the performancerequirements of the grid. Stringent performance requirements amplify the e�ectof scale because they make it harder to hide heterogeneity. For example, if per-formance is not a big concern, it is straightforward to extend UNIX �le I/Oto support access to remote �les, perhaps via a HyperText Transport Protocol(HTTP) gateway [66]. However, if performance is critical, remote access mayrequire quite di�erent mechanisms|such as parallel transfers over a striped net-work from a remote parallel �le system to a local parallel computer|that are noteasily expressed in terms of UNIX �le I/O semantics. Hence, a high-performancewide area grid may need to adopt quite di�erent solutions to data access prob-lems. In the following, we assume that we are dealing with high-performancesystems; systems with lower performance requirements are generally simpler.5.1 Basic ServicesWe start our discussion of architecture by reviewing the basic services providedon conventional computers. We do so because we believe that, in the absence ofstrong evidence to the contrary, services that have been developed and provene�ective in several decades of conventional computing will also be desirable incomputational grids. Grid environments also require additional services, but weclaim that, to a signi�cant extent, grid development will be concerned withextending familiar capabilities to the more complex wide area environment.Our purpose in this subsection is not to provide a detailed exposition of well-known ideas but rather to establish a vocabulary for subsequent discussion. Weassume that we are discussing a generic modern computing system, and hencerefrain from pre�xing each statement with \in general," \typically," and the like.Individual systems will, of course, di�er from the generic systems described here,sometimes in interesting and important ways.The �rst step in a computation that involves shared resources is an authen-tication process, designed to establish the identity of the user. A subsequentauthorization process establishes the right of the user to create entities calledprocesses. A process comprises one or more threads of control, created for ei-ther concurrency or parallelism, and executing within a shared address space. Aprocess can also communicate with other processes via a variety of abstractions,including shared memory (with semaphores or locks), pipes, and protocols suchas TCP/IP.

A user (or process acting on behalf of a user) can control the activities inanother process|for example, to suspend, resume, or terminate its execution.This control is achieved by means of asynchronously delivered signals.A process acts on behalf of its creator to acquire resources, by executing in-structions, occupying memory, reading and writing disks, sending and receivingmessages, and so on. The ability of a process to acquire resources is limitedby underlying authorization mechanisms, which implement a system's resourceallocation policy, taking into account the user's identity, prior resource consump-tion, and/or other criteria. Scheduling mechanisms in the underlying system dealwith competing demands for resources and may also (for example, in realtimesystems) support user requests for performance guarantees.Underlying accounting mechanisms keep track of resource allocations andconsumption, and payment mechanisms may be provided to translate resourceconsumption into some common currency. The underlying system will also pro-vide protection mechanisms to ensure that one user's computation does not in-terfere with another's.Other services provide abstractions for secondary storage. Of these, virtualmemory is implicit, extending the shared address space abstraction alreadynoted; �le systems and databases are more explicit representations of secondarystorage.5.2 End SystemsIndividual end systems|computers, storage systems, sensors, and other devices|are characterized by relatively small scale and a high degree of homogeneity andintegration. There are typically just a few tens of components (processors, disks,etc.), these components are mostly of the same type, and the components andthe software that controls them have been co-designed to simplify managementand use and to maximize performance. (Specialized devices such as scienti�cinstruments may be more signi�cantly complex, with potentially thousands ofinternal components, of which hundreds may be visible externally.)Such end systems represent the simplest, and most intensively studied, envi-ronment in which to provide the services listed above. The principal challengesfacing developers of future systems of this type relate to changing computer ar-chitectures (in particular, parallel architectures) and the need to integrate endsystems more fully into clusters, intranets, and internets.State of the Art The software architectures used in conventional end systemsare well known [61]. Basic services are provided by a privileged operating system,which has absolute control over the resources of the computer. This operatingsystem handles authentication and mediates user process requests to acquireresources, communicate with other processes, access �les, and so on. The inte-grated nature of the hardware and operating system allows high-performanceimplementations of important functions such as virtual memory and I/O.Programmers develop applications for these end systems by using a variety ofhigh-level languages and tools. A high degree of integration between processor

