
High-Performan
e Rea
tive Fluid Flow SimulationsUsing Adaptive Mesh Re�nement on Thousands of Pro
essorsA. C. Calder1, B. C. Curtis2, L. J. Dursi1, B. Fryxell1, G. Henry3, P. Ma
Nei
e4;5, K. Olson1;5,P. Ri
ker1, R. Rosner1 F. X. Timmes1, H. M. Tufo1, J. W. Truran1, M. Zingale1ABSTRACTWe present simulations and performan
e results of nu
lear burning fronts in super-novae on the largest domain and at the �nest spatial resolution studied to date. Thesesimulations were performed on the Intel ASCI-Red ma
hine at Sandia National Labora-tories using FLASH, a
ode developed at the Center for Astrophysi
al Thermonu
learFlashes at the University of Chi
ago. FLASH is a modular, adaptive mesh, parallelsimulation
ode
apable of handling
ompressible, rea
tive
uid
ows in astrophysi
alenvironments. FLASH is written primarily in Fortran 90, uses the Message-PassingInterfa
e library for inter-pro
essor
ommuni
ation and portability, and employs thePARAMESH pa
kage to manage a blo
k-stru
tured adaptive mesh that pla
es blo
ksonly where resolution is required and tra
ks rapidly
hanging
ow features, su
h asdetonation fronts, with ease. We des
ribe the key algorithms and their implementationas well as the optimizations required to a
hieve sustained performan
e of 238 GFLOPSon 6420 pro
essors of ASCI-Red in 64 bit arithmeti
.1. Introdu
tionThe origin and evolution of most of the
hemi
al elements in the Universe are attributableto thermonu
lear rea
tions in supernovae and novae. The FLASH
ode was designed to studythermonu
lear
ashes on the surfa
es and in the interiors of stars. The
ode has been used tostudy a wide variety of astrophysi
al problems for almost two years, in
luding helium burning onneutron stars (Zingale et al. 2000), laser driven sho
k fronts through multi-layer targets (Calderet al. 2000), turbulent
ame fronts (Dursi et al. 2000), and
arbon detonations in white dwarfs(Timmes et al. 2000).1Center for Astrophysi
al Thermonu
lear Flashes, The University of Chi
ago, Chi
ago, IL 606372Center for Applied S
ienti�
 Computing, Lawren
e Livermore National Laboratory, Livermore, CA 945503Intel Corporation, Santa Clara, CA 920244Drexel University, Philadelphia, PA 19104-28755NASA Goddard Spa
e Flight Center, Greenbelt, MD 207710-7803-9802-5/2000/$10.00 (
) 2000 IEEE.

{ 2 {FLASH is a modular, adaptive mesh, parallel simulation
ode
apable of handling
ompress-ible, rea
tive
ows in astrophysi
al environments. It uses a
ustomized version of the PARAMESHlibrary (Ma
Nei
e et al. 2000) to manage a blo
k-stru
tured adaptive grid, pla
ing resolution el-ements only where needed in order to tra
k
ow features. The
ompressible Euler equations aresolved using an expli
it, dire
tionally split version of the pie
ewise-paraboli
 method (Colella &Woodward 1984), whi
h allows for general equations of state using the method of Colella & Glaz(1985). An equation of state appropriate to stellar interiors is implemented using a thermody-nami
ally
onsistent table lookup s
heme (Timmes & Swesty 1999). Sour
e terms for thermonu-
lear rea
tions are solved using a semi-impli
it time integrator
oupled to a sparse matrix solver(Timmes 1999). FLASH is implemented in Fortran 90 and uses the Message-Passing Interfa
e li-brary to a
hieve portability. Further details
on
erning the algorithms used in the
ode, the
ode'sstru
ture, and results of veri�
ation tests may be found in Fryxell et al. (2000).The simulation des
ribed in this paper is of the propagation of a detonation front throughstellar material. This parti
ular problem was sele
ted be
ause it exer
ises most of the modules inthe FLASH
ode, and thus gives a good representation of the performan
e of the entire
ode ratherthan a small subset of it. This problem is astrophysi
ally important be
ause it helps us determinehow a supernova explodes, and thus aids in our understanding of the origin and evolution of the
hemi
al elements. This simulation is also a
omputationally
hallenging be
ause of the multiplelength s
ales involved. A full supernova simulation would need to
over the 10�5
m length s
aleof the burning front to the 109
m s
ale of the star. In our model we fo
us on an intermediaterange of spatial s
ales. The �nest uniform meshes that
an be run on the largest
omputers do notprovide suÆ
ient spatial resolution to answer some of the basi
 questions even at the intermediaterange of length s
ales. By using adaptive mesh te
hnology, the simulations des
ribed in this paper
over both the largest domain and the �nest spatial resolutions ever
ondu
ted to date for this typeof appli
ation.In this paper we des
ribe an eÆ
ient implementation of an adaptive mesh re�nement pa
kageon massively parallel
omputers. Also
overed is spe
i�
 optimization and tuning on individualphysi
s modules of the
ode in order to a
hieve good performan
e and s
alability. We presentperforman
e results on ASCI Red using thousands of pro
essors.2. Adaptive Mesh Te
hniques on Parallel Ar
hite
turesAdaptive mesh re�nement (AMR) o�ers the opportunity to make progress over uniform meshesby allowing for higher spatial resolution and/or larger problem domains. However, AMR introdu
esmany of its own issues. Data lo
ation in memory
hanges dynami
ally as the
ow evolves. Theresulting frequent redistribution of data dramati
ally in
reases interpro
essor
ommuni
ation. Thisredistribution must be done in su
h a way as to maintain load balan
ing and data lo
ality. Also,in order to a
hieve suÆ
ient adaptivity the data must be divided into small blo
ks, resulting ina larger surfa
e to volume ratio, further in
reasing the
ommuni
ation
osts. Finally, there is a

{ 3 {
omputational overhead in
he
king the re�nement
riteria. These issues need to be
arefully
on-sidered and addressed to ensure the potential gain of AMR is not o�set by its additional overhead,parti
ularly on massively parallel
omputers.There are a number of di�erent approa
hes to AMR in the literature. Most AMR treatmentshave supported �nite element models on unstru
tured meshes (e.g. L�ohner 1987). These mesheshave the advantage of being easily shaped to �t irregular boundary geometries, though this isnot an issue for the vast majority of astrophysi
al problems. Unstru
tured meshes also require alarge amount of indire
t memory referen
ing, whi
h
an lead to relatively poor performan
e on
a
he-based ar
hite
tures. Khokhlov (1997) has developed another strategy that re�nes individualCartesian grid
ells and manages the hierar
hy as elements of a tree. This approa
h
an produ
every
exible adaptivity, in the same way that �nite-element AMR does. It also avoids the guard
elloverhead asso
iated with the blo
k stru
tured approa
hes dis
ussed below. However, the irregularmemory referen
ing and expensive di�eren
e equation updates may be expe
ted to produ
e slowlyexe
uting
ode. Khokhlov (1997) quotes a speedup for this
ode of roughly a fa
tor of 15 in timeto solution when
ompared to a uniform mesh
ode. However, no detailed performan
e numbersare given and the
ode was only run on a small number of pro
essors (16 pro
essors of a CRAYJ90). We note that the speed in
rease of an AMR
ode over its uniform mesh
ounterpart is highlyproblem dependent.PARAMESH falls into a third
lass known as blo
k-stru
tured AMR. Berger and
o-workers(Berger 1982, Berger & Oliger 1984, Berger & Colella 1989) have pioneered these algorithms, usinga hierar
hy of logi
ally Cartesian grids to
over the
omputational domain. This approa
h is
exibleand memory-eÆ
ient, but the resulting
ode is
omplex and
an be diÆ
ult to parallelize eÆ
iently.Quirk (1991) and De Zeeuw & Powell (1993) implemented simpli�ed versions whi
h develop thehierar
hy of nested grids by bise
ting blo
ks in ea
h
oordinate dire
tion and linking the hierar
hyas the nodes of a data-tree.Most of these AMR s
hemes have been developed within appli
ation
odes to whi
h theyare tightly
oupled. Some have been distributed as pa
kages, with HAMR (Neeman 1999) andAMRCLAW (LeVeque & Berger 2000) being unipro
essor examples. We are
urrently aware ofthree publi
ally available pa
kages whi
h support the blo
k stru
tured
lass of AMR on parallelma
hines; DAGH (Parashar 1999), AMR++ (Quinlan 1999), and SAMRAI (Kohn et al. 1999).All these pa
kages use guard
ells at blo
k boundaries as a means of
ommuni
ating informationfrom surrounding blo
ks. Little performan
e information is available for these pa
kages, and theirs
aling properties on thousands of pro
essors has not, to our knowledge, been dis
ussed. TheDAGH, AMR++, SAMRAI, and PARAMESH pa
kages are similar in many respe
ts but do havesome di�eren
es. Perhaps the most signi�
ant di�eren
e is that DAGH, AMR++, and SAMRAIare designed in terms of highly abstra
ted data and
ontrol stru
tures. PARAMESH is designedwith mu
h less abstra
tion, resulting in a shorter learning
urve and permitting a tight integrationof PARAMESH with FLASH. These di�eren
es will have some impa
t on the exe
ution speed ofea
h pa
kage on a given parallel ma
hine.