architecture, memory system, and compiler means that high performance canoften be achieved with relatively little programmer e�ort.Future Directions A signi�cant de�ciency of most end-system architecturesis that they lack features necessary for integration into larger clusters, intranets,and internets. Much current research and development is concerned with evolv-ing system end architectures in directions relevant to future computational grids.To list just three: Operating systems are evolving to support operation in clus-tered environments, in which services are distributed over multiple networkedcomputers, rather than replicated on every processor [3],[65]. A second impor-tant trend is toward a greater integration of end systems (computers, disks,etc.) with networks, with the goal of reducing the overheads incurred at networkinterfaces and hence increasing communication rates [22],[35]. Finally, supportfor mobile code is starting to appear, in the form of authentication schemes,secure execution environments for downloaded code (\sandboxes"), and so on[32],[72],[71],[44],[71],[44].The net e�ect of these various developments seems likely to be to reduce thecurrently sharp boundaries between end system, cluster, and intranet/internet,with the result that individual end systems will more fully embrace remote com-putation, as producers and/or consumers.5.3 ClustersThe second class of systems that we consider is the cluster, or network of work-stations: a collection of computers connected by a high-speed local area net-work and designed to be used as an integrated computing or data processingresource (see Chapter ??). A cluster, like an individual end system, is a ho-mogeneous entity|its constituent systems di�er primarily in con�guration, notbasic architecture|and is controlled by a single administrative entity who hascomplete control over each end system. The two principal complicating factorsthat the cluster introduces are as follows:1. Increased physical scale: A cluster may comprise several hundred or thousandprocessors, with the result that alternative algorithms are needed for certainresource management and control functions.2. Reduced integration: A desire to construct clusters from commodity partsmeans that clusters are often less integrated than end systems. One impli-cation of this is reduced performance for certain functions (e.g., communi-cation).State of the Art The increased scale and reduced integration of the clusterenvironment make the implementation of certain services more di�cult and alsointroduce a need for new services not required in a single end system. Theresult tends to be either signi�cantly reduced performance (and hence rangeof applications) or software architectures that modify and/or extend end-systemoperating systems in signi�cant ways.

We use the problem of high-performance parallel execution to illustrate thetypes of issues that can arise when we seek to provide familiar end-system ser-vices in a cluster environment. In a single (multiprocessor) end system, high-performance parallel execution is typically achieved either by using specializedcommunication libraries such as MPI or by creating multiple threads that com-municate by reading and writing a shared address space.Both message-passing and shared-memory programming models can be im-plemented in a cluster. Message passing is straightforward to implement, sincethe commodity systems from which clusters are constructed typically support atleast TCP/IP as a communication protocol. Shared memory requires additionale�ort: in an end system, hardware mechanisms ensure a uniform address spacefor all threads, but in a cluster, we are dealing with multiple address spaces.One approach to this problem is to implement a logical shared memory by pro-viding software mechanisms for translating between local and global addresses,ensuring coherency between di�erent versions of data, and so forth. A variety ofsuch distributed shared-memory systems exist, varying according to the level atwhich sharing is permitted [76],[24],[53].In low-performance environments, the cluster developer's job is done at thispoint; message-passing and DSM systems can be run as user-level programsthat use conventional communication protocols and mechanisms (e.g., TCP/IP)for interprocessor communication. However, if performance is important, con-siderable additional development e�ort may be required. Conventional networkprotocols are orders of magnitude slower than intra-end-system communicationoperations. Low-latency, high-bandwidth inter-end-system communication canrequire modi�cations to the protocols used for communication, the operatingsystem's treatment of network interfaces, or even the network interface hard-ware [70],[56] (see Chapters ?? and ??).The cluster developer who is concerned with parallel performance must alsoaddress the problem of coscheduling. There is little point in communicatingextremely rapidly to a remote process that must be scheduled before it canrespond. Coscheduling refers to techniques that seek to schedule simultaneouslythe processes constituting a computation on di�erent processors [23], [63]. Incertain highly integrated parallel computers, coscheduling is achieved by using abatch scheduler: processors are space shared, so that only one computation usesa processor at a time. Alternatively, the schedulers on the di�erent systems cancommunicate, or the application itself can guide the local scheduling process toincrease the likelihood that processes will be coscheduled [3],[14].To summarize the points illustrated by this example: in clusters, the im-plementation of services taken for granted in end systems can require new ap-proaches to the implementation of existing services (e.g., interprocess commu-nication) and the development of new services (e.g., DSM and coscheduling).The complexity of the new approaches and services, as well as the number ofmodi�cations required to the commodity technologies from which clusters areconstructed, tends to increase proportionally with performance requirements.

We can paint a similar picture in other areas, such as process creation, processcontrol, and I/O. Experience shows that familiar services can be extended to thecluster environment without too much di�culty, especially if performance is notcritical; the more sophisticated cluster systems provide transparent mechanismsfor allocating resources, creating processes, controlling processes, accessing �les,and so forth, that work regardless of a program's location within the cluster.However, when performance is critical, new implementation techniques, low-levelservices, and high-level interfaces can be required [65],[25].Future Directions Cluster architectures are evolving in response to three pres-sures:1. Performance requirements motivate increased integration and hence operat-ing system and hardware modi�cations (for example, to support fast com-munications).2. Changed operational parameters introduce a need for new operating systemand user-level services, such as coscheduling.3. Economic pressures encourage a continued focus on commodity technologies,at the expense of decreased integration and hence performance and services.It seems likely that, in the medium term, software architectures for clusterswill converge with those for end systems, as end-system architectures addressissues of network operation and scale.5.4 IntranetsThe third class of systems that we consider is the intranet, a grid comprising apotentially large number of resources that nevertheless belong to a single organi-zation. Like a cluster, an intranet can assume centralized administrative controland hence a high degree of coordination among resources. The three principalcomplicating factors that an intranet introduces are as follows:1. Heterogeneity: The end systems and networks used in an intranet are al-most certainly of di�erent types and capabilities. We cannot assume a singlesystem image across all end systems.2. Separate administration: Individual systems will be separately administered;this feature introduces additional heterogeneity and the need to negotiatepotentially conicting policies.3. Lack of global knowledge: A consequence of the �rst two factors, and theincreased number of end systems, is that it is not possible, in general, forany one person or computation to have accurate global knowledge of systemstructure or state.