{ 4 {3. PARAMESH: Algorithms, Implementation, and OptimizationThere are two
riti
al data stru
tures maintained with Fortran 90 in FLASH, one to storethe model solution and the other to store the tree information des
ribing the numeri
al grid. Thesolution data may be
ell-
entered or fa
e-
entered, although FLASH at present uses only
ell-
entered data. A hierar
hy of 1D, 2D, or 3D blo
ks are built and managed with a tree stru
ture(quad-tree in 2D or o
t-tree in 3D).Ea
h blo
k has nxb�nyb�nzb
ells and a pres
ribed number of guard
ells at ea
h boundary.The pie
ewise-paraboli
 method used by FLASH for the
ompressible hydrodynami
s requires 4guard
ells at ea
h boundary. These guard
ells are �lled with data from neighboring blo
ks or byevaluating the pres
ribed boundary
onditions. The guard
ell �lling algorithm involves three steps.First, the data at \leaf" blo
ks are restri
ted (i.e. interpolated) to the parent blo
k. Se
ond,all blo
ks that are leaf blo
ks, or are parents of leaf blo
ks, ex
hange guard
ell data with anyneighboring blo
ks they might have at the same level of re�nement. Third, guard
ell data of theparents of leaf blo
ks is prolongated to any
hild blo
k's guard
ells that are at a jump in re�nement.These steps involve interpro
essor
ommuni
ation if the blo
ks whi
h are ex
hanging data lie ondi�erent pro
essors. The message is pa
ked su
h that only the ne
essary data (using MPI deriveddata types) is ex
hanged between the sending and re
eiving blo
ks. Within a blo
k stru
turedform of AMR, these messages are quite large and easily over
ome message laten
y
on
erns. Forexample, we typi
ally have 24 variables per grid
ell (in
luding 13 nu
lear isotopes) and 4 guard
ellson ea
h side of an 8 � 8 � 8 blo
k. This results in a message of size 24 � 4 � 8 � 8 � 8 bytes �50 kbytes while �lling guard
ells with adja
ent blo
ks having the same spatial resolution. On
e allthe guard
ells of a blo
k are �lled, the solution on that blo
k
an be advan
ed independently ofany other blo
ks.Requiring that all grid blo
ks have an identi
al logi
al stru
ture may, at �rst sight, seem in-
exible and therefore ineÆ
ient. However, this approa
h has two advantages. First, the logi
alstru
ture of the
ode is
onsiderably simpli�ed, whi
h is a major
on
ern in developing and main-taining robust parallel software. Se
ond, the data-stru
tures are de�ned at
ompile time, whi
hgives modern
ompilers a better opportunity to manage
a
he use and extra
t superior performan
e.Ea
h blo
k is re�ned by halving the blo
k along ea
h dimension and
reating a set of newsub-blo
ks. Ea
h sub-blo
k has a resolution twi
e that of the parent blo
k, and �ts exa
tly in theborders of the parent blo
k. Independent of any re�nement
riteria, there may be a jump of onlyone level of re�nement a
ross adja
ent blo
ks. This restri
tion simpli�es the data stru
tures, and
ontributes to the stability of the
onservative hydrodynami
s algorithm operating on ea
h blo
k.For
ux
onservation at jumps in re�nement, the mass, momentum, energy, and
omposition
uxesa
ross the �ne
ell fa
es are added and provided to the
orresponding
oarse fa
e on the neighboringblo
k.When a blo
k is re�ned, its new
hild blo
ks are temporarily pla
ed at the end of its pro
essor'stree list. When a blo
k is de-re�ned, sibling blo
ks are simply removed from the tree stru
ture.

{ 5 {

Fig. 1.| The Morton spa
e �lling
urve for an arbitrary set of blo
ks of varying spatial resolution.Memory lo
ations of those blo
ks are overwritten by pa
king the list of remaining on-pro
essorblo
ks. After all re�nements and de-re�nements are
ompleted, the redistribution of blo
ks isperformed using a Morton spa
e-�lling
urve (Warren & Salmon 1987). Using a work-weightedMorton
urve addresses the issues of load balan
ing and data lo
ality. Su
h a Morton
urve is shownin Figure 1. Other spa
e-�lling
urves, whi
h in prin
iple have better spatial lo
ality properties(Hilbert and Peano
urves; Sagan 1994), have been tried in the FLASH
ode with no measurableimprovement in performan
e. Additional possibilities su
h as graph algorithms or partial orderingshave not yet been investigated.The Morton number is
omputed by interleaving the bits of the integer
oordinates of ea
hblo
k. The Morton-ordered list does not require a global sort. We have
hosen our Morton orderingsu
h that no pattern of re�nement or de-re�nement
an result in a blo
k with a Morton numberlower than its parent nor larger than the Morton number of its neighbor. Thus, a global sortto restore a Morton ordered-list is unne
essary, and the re-distribution
an be done entirely withlo
al sorts and nearest-neighbor
ommuni
ations. Ea
h blo
k is then assigned a work value that
an
hange as a fun
tion of time and/or position and is used to weight the blo
ks. The total list,in Morton order, is
ut into a number of sublists equal to the number of pro
essors, su
h thatea
h sublist has roughly the same amount of work. Blo
ks of data are then moved to their newpro
essors. This re-distribution step is only done if re�nement or de-re�nement o

urs.For high resolution simulations with time-dependent,
omplex features, re�nement and de-re�nement o

ur at ea
h test. At one extreme, in a steady-state, planar detonation front thetotal number of blo
ks remains fairly
onstant; new blo
ks are
reated ahead of the front andremoved behind the front. At the other extreme, in a spheri
al sho
k front the total numberof blo
ks in
reases as the square of the radius. The number of blo
ks that are re-distributed is