State of the Art The software technologies employed in intranets focus pri-marily on the problems of physical and administrative heterogeneity. The resultis typically a simpler, less tightly integrated set of services than in a typicalcluster. Commonly, the services that are provided are concerned primarily withthe sharing of data (e.g., distributed �le systems, databases, Web services) orwith providing access to specialized services, rather than with supporting the co-ordinated use of multiple resources. Access to nonlocal resources often requiresthe use of simple, high-level interfaces designed for \arm's-length" operationin environments in which every operation may involve authentication, formatconversions, error checking, and accounting. Nevertheless, centralized adminis-trative control does mean that a certain degree of uniformity of mechanism andinterface can be achieved; for example, all machines may be required to run aspeci�c distributed �le system or batch scheduler, or may be placed behind a�rewall, hence simplifying security solutions.Software architectures commonly used in intranets include the DistributedComputing Environment (DCE), DCOM, and CORBA. In these systems, pro-grams typically do not allocate resources and create processes explicitly, butrather connect to established \services" that encapsulate hardware resources orprovide de�ned computational services. Interactions occur via remote procedurecall [33] or remote method invocation [55],[36], models designed for situationsin which the parties involved have little knowledge of each other. Communica-tions occur via standardized protocols (typically layered on TCP/IP) that aredesigned for portability rather than high performance. In larger intranets, partic-ularly those used for mission-critical applications, reliable group communicationprotocols such as those implemented by ISIS [7] and Totem [46] (see Chapter ??)can be used to deal with failure by ordering the occurrence of events within thesystem.The limited centralized control provided by a parent organization can allowthe deployment of distributed queuing systems such as Load Sharing Facility(LSF), Codine, or Condor, hence providing uniform access to compute resources.Such systems provide some support for remote management of computation, forexample, by distributing a limited range of signals to processes through localservers and a logical signal distribution network. However, issues of security,payment mechanisms, and policy often prevent these solutions from scaling tolarge intranets.In a similar fashion, uniform access to data resources can be provided bymeans of wide area �le system technology (such as DFS), distributed databasetechnology, or remote database access (such as SQL servers). High-performance,parallel access to data resources can be provided by more specialized systemssuch as the High Performance Storage System [73]. In these cases, the interfacespresented to the application would be the same as those provided in the clusterenvironment.The greater heterogeneity, scale, and distribution of the intranet environmentalso introduce the need for services that are not needed in clusters. For exam-ple, resource discovery mechanisms may be needed to support the discovery of

the name, location, and other characteristics of resources currently available onthe network. A reduced level of trust and greater exposure to external threatsmay motivate the use of more sophisticated security technologies. Here, we canonce again exploit the limited centralized control that a parent organization cano�er. Solutions such as Kerberos [51] can be mandated and integrated into thecomputational model, providing a uni�ed authentication structure throughoutthe intranet.Future Directions Existing intranet technologies do a reasonable job of pro-jecting a subset of familiar programming models and services (procedure calls,�le systems, etc.) into an environment of greater complexity and physical scale,but are inadequate for performance-driven applications. We expect future de-velopments to overcome these di�culties by extending lighter-weight interac-tion models originally developed within clusters into the more complex intranetenvironment, and by developing specialized performance-oriented interfaces tovarious services. Some relevant issues are discussed in Chapters ?? and ??.5.5 InternetsThe �nal class of systems that we consider is also the most challenging on whichto perform network computing|internetworked systems that span multiple or-ganizations. Like intranets, internets tend to be large and heterogeneous. Thethree principal additional complicating factors that an internet introduces areas follows:1. Lack of centralized control: There is no central authority to enforce opera-tional policies or to ensure resource quality, and so we see wide variation inboth policy and quality.2. Geographical distribution: Internets typically link resources that are geo-graphically widely distributed. This distribution leads to network perfor-mance characteristics signi�cantly di�erent from those in local area or metropoli-tan area networks of clusters and intranets. Not only does latency scale lin-early with distance, but bisection bandwidth arguments [18],[26] suggest thataccessible bandwidth tends to decline linearly with distance, as a result ofincreased competition for long-haul links.3. International issues: If a grid extends across international borders, exportcontrols may constrain the technologies that can be used for security, and soon.State of the Art The internet environment's scale and lack of central con-trol have so far prevented the successful widespread deployment of grid services.Approaches that are e�ective in intranets often break down because of the in-creased scale and lack of centralized management. The set of assumptions thatone user or resource can make about another is reduced yet further, a situation