{ 6 {highly dependent on the problem and the number of pro
essors. If a lot of re�nement is done ina small region then there is
onsiderable re-distribution. If the blo
ks are relatively evenly spreadthroughout the volume, then there is little re-distribution. Our three-dimensional
arbon detonationsimulation features a planar front with an extended rea
tion zone, and on average transfers 65% ofthe mesh during the re-distribution step.The
riteria for re�ning a blo
k are user-de�ned. We presently use a normalized se
ond deriva-tive (L�ohner 1987). While the frequen
y of testing for re�nement is an adjustable parameter, itis important to ensure that
ow dis
ontinuities are dete
ted by a blo
k before they move into theinterior
ells of that blo
k. For produ
tion run simulations, we test for re�nement every 4 timesteps.Examining the se
ond derivative of the density, pressure and temperature is suÆ
ient to guaranteean a

urate solution to the detonation problem.To organize the blo
ks a
ross a multipro
essor ma
hine, ea
h blo
k is stored at one of the nodesof a fully linked tree data stru
ture. Ea
h node stores its parent blo
k, any
hild blo
ks it mighthave, and a list of its neighboring blo
ks. The list stores indi
es of abutting blo
ks at the same levelof re�nement in the north, south, east, west, up and down dire
tions. If a neighboring blo
k doesnot exist at the same level of re�nement, a null value is stored. If a blo
k is lo
ated at a boundaryof the
omputational domain, the neighbor link in that dire
tion is given a value to indi
ate thetype of boundary
ondition. All the tree links of the
hildren, parents and neighbors are storedas integers that indi
ate a lo
al identi�
ation into a pro
essor's memory. A se
ond stored integerindi
ates on whi
h pro
essor that
hild, parent, or neighbor is lo
ated. The x; y; z
oordinates andbounding box information for ea
h blo
k at ea
h node in the tree are also stored.An example of a two-dimensional domain and its tree stru
ture is shown in Figure 2. The leafblo
ks
ontain the
urrent solution. The 8�8 interior
ells within ea
h blo
k are also shown. Are�ned blo
k has a
ell size a fa
tor of two smaller than its parent. The number near the
enter ofea
h blo
k is its Morton number. The symbols in the tree indi
ate on whi
h pro
essor the blo
kwould be lo
ated on a four-pro
essor ma
hine. As blo
ks are re�ned or de-re�ned, the tree linksare reset a

ordingly.For large numbers of blo
ks and pro
essors, maintenan
e of the tree stru
ture is potentiallythe most
ommuni
ations-intensive part of the FLASH
ode. The a

umulated laten
y asso
iatedwith the many small messages that must be sent to update the neighbor list
reates a signi�
ant
ommuni
ations overhead,
omparable to the overhead of the large messages sent in the redistribu-tion of entire blo
ks. Some ma
hine ar
hite
tures ameliorate the worst e�e
ts of this overhead. Forexample, ASCI Red has low laten
y for small messages, and the inter
onne
t speed is well balan
edto the pro
essor speed. Regardless, we pa
k messages whenever possible to redu
e overhead.Finally, an additional performan
e improvement
ame from removing as many expli
it barrier
ommands as possible. PARAMESH was originally developed for the Cray T3E and took advantageof one-sided puts and gets of the SHMEM library. Expli
it barrier
ommands, whi
h are veryinexpensive on the T3E, were required to ensure the safety of data transfers. Removing extraneous

{ 7 {

1 3

4 5
2

8

7

6
9

10

12

11

13 15

16 17

14

1 3 4 5

2

7 8 9

6

11 12

10

14

13 15 16 17Fig. 2.| A simple set of blo
ks whi
h
over a �xed domain.barrier
ommands when porting PARAMESH from SHMEM to MPI improved the s
aling by morethan a fa
tor of two on ASCI Blue Pa
i�
 with 512 pro
essors. A larger number of pro
essors wasrequired on ASCI Red to a
hieve the same s
aling improvement.4. Tuning of Physi
s KernelsThe exe
ution time of FLASH on the astrophysi
al problems of interest is dominated by
omputations of
ompli
ated lo
al physi
s { the equation of state and nu
lear rea
tion networks.In our
arbon detonation
al
ulations we require about 45,000
oating-point operations per
ell pertimestep, 95% of whi
h are taken up by the physi
s kernels. The remaining 5% are taken up by therequisite interpolation for blo
k
reation/destru
tion and re�nement
he
king. When setting up aproblem, we sele
t the smallest number of pro
essors that allow the problem to �t in memory. Forour
arbon detonation simulations on ASCI Red, 60% of the exe
ution time on 6400 pro
essors isspent on
omputation; for fewer pro
essors the
omputation to
ommuni
ation ratio is even larger.Thus, single pro
essor optimizations
an yield a signi�
ant performan
e in
rease. In addition, wealso address
ommuni
ation
osts by minimizing the surfa
e area for guard
ell ex
hanges, whi
his the largest interpro
essor
ommuni
ation in FLASH. Near-perfe
t load balan
e is a
hieved byburning all of the blo
ks. As the number of blo
ks per pro
essor in
reases, the
omputationto
ommuni
ation ratio also in
reases, de
reasing the time to solution. Optimal performan
e is