that can lead to a need for implementation techniques based on discovery andnegotiation.We use two examples to show how the internet environment can require newapproaches. We �rst consider security. In an intranet, it can be reasonable to as-sume that every user has a preestablished trust relationship with every resourcethat he wishes to access. In the more open internet environment, this assumptionbecomes intractable because of the sheer number of potential process-to-resourcerelationships. This problem is accentuated by the dynamic and transient natureof computation, which makes any explicit representation of these relationshipsinfeasible. Free-owing interaction between computations and resources requiresmore dynamic approaches to authentication and access control. One potentialsolution is to introduce the notion of delegation of trust into security relation-ships; that is, we introduce mechanisms that allow an organization A to trust auser U because user U is trusted by a second organization B, with which A hasa formal relationship. However, the development of such mechanisms remains aresearch problem (see Chapter ??).As a second example, we consider the problem of coscheduling. In an intranet,it can be reasonable to assume that all resources run a single scheduler, whethera commercial system such as LSF or a research system such as Condor. Hence,it may be feasible to provide coscheduling facilities in support of applicationsthat need to run on multiple resources at once. In an internet, we cannot relyon the existence of a common scheduling infrastructure. In this environment,coscheduling requires that a grid application (or scheduling service acting foran application) obtain knowledge of the scheduling policies that apply on dif-ferent resources and inuence the schedule either directly through an externalscheduling API or indirectly via some other means [16].Future Directions Future development of grid technologies for internet envi-ronments will involve the development of more sophisticated grid services andthe gradual evolution of the services provided at end systems in support ofthose services. There is little consensus on the shape of the grid architecturesthat will emerge as a result of this process, but both commercial technologiesand research projects point to interesting potential directions. Three of thesedirections|commodity technologies, Legion, and Globus|are explored in de-tail in later chapters. We note their key characteristics here but avoid discussionof their relative merits. There is as yet too little experience in their use for suchdiscussion to be meaningful.The commodity approach to grid architecture, as advocated in Chapter ??,adopts as the basis for grid development the vast range of commodity tech-nologies that are emerging at present, driven by the success of the Internetand Web and by the demands of electronic information delivery and commerce.These technologies are being used to construct three-tier architectures, in whichmiddle-tier application servers mediate between sophisticated back-end servicesand potentially simple front ends. Grid applications are supported in this en-

vironment by means of specialized high-performance back-end and applicationservers.The Legion approach to grid architecture, described in Chapter ??, seeksto use object-oriented design techniques to simplify the de�nition, deployment,application, and long-term evolution of grid components. Hence, the Legion ar-chitecture de�nes a complete object model that includes abstractions of computeresources called host objects, abstractions of storage systems called data vault ob-jects, and a variety of other object classes. Users can use inheritance and otherobject-oriented techniques to specialize the behavior of these objects to theirown particular needs, as well as develop new objects.The Globus approach to grid architecture, discussed in Chapter ??, is basedon two assumptions:1. Grid architectures should provide basic services, but not prescribe particularprogramming models or higher-level architectures.2. Grid applications require services beyond those provided by today's com-modity technologies.Hence, the focus is on de�ning a \toolkit" of low-level services for security,communication, resource location, resource allocation, process management, anddata access. These services are then used to implement higher-level services,tools, and programming models.In addition, hybrids of these di�erent architectural approaches are possibleand will almost certainly be addressed; for example, a commodity three-tiersystem might use Globus services for its back end.A wide range of other projects are exploring technologies of potential rele-vance to computational grids, for example, WebOS [67], Charlotte [6], UFO [2],ATLAS [5], Javelin [15], Popcorn [10], and Globe [69].6 Research ChallengesWhat problems must be solved to enable grid development? In preceding sec-tions, we outlined what we expect grids to look like and how we expect themto be used. In doing so, we tried to be as concrete as possible, with the goal ofproviding at least a plausible view of the future. However, there are certainlymany challenges to be overcome before grids can be used as easily and exibly aswe have described. In this section, we summarize the nature of these challenges,most of which are discussed in much greater detail in the chapters that follow.6.1 The Nature of ApplicationsEarly metacomputing experiments provide useful clues regarding the nature ofthe applications that will motivate and drive early grid development. However,history also tells us that dramatic changes in capabilities such as those discussedhere are likely to lead to radically new ways of using computers|ways as yet

unimagined. Research is required to explore the bounds of what is possible,both within those scienti�c and engineering domains in which metacomputinghas traditionally been applied, and in other areas such as business, art, and en-tertainment. Some of these issues are discussed at greater length in Chapters ??through ??.6.2 Programming Models and ToolsAs noted in Section 4, grid environments will require a rethinking of existingprogramming models and, most likely, new thinking about novel models moresuitable for the speci�c characteristics of grid applications and environments.Within individual applications, new techniques are required for expressing ad-vanced algorithms, for mapping those algorithms onto complex grid architec-tures, for translating user performance requirements into system resource re-quirements, and for adapting to changes in underlying system structure andstate. Increased application and system complexity increases the importanceof code reuse, and so techniques for the construction and composition of grid-enabled software components will be important. Another signi�cant challengeis to provide tools that allow programmers to understand and explain programbehavior and performance. These issues are discussed in Chapters ?? through?? and ??.6.3 System ArchitectureThe software systems that support grid applications must satisfy a variety ofpotentially conicting requirements. A need for broad deployment implies thatthese systems must be simple and place minimal demands on local sites. At thesame time, the need to achieve a wide variety of complex, performance-sensitiveapplications implies that these systems must provide a range of potentially so-phisticated services. Other complicating factors include the need for scalabilityand evolution to future systems and services. It seems likely that new approachesto software architecture will be needed to meet these requirements|approachesthat do not appear to be satis�ed by existing Internet, distributed computing,or parallel computing technologies. Architectural issues are discussed in Chap-ters ??, ??, ??, and ??.6.4 Algorithms and Problem-Solving MethodsGrid environments di�er substantially from conventional uniprocessor and paral-lel computing systems in their performance, cost, reliability, and security charac-teristics. These new characteristics will undoubtedly motivate the developmentof new classes of problem-solving methods and algorithms. Latency-tolerant andfault-tolerant solution strategies represent one important area in which researchis required [5],[6],[10]. Highly concurrent and speculative execution techniquesmay be appropriate in environments where many more resources are availablethan at present. These issues are touched upon in a number of places, notablyChapters ?? and ??.