{ 8 {a
hieved by running the
al
ulation on the smallest number of pro
essors possible for the memoryrequirement of the
al
ulation.Our �rst pass at optimization resides in the domain of single pro
essor tuning. Often thismeant repla
ing multiple divides by multipli
ations of the inverse, making as many array boundsknown at
ompile time as possible, removing extraneous memory
opies, and expressing operationsinvolving a multiply followed by an add as a multiply-add instru
tion, sin
e some of the ASCIplatforms implement this instru
tion in hardware. All the arrays in FLASH were designed tohave unit stride loop indi
es and have the �rst index be the loop index in order to a
hieve good
a
he performan
e with Fortran. Vendor supplied libraries for exponentials, logarithms, and powerfun
tions were invoked when available. The loss of a

ura
y in using these platform-tuned librariesis typi
ally in the last bit, whi
h is not signi�
ant for our
al
ulations. Tuning of the physi
s kernalsin
reased the single pro
essor performan
e from 30 MFLOPS to 60 MFLOPS on ASCI Red.The equation of state is the most time
onsuming routine in our
arbon detonation simulations,a

ounting for � 25% of the total run time. This expense is primarily due to the large number oftimes the equation of state routine is
alled, either for ensuring
onsisten
y of the hydrodynami
swith the thermodynami
s, maintaining thermodynami

onsisten
y in the guard
ells, or updatingthe thermodynami
 state after a thermonu
lear burn (or any other energy sour
e term) has been
alled. The stellar equation of state implements a thermodynami
ally
onsistent table lookups
heme (Timmes & Swesty 1999). There are nine hashed, re
tangular tables whi
h
onsume a totalof � 1 Mbyte of memory. Ea
h table is two-dimensional and stores the Helmholtz free energy orone of its derivatives as a fun
tion of temperature and density. Simple s
aling laws a

ount fordi�eren
es in
omposition and avoid the use of many three-dimensional tables. Sin
e the rea
tive
uid equations evolve the density and internal energy, a Newton iteration is required to �nd thetemperature. Storing the tables as a fun
tion of density and internal energy is not desirable, asthe tables
annot be hashed and the simple
ompositional s
aling laws would be lost. Finally, ourstellar equation of state routine is ve
torized, whi
h boosts performan
e by taking advantage of thelarge CPU to L1/L2
a
he bandwidth. The longer the ve
tor, the larger the performan
e boost.Wherever possible, we map a blo
k of data into a one-dimensional ve
tor and exe
ute the equationof state over the entire blo
k. Our implementation of the equation of state is the most eÆ
ientwe are aware of (97 MFLOPS on a single pro
essor of ASCI Red), yet yields the a

ura
y that werequire (Timmes & Arnett 1999). Our single pro
essor tuning of the equation of state de
reasedthe exe
ution time by 20% when
alled for a 8 � 8 � 8 blo
k.Integration of the sti� ordinary di�erential equations that represent the nu
lear rea
tion net-work is
omparable in
ost to the equation of state. This
ost is primarily due to evaluating 110analyti
al nu
lear rea
tion rates, whi
h
ontain numerous exponential and power fun
tion
alls, andassembling the
ompli
ated right hand sides of the di�erential equations. Evaluating the rea
tionrates for the 13 isotopes in the rea
tion network is twi
e the
ost of su

essfully integrating the ordi-nary di�erential equations with a variable order, semi-impli
it method (Timmes 1999). We used theGIFT program for the linear algebra portion of the integration. GIFT is a program whi
h generates

{ 9 {Fortran subroutines for solving a system of linear equations by Gaussian elimination (Gustafson,Liniger, & Wiloughby 1970; M�uller 1997). GIFT-generated routines skip all
al
ulations with ma-trix elements that are zero; in this sense GIFT-generated routines are sparse, but the storage of afull matrix is still required. GIFT assumes diagonal dominan
e of the pivot elements and performsno row or
olumn inter
hanges. GIFT writes out (in Fortran) the sequen
e of Gaussian eliminationand ba
ksubstitution without any do loop
onstru
tions over the matrix elements. As a result, theroutines generated by GIFT
an be quite large. However, for small matri
es the exe
ution speed ofGIFT-generated routines on nu
lear rea
tion networks is faster than all dense or sparse pa
kagesthat we tested (Timmes 1999). The GIFT-generated routines were hand optimized, by removingunne
essary divides, to a
hieve better single pro
essor performan
e. Our single pro
essor tuningof the nu
lear rea
tion networks de
reased the exe
ution time by 30% when
alled for a single
ell.The third most expensive module in this
al
ulation is the Eulerian hydrodynami
 solver,whi
h
onsumes � 20% of the total run time. This expense is mainly due to the
omplexity ofthe pie
ewise-paraboli
 method. While expensive, the method allows a

urate solutions with fewergrid points, whi
h improves the time to solution. The hydrodynami
s module operates on one-dimensional ve
tors with unit stride for optimal memory a

ess and
a
he performan
e. Goodperforman
e is also insured by using blo
ks small enough to �t entirely inside
a
he, and a

essingthe PARAMESH data stru
tures dire
tly to eliminate unne
essary, expensive memory
opies.5. Performan
e of the CodeOur ben
hmark
arbon detonation
al
ulations were performed on ASCI Red, whi
h
onsistsof 3212 nodes in its large
on�guration, ea
h of whi
h
ontains two 333 MHz Intel Pentium IIpro
essors with Xenon Core te
hnology and 256 Mbytes of shared memory. Performan
e wasmeasured using the perfmon library whi
h a

ess the hardware
ounters. Hardware
ounters were
ushed at the start of ea
h timestep and read at the end. We report on the performan
e for 64 bitarithmeti
 be
ause the range of magnitudes spanned by the energies and rea
tion rates ex
eeds therange of 32 bit arithmeti
.Our ben
hmark
al
ulation is a three-dimensional simulation of a burning front propagatingthrough stellar material. This simulation has importan
e for supernova models, sin
e it may sig-ni�
antly a�e
t the evolution of the
hemi
al elements produ
ed in the explosion. The size of the
omputational domain of the simulations we present is 12.8 � 256.0
m in two dimensions, and12.8 � 12.8 � 256.0
m in three dimensions. We varied the maximum spatial resolution from 0.1to 0.0125
m.Although interesting physi
s o

urs in only a small portion of the domain at any given time,having a large domain is ne
essary for obtaining reliable answers. For example, there is a naturalevolution from the initial
onditions to the steady state. Other possible approa
hes to modelingthis appli
ation su�er from various numeri
al errors. A moving referen
e frame with a stationary

{ 10 {detonation front is prone to well-known errors asso
iated with slowly-moving sho
ks. Having a
onstant number of
ells su
h that grid is added ahead of the detonation front and removed behindthe front su�er from not satisfying the boundary
onditions. The desirability of using a largedomain makes this appli
ation a prime
andidate to bene�t from an eÆ
ient implementation ofAMR.These
arbon detonation
al
ulations on a uniform mesh would be prohibitively expensive interms of the required CPU time, memory, and disk spa
e. The �nest resolution would require1024 � 20,480 � 21 million
ells in two dimensions. In three dimensions with 64 bit arithmeti
,this resolution would require 21 billion
ells, 4 Tbytes of memory, and 3 node-years per time step.An entire
al
ulation would require 3 years on all 6424 pro
essors of ASCI Red, if ASCI Red hadsuÆ
ient memory. With AMR, only � 2 million
ells are needed in two dimensions, for a fa
tor of10 savings in the number of grid points. In three dimensions � 512 million
ells would be required,for a fa
tor of 40 savings.

Fig. 3.| Pressure �eld and
omputation mesh for the initial
onditions and after 1.26�10�7 s.Figure 3 shows the pressure �eld of a two-dimensional
arbon detonation at the initial time andafter 1.26�10�7 s. The intera
ting transverse wave stru
tures are parti
ularly vivid at 1.26�10�7 s,and extend about 25
m behind the sho
k front. The �gure also shows the blo
k stru
ture of themesh, with ea
h blo
k
ontaining 8 grid points in the x- and y-dire
tions. The entire mesh is rather
oarse at the initial time; only the sho
ked interfa
e is re�ned. At 1.26�10�7 s the �nest grids arepla
ed only where there is signi�
ant stru
ture in the thermodynami
 variables. Thus, the meshis not re�ned ahead of the detonation front where it is not needed, maximally re�ned throughoutthe rea
tive regions, and de-re�ned behind the detonation front as the
uid
ow be
omes smooth.

{ 11 {Figure 4 shows the sili
on ashes in the maximally re�ned region of Figure 3 for two di�erentspatial resolutions. There are appre
iable variations in the spatial distribution of the ashes, and asharp visual
ontrast between the two spatial resolutions. The image on the left is for a maximumspatial resolution of 0.1
m (5 levels of re�nement), and is equivalent to the �nest resolutionpreviously a
hieved on a uniform mesh (Gamezo et al. 1999). The image on the right is fora maximum spatial resolution of 0.0125
m (8 levels of re�nement), and represents the �nestresolution to date for this appli
ation by a fa
tor of 8 in ea
h dire
tion.