6.5 Resource ManagementA de�ning feature of computational grids is that they involve sharing of networks,computers, and other resources. This sharing introduces challenging resourcemanagement problems that are beyond the state of the art in a variety of areas.Many of the applications described in later chapters need to meet stringentend-to-end performance requirements across multiple computational resourcesconnected by heterogeneous, shared networks. To meet these requirements, wemust provide improvedmethods for specifying application-level requirements, fortranslating these requirements into computational resources and network-levelquality-of-service parameters, and for arbitrating between conicting demands.These issues are discussed in Chapters ??, ??, and ??.6.6 SecuritySharing also introduces challenging security problems. Traditional network secu-rity research has focused primarily on two-party client-server interactions withrelatively low performance requirements. Grid applications frequently involvemany more entities, impose stringent performance requirements, and involvemore complex activities such as collective operations and the downloading ofcode. In larger grids, issues that arise in electronic markets become important.Users may require assurance and licensing mechanisms that can provide guar-antees (backed by �nancial obligations) that services behave as advertised [37].Some of these issues are addressed in Chapter ?? and Section ??.6.7 Instrumentation and Performance AnalysisThe complexity of grid environments and the performance complexity of manygrid applications make techniques for collecting, analyzing, and explaining per-formance data of critical importance. Depending on the application and comput-ing environment, poor performance as perceived by a user can be due to any oneor a combination of many factors: an inappropriate algorithm, poor load balanc-ing, inappropriate choice of communication protocol, contention for resources,or a faulty router. Signi�cant advances in instrumentation, measurement, andanalysis are required if we are to be able to relate subtle performance problems inthe complex environments of future grids to appropriate application and systemcharacteristics. Chapters ?? and ?? discuss these issues.6.8 End SystemsGrids also have implications for the end systems fromwhich they are constructed.Today's end systems are relatively small and are connected to networks by inter-faces and with operating system mechanisms originally developed for reading andwriting slow disks. Grids require that this model evolve in two dimensions. First,by increasing demand for high-performance networking, grid systems will moti-vate new approaches to operating system and network interface design in which

networks are integrated with computers and operating systems at a more funda-mental level than is the case today. Second, by developing new applications fornetworked computers, grids will accelerate local integration and hence increasethe size and complexity of the end systems from which they are constructed. Sig-ni�cant research is required in both areas, as discussed in Chapters ?? and ??.6.9 Network Protocols and InfrastructureGrid applications can be expected to have signi�cant implications for futurenetwork protocols and hardware technologies. Mainstream developments in net-working, particularly in the Internet community, have focused on best-e�ortservice for large numbers of relatively low-bandwidth ows. Many of the fu-ture grid applications discussed in this book require both high bandwidths andstringent performance assurances. Meeting these requirements will require ma-jor advances in the technologies used to transport, switch, route, and managenetwork ows. These issues are discussed in Chapters ?? and ??. In addition,as discussed in Chapter ??, a next generation of testbeds will be required tosupport the experiments that will advance the state of the art.7 SummaryThis chapter has provided a high-level view of the expected purpose, shape, andarchitecture of future grid systems and, in the process, sketched a road map formore detailed technical discussion in subsequent chapters. The discussion wasstructured in terms of six questions.Why do we need computational grids? We explained how grids can enhancehuman creativity by, for example, increasing the aggregate and peak computa-tional performance available to important applications and allowing the couplingof geographically separated people and computers to support collaborative engi-neering. We also discussed how such applications motivate our requirement fora software and hardware infrastructure able to provide dependable, consistent,and pervasive access to high-end computational capabilities.What types of applications will grids be used for? We described �ve classesof grid applications: distributed supercomputing, in which many grid resourcesare used to solve very large problems; high throughput, in which grid resourcesare used to solve large numbers of small tasks; on demand, in which grids areused to meet peak needs for computational resources; data intensive, in whichthe focus is on coupling distributed data resources; and collaborative, in whichgrids are used to connect people.Who will use grids? We examined the shape and concerns of four grid com-munities, each supporting a di�erent type of grid: a national grid, serving anational government; a private grid, serving a health maintenance organization;a virtual grid, serving a scienti�c collaboratory; and a public grid, supporting amarket for computational services.

How will grids be used? We analyzed the requirements of �ve classes of usersfor grid tools and services, distinguishing between the needs and concerns ofend users, application developers, tool developers, grid developers, and systemmanagers.What is involved in building a grid? We discussed potential approaches togrid architecture, distinguishing between the di�ering concerns that arise andtechnologies that have been developed within individual end systems, clusters,intranets, and internets.What problems must be solved to enable grid development? We provided abrief review of the research challenges that remain to be addressed before gridscan be constructed and used on a large scale.Further ReadingFormore informationon the topics covered in this chapter, see www.mkp.com/gridsand also the following references:{ A series of books published by the Corporation for National Research Ini-tiatives [29],[30],[31],[28] review and draw lessons from other large-scale in-frastructures, such as the electric power grid, telecommunications network,and banking system.{ Catlett and Smarr's original paper on metacomputing [13] provides an earlyvision of how high-performance distributed computing can change the wayin which scientists and engineers use computing.{ Papers in a 1996 special issue of the International Journal of SupercomputerApplications [19] describe the architecture and selected applications of theI-WAY metacomputing experiment.{ Papers in a 1997 special issue of the Communications of the ACM [62] de-scribe plans for a National Technology Grid.{ Several reports by the National Research Council touch upon issues relevantto grids [49],[50],[48].{ Birman and van Renesse [8] discuss the challenges that we face in achievingreliability in grid applications.References1. D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A tool for performingparameterised simulations using distributed workstations. In Proc. 4th IEEE Symp.on High Performance Distributed Computing. IEEE Computer Society Press, 1995.2. A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman. Extending theoperating system at the user level: The UFO global �le system. In 1997 AnnualTechnical Conference on UNIX and Advanced Computing Systems (USENIX'97),January 1997.3. T. Anderson. Glunix: A global layer Unix for NOW.http://now.cs.berkeley.edu/Glunix/glunix.html.

4. R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T. Anderson, and D. Patterson. Theinteraction of parallel and sequential workloads on a network of workstations. InProc. SIGMETRICS, 1995.5. J. Baldeschwieler, R. Blumofe, and E. Brewer. ATLAS: An infrastructure forglobal computing. In Proc. Seventh ACM SIGOPS European Workshop on SystemSupport for Worldwide Applications, 1996.6. A. Baratloo, M. Karaul, Z. Kedem, and P. Wycko�. Charlotte: Metacomputing onthe Web. In Proc. 9th Conference on Parallel and Distributed Computing Systems,1996.7. K. P. Birman and R. van Rennesse. Reliable Distributed Computing Using the IsisToolkit. IEEE Computer Society Press, 1994.8. Kenneth P. Birman and Robbert van Renesse. Software for reliable networks.Scienti�c American, May 1996.9. Richard Bukowski and Carlo Sequin. Interactive simulation of �re in virtual build-ing environments. In Proceedings of SIGGRAPH 97, 1997.10. N. Camiel, S. London, N. Nisan, and O. Regev. The POPCORN project: Dis-tributed computation over the Internet in Java. In Proc. 6th International WorldWide Web Conference, 1997.11. Henri Casanova and Jack Dongarra. Netsolve: A network server for solving com-putational science problems. Technical Report CS-95-313, University of Tennessee,November 1995.12. J. Casazza. The Development of Electric Power Transmission: The Role Played byTechnology, Institutions and People. IEEE Computer Society Press, 1993.13. C. Catlett and L. Smarr. Metacomputing. Communications of the ACM, 35(6):44{52, 1992.14. A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini, andJ. Prusakova. High performance virtual machines (HPVM): Clusters with su-percomputing APIs and performance. In Eighth SIAM Conference on ParallelProcessing for Scienti�c Computing (PP97), March 1997.15. B. Christiansen, P. Cappello, M. Ionescu, M. Neary, K. Schauser, and D. Wu.Javelin: Internet-based parallel computing using Java. In Proc. 1997 Workshop onJava in Computational Science and Engineering, 1997.16. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, andS. Tuecke. A resource management architecture for metacomputing systems. InThe 4th Workshop on Job Scheduling Strategies for Parallel Processing, 1998.17. Joseph Czyzyk, Michael P. Mesnier, and Jorge J. Mor�e. The Network-EnabledOptimization System (NEOS) Server. Preprint MCS-P615-0996, Argonne NationalLaboratory, Argonne, Illinois, 1996.18. W. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer AcademicPublishers, 1987.19. T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of thei-way: Wide area visual supercomputing. International Journal of SupercomputerApplications, 10(2):123{130, 1996.20. D. Diachin, L. Freitag, D. Heath, J. Herzog,W. Michels, and P. Plassmann. Remoteengineering tools for the design of pollution control systems for commercial boilers.International Journal of Supercomputer Applications, 10(2):208{218, 1996.21. F. Douglis and J. Ousterhout. Transparent process migration: Design alternativesand the Sprite implementation. Software|Practice and Experience, 21(8):757{85,1991.22. Peter Druschel, Mark B. Abbott, Michael A. Pagels, and Larry L. Peterson. Net-work subsystem design. IEEE Network, 7(4):8{17, July 1993.

23. Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. E�ective distributedscheduling of parallel workloads. In ACM SIGMETRICS '96 Conference on theMeasurement and Modeling of Computer Systems, 1996.24. S. Dwarkadas, P. Keleher, A. Cox, and W. Zwaenepoel. An evaluation of soft-ware distributed shared memory for next-generation processors and networks. InProceedings of the 20th International Symposium on Computer Architecture, SanDiego, CA, May 1993.25. D. Engler, M. Kaashoek, , and J. O'Toole Jr. Exokernel: An operating systemarchitecture for application-level resource management. In Proceedings of the Fif-teenth ACM Symposium on Operating Systems Principles, pages 251{266. ACMPress, 1995.26. I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.27. I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal, andS. Tuecke. A wide-area implementation of the Message Passing Interface. Par-allel Computing, 1998. to appear.28. Amy Friedlander. In God We Trust All Others Pay Cash: Banking as an AmericanInfrastructure 1800{1935. Corporation for National Research Initiatives, Reston,VA, 199.29. Amy Friedlander. Emerging Infrastructure: The Growth of Railroads. Corporationfor National Research Initiatives, Reston, VA, 1995.30. Amy Friedlander. Natural Monopoly and Universal Service: Telephones and Tele-graphs in the U.S. Telecommunications Infrastructure 1837{1940. Corporation forNational Research Initiatives, Reston, VA, 1995.31. Amy Friedlander. Power and Light: Electricity in the U.S. Energy Infrastructure1870{1940. Corporation for National Research Initiatives, Reston, VA, 1996.32. I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A secure environment foruntrusted helper applications. In Proceedings of the Sixth Usenix Security Sympo-sium, July 1996.33. Jr Harold Lockhart. OSF DCE: Guide to Developing Distributed Applications.McGraw Hill, 1994.34. Bernardo Huberman, editor. The Ecology of Computation. Elsevier SciencePublishers/North-Holland, 1988.35. Van Jacobson. E�cient protocol implementation. In ACM SIGCOMM '90 tutorial,September 1990.36. JavaSoft. RMI, The JDK 1.1 Speci�cation. http://javasoft.com/products/jdk/1.1/docs/guide/rmi/index.html. 1997.37. Charlie Lai, Gennady Medvinsky, and Cli�ord Neuman. Endorsements, licensing,and insurance for distributed system services. In Proceedings of the Second ACMConference on Computer and Communications Security, November 1994.38. C. Lee, C. Kesselman, and S. Schwab. Near-realtime satellite image processing:Metacomputing in CC++. IEEE Computer Graphics and Applications, 16(4):79{84, 1996.39. Jason Leigh, Andrew Johnson, and Thomas A. DeFanti. CAVERN: A distributedarchitecture for supporting scalable persistence and interoperability in collabora-tive virtual environments. Virtual Reality: Research, Development and Applica-tions, 2(2):217{237, December 1997.40. A. Lenstra. Factoring integers using the Web and the number �eld sieve. Technicalreport, Bellcore, August 1995.41. Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor|a hunter of idleworkstations. In Proceedings of the 8th International Conference of DistributedComputing Systems, pages 104{111, June 1988.

42. P. Lyster, L. Bergman, P. Li, D. Stan�ll, B. Crippe, R. Blom, C. Pardo, andD. Okaya. CASA gigabit supercomputing network: CALCRUST three-dimensionalreal-time multi-dataset rendering. In Proc. Supercomputing '92, 1992.43. K. Marzullo, M. Ogg, A. Ricciardi, A. Amoroso, F. Calkins, and E. Rothfus. NILE:Wide-area computing for high energy physics. Proceedings of the 1996 SIGOPSConference, 1996.44. G. McGraw and E. Felten. Java Security: Hostile Applets, Holes and Antidotes.John Wiley and Sons, 1996.45. C. Mechoso, C.-C. Ma, J. Farrara, J. Spahr, and R. Moore. Parallelization anddistribution of a coupled atmosphere-ocean general circulation model. Mon. Wea.Rev., 121:2062, 1993.46. L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos. Totem: A fault-tolerant multicast group communication system.Communications of the ACM, 39(4):54{63, April 1996.47. M. Mutka and M. Livny. The available capacity of a privately owned workstationenvironment. Performance Evaluation, 12(4):269{84, 1991.48. National Research Council. National Collaboratories: Applying Information Tech-nology for Scienti�c Research. National Academy Press, 1993.49. National Research Council. Evolving the High Performance Computing and Com-munications Initiative to Support the Nation's Information Infrastructure. NationalAcademy Press, 1995.50. National Research Council. More Than Screen Deep: Toward Every-Citizen Inter-faces to the Nation's Information Infrastructure. National Academy Press, 1997.51. B. Cli�ord Neuman and Theodore Ts'o. Kerberos: An authentication service forcomputer networks. IEEE Communications, 32(9), September 1994.52. J. Nieplocha and R. Harrison. Shared memory NUMA programming on the I-WAY. In Proc. 5th IEEE Symp. on High Performance Distributed Computing,pages 432{441. IEEE Computer Society Press, 1996.53. J. Nieplocha, R.J. Harrison, and R.J. Little�eld. Global Arrays: A portable\shared-memory" programming model for distributed memory computers. In Pro-ceedings of Supercomputing '94, pages 340{349. IEEE Computer Society Press,1994.54. M. Norman, P. Beckman, G. Bryan, J. Dubinski, D. Gannon, L. Hernquist, K. Kea-hey, J. Ostriker, J. Shalf, J. Welling, and S. Yang. Galaxies collide on the I-WAY:An example of heterogeneous wide-area collaborative supercomputing. Interna-tional Journal of Supercomputer Applications, 10(2):131{140, 1996.55. Object Management Group, Inc., Framingham, MA. The Common Object RequestBroker Architecture and Speci�cations, version 2.0 edition, July 1996.56. Scott Pakin, Vijay Karamcheti, and Andrew A. Chien. Fast Messages: E�cient,portable communication for workstation clusters and mpps. IEEE Concurrency,5(2):60{73, April-June 1997.57. C. Potter, R. Brady, P. Moran, C. Gregory, B. Carragher, N. Kisseberth, J. Lyding,and J. Lindquist. EVAC: A virtual environment for control of remote imaginginstrumentation. IEEE Computer Graphics and Applications, pages 62{66, 1996.58. C. Potter, Z-P. Liang, C. Gregory, H. Morris, and P. Lauterbur. Toward a neuro-scope: A real-time system for the evaluation of brain function. In Proc. First IEEEInt'l Conf. on Image Processing, volume 3, pages 25{29. IEEE Computer SocietyPress, 1994.59. I Richer and B Fuller. The MAGIC project: From vision to reality. IEEE Network,May/June 1996.