Fig. 4.| Sili
on abundan
es (the ashes) at two di�erent spatial resolutions.Figure 5 shows the three-dimensional pressure �eld of a
arbon detonation. In the image onthe left, low pressure regions are blue, high pressure regions are red, and the dimpled surfa
e ofthe detonation front is
olored brown. On the volume rendered image on the right, high pressureregions are a

ented in red, while while the low pressure regions are suppressed and shown asshades of blue. The pressure variations in both images are
aused by intera
ting transverse wavestru
tures. The spatial resolutions of these three-dimensional images is 0.1
m, and represents the�nest resolution to date for this appli
ation in three dimensions.Table 1 summarizes the performan
e
hara
teristi
s of the three-dimensional
ellular detona-tion problem on ASCI Red. The single pro
essor optimizations des
ribed in the previous se
tionsresulted in a fa
tor of two improvement in time to solution. The parallel pro
essor tuning des
ribedabove yielded a fa
tor of two improvement in s
aling out to large numbers of pro
essors. For ea
hben
hmarking run, the table lists the number of pro
essors, number of AMR levels, number of
om-putational blo
ks on ea
h pro
essor, average MFLOPS per pro
essor, and the aggregate GFLOPS.Ea
h ben
hmark run was typi
ally run for 50-100 timesteps. As noted above, ASCI Red has two

{ 12 {

Fig. 5.| Pressure �elds in three-dimensional
arbon detonation.pro
essors per node. The upper portion of Table 1 shows the results when both pro
essors are usedfor MPI tasks (pro
-3 mode), while the lower portion shows the result when only one pro
essor isused for MPI tasks (pro
-0 mode). One expe
ts lower performan
e in pro
-3 mode be
ause ea
hpro
essor in a node a

esses the same pool of memory, whi
h e�e
tively halves the memory band-width available to ea
h pro
essor. This de
rease in performan
e is re
e
ted in the table. The tableshows that as the number of pro
essors in
reases from 4096 to 6420, for the same size of problem,we maintain a 94% s
aling eÆ
ien
y as measured by MFLOPS.Table 1 also shows that the performan
e in
reases with a larger number of blo
ks per pro
essor.In
reasing the number of blo
ks in
reases the amount of
omputation relative to the
ommuni
ation
ost. We used up to 70% of the available 256 Mbytes of memory on ea
h node. On the largestrun, we a
hieved 37.0 MFLOPS per pro
essor, rea
hing an aggregate of 238 GFLOPS on 6420pro
essors in 64 bit arithmeti
, 11% of the theoreti
al peak.6. Con
lusionsWe have presented performan
e results for the largest simulations of nu
lear burning fronts insupernovae
ondu
ted to date, whi
h we have performed using the FLASH adaptive-mesh
ode onthe Intel ASCI-Red ma
hine at Sandia National Laboratories. We have des
ribed the key algorithmsand their implementation as well as the optimizations required to a
hieve sustained performan
eof 238 GFLOPS on 6420 pro
essors of ASCI-Red in 64 bit arithmeti
.

{ 13 {Table 1: Performan
e Statisti
s on ASCI RedNumber of Re�nement Blo
ks per MFLOPS per TotalPro
essors Levels Pro
essor Pro
essor GFLOPSTwo Pro
essors per Node6420 8 33.1 37.0 2384096 8 36.1 39.2 1612048 7 33.7 40.2 82One Pro
essor per Node3072 8 58.2 47.4 1462048 8 72.1 45.2 931024 7 63.5 50.2 51Adaptive-mesh simulations pose many
omplex design problems, and a variety of di�erentte
hniques exist to solve these problems. Several pa
kages use lo
al-
ell or blo
k-stru
tured re-�nement, both with and without temporal re�nement. The implementation of the PARAMESHlibrary that is used by FLASH is a blo
k-stru
tured AMR pa
kage whi
h evolves all blo
ks onthe same timestep. This la
k of temporal adaptivity simpli�es our time integration and load-balan
ing but prevents us from taking best advantage of AMR for highly re�ned meshes. A furthersimpli�
ation has been possible be
ause we do not need to solve a Poisson equation for hydrody-nami
s; the problem we are solving is highly
ompressible. However, we are
urrently developinga multigrid-based and two-level (Tufo & Fis
her 1999, 2000) ellipti
 solvers for use with futureself-gravitating problems to be performed with FLASH. With the
omplex lo
al physi
s in
ludedin our
al
ulations, load-balan
ing and
ommuni
ation
osts are less important than they mightbe in simpler
uid problems. However, in
luding temporal re�nement and ellipti
 solvers will raisenew load-balan
ing issues whi
h we expe
t to address in future work.The problem we have des
ribed in this paper represents the dire
t numeri
al simulation ofmi
ros
opi
 physi
al pro
esses important to a large-s
ale problem, that of supernova explosions.Adaptive-mesh te
hniques have been essential to these
al
ulations. However, the important lengths
ales in a supernova explosion range from less than 10�5
m to more than 109
m { a range of s
aleswhi
h
annot be addressed with AMR methods alone. Thus in performing large-s
ale simulationsof supernovae, we need to in
lude parameterized subgrid models of small-s
ale phenomena likenu
lear burning fronts. These phenomena will also require some type of front-tra
king te
hnique.Dire
t numeri
al simulations like the ones presented here are important for
alibrating these subgridmodels. Subgrid models should make large-s
ale supernova
al
ulations feasible in the near future.In summary, adaptive mesh re�nement has permitted us to address problems of astrophysi
al

{ 14 {interest whi
h we
ould not otherwise a�ord to solve. Be
ause these problems are dominated bylo
al physi
s, traditional single-pro
essor optimizations have allowed us to obtain improvements ofalmost a fa
tor of two over previous versions of our
ode. More
omplex
ommuni
ation-relatedoptimizations, su
h as using the Morton
urve to allo
ate blo
ks to pro
essors, have also improvedperforman
e. Throughout our optimization work we maintained portability.This work is supported by the Department of Energy under Grant No. B341495 to the Cen-ter for Astrophysi
al Thermonu
lear Flashes at the University of Chi
ago, and under the NASAHPCC/ESS proje
t. K. Olson a
knowledges partial support from NASA grant NAS5-28524, andP. Ma
Nei
e a
knowledges support from NASA grant NAS5-6029.

{ 15 {REFERENCESBerger, M.J. 1982, Ph.D. Thesis, Stanford Univ.Berger, M.J. & Oliger, J. 1984, J. Comp. Phys., 53, 484Berger, M.J. & Collela, P. 1989, J. Comp. Phys., 82, 64Calder, A.C., Fryxell, B., Rosner, R., Kane, J., Remington, B.A., Dursi, L.J., Olson, K., Ri
ker,P.M., Timmes, F.X., Zingale, M., Ma
Nei
e, P., & Tufo, H. 2000, BAAS, 32, 704Colella, P. & Glaz, H. M. 1985, J. Comp. Phys., 59, 264Colella, P.& Woodward, P. 1984, J. Comp. Phys., 54, 174DeZeeuw, D. & Powell, K. G. 1993, J. Comp. Phys., 104, 56Dursi, J., Niemeyer, J., Calder, A., Fryxell, B., Lamb, D., Olson, K., Ri
ker, P., Rosner, R.,Timmes, F.X., Tufo, H., & Zingale, M. 2000, BAAS, 31, 1430Fryxell, B.A. Olson, K., Ri
ker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., Ma
Nei
e, P., Rosner,R., & Tufo, H. 2000, Astrophysi
al J. Supp., in pressGustafson, F.G., Liniger, W., & Wiloughby, R. 1970, J. Asso
. Comput. Ma
h., 17, 87Gamezo, V.N., Wheeler, J.C., Khokhlov, A.M., & Oran, E.S. 1999, Astrophysi
al J., 512, 827Khokhlov, A. M. 1997, Memo 6406-97-7950, (Naval Resear
h Lab)LeVeque, R. & Berger, M. 2000, http://www.amath.washington.edu:80/~rjl/amr
law/L�ohner, R. 1987, Comp. Meth. App. Me
h. Eng., 61, 323Ma
Nei
e, P., Olson, K.M., Mobarry, C., de Fain
htein, R., & Pa
ker, C. 2000, Comp. Phys.Comm., 126, 330M�uller, E. 1997, Saas-Fee Advan
ed Course 27, eds. O. Steiner & A. Gauts
hy (Berlin: Springer),p.343Neeman, H. J. 1996, Ph.D. Thesis, Univ. of IllinoisParashar, M. & Browne, J.C. 2000, in IMA Volume 117: Stru
tured Adaptive Mesh Re�nementGrid Methods, eds. S.B. Baden, N.P. Chriso
hoides, D.B. Gannon, & M.L. Norman (Berlin:Springer-Verlag)Quinlan, J.J. 1991, Ph.D. Thesis, Cran�eld Inst. Te
h.Sagan, H. 1994, Spa
e-Filling Curves (Berlin: Springer-Verlag)

{ 16 {Timmes, F.X. 1999, Astrophysi
al J. Supp., 124, 241Timmes, F.X., Zingale, M., Olson, K., Fryxell, B., Ri
ker, P., Calder, A.C., Dursi, L.J., Tufo, H.,Ma
Nei
e, P., Truran, J.W., & Rosner, R. 2000, Astrophysi
al J. Supp., in pressTimmes, F.X., & Arnett, D. 1999, Astrophysi
al J. Supp., 125, 294Timmes, F.X., & Swesty, F.D. 2000, Astrophysi
al J. Supp., 126, 501Tufo, H.M., & Fis
her, P.F. 1999, Pro
. Super
omputing 1999 (Portland, OR: IEEE ComputerSo
.)Tufo, H.M., & Fis
her, P.F. 2000, J. Par. & Dist. Computing, in pressWarren, M.S. & Salmon, J.K. 1993, Pro
. Super
omputing 1993 (Washington, D.C.: IEEE Com-puter So
.), p.12Zingale, M., Timmes, F.X., Fryxell, B., Lamb, D.Q., Olson, K., Calder, A.C., Dursi, L.J., Ri
ker,P., Rosner, R., Ma
Nei
e, P., & Tufo, H. 2000, Astrophysi
al J., in press

This preprint was prepared with the AAS LATEX ma
ros v5.0.