60. Maria Roussos, Andrew Johnson, Jason Leigh, Christina Valsilakis, Craig Barnes,and Thomas Moher. NICE: Combining constructionism, narrative, and collabora-tion in a virtual learning environment. Computer Graphics, 31(3):62{63, August1997.61. A. Silberschatz, J. Peterson, and P. Galvin. Operating Systems Concepts. Addison-Wesley, 1991.62. Larry Smarr. Computational infrastructure: Toward the 21st century. Communi-cations of the ACM, 40(11), November 1997.63. Patrick G. Sobalvarro and William E. Weihl. Demand-based coscheduling of par-allel jobs on multiprogrammed multiprocessors. In Proceedings of the Parallel JobScheduling Workshop at IPPS '95, 1995.64. W. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. Anderson. Anew major SETI project based on project SERENDIP data and 100,000 personalcomputers. In Astronomical and Biochemical Origins and the Search for the Lifein the Universe, 1997. IAU Colloquium No. 161.65. R. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hierarchical clustering: A struc-ture for scalable multiprocessor operating system design. The Journal of Super-computing, 9(1/2):105{134, 1995.66. A. Vahdat, P. Eastham, and T. Anderson. WebFS: A global cache coherent �lesys-tem. Technical report, Department of Computer Science, UC Berkeley, 1996.67. A. Vahdat, P. Eastham, C. Yoshikawa, E. Belani, T. Anderson, D. Culler, andM. Dahlin. WebOS: Operating system services for wide area applications. TechnicalReport UCB CSD-97-938, U.C. Berkeley, 1997.68. R. van Renesse, K. P. Birman, and S. Ma�eis. Horus: A exible group communi-cation system. Communications of the ACM, 39(4):76{83, April 1996.69. M. van Steen, P. Homburg, L. van Doorn, A. Tanenbaum, and W. de Jonge. To-wards object-based wide area distributed systems. In Proc. InternationalWorkshopon Object Orientation in Operating Systems, pages 224{227, 1995.70. T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: Amechanism for integrated communication and computation. In Proceedings of the19th International Symposium on Computer Architecture, pages 256{266. ACMPress, May 1992.71. R. Wahbe, S. Lucco, T. Anderson, and S. Graham. E�cient software-based faultisolation. In Proc. 14th Symposium on Operating System Principles. 1993.72. D. Wallach, D. Balfanz, D. Dean, and E. Felten. Extensible security in Java.Technical Report 546-97, Dept of Computer Science, Princeton University, 1997.73. R. Watson and R. Coyne. The parallel I/O architecture of the high performancestorage system (HPSS). In 14th IEEE Symposium Mass Storage Systems, Mon-terey, CA, September 1995. Comp. Soc. Press.74. Glen H. Wheless, Cathy M. Lascara, Arnoldo Valle-Levinson, Donald P. Brutzman,William Sherman, William L. Hibbard, and Brian E. Paul. Virtual chesapeake bay:Interacting with a coupled physical/biological model. IEEE Computer Graphicsand Applications, 16(4):42{43, July 1996.75. S. Zhou. LSF: Load sharing in large-scale heterogeneous distributed systems. InProc. Workshop on Cluster Computing, 1992.76. S. Zhou, M. Stumm, K. Li, and D. Wortmann. Heterogeneous distributed sharedmemory (Mermaid). IEEE Transactions on Parallel and Distributed Systems,3(5):540{554, September 1992.

