
The Robbins Equation�William McCuneMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439 U.S.A.Web: www.mcs.anl.gov/~mccuneOctober 3, 2000Researchers have long been interested in �nding simple axiomatizations oftheories, including Boolean algebra. Boolean algebra can be axiomatized inmany di�erent ways using various sets of operations. The ordinary operationsof Boolean algebra are disjunction (+), conjunction (�), negation (0), zero (0),and one (1). One of the �rst simple axiomatizations was presented by E. V.Huntington in 1933 [2]:x+ y = y + x (Commutativity)(x+ y) + z = x+ (y + z) (Associativity)((x0 + y)0 + (x0 + y0)0) = x (Huntington)From these three equations, one can prove the existence of a zero and a one,and when conjunction is de�ned (as x � y := (x0 + y0)0), one can prove all of theproperties of Boolean algebra.Shortly thereafter, Huntington's student Herbert Robbins conjectured thatthe Huntington equation can be replaced by the following equation, which issimpler by one occurrence of the negation symbol.((x + y)0 + (x0 + y)0)0 = y (Robbins)Neither Robbins nor Huntington could �nd a proof or a counterexample. Thetheory given by the three equations fCommutativity, Associativity, Robbinsgbecame known as Robbins algebra, and the questionfCommutativity, Associativity, Robbinsg ?) Huntingtonbecame known as the Robbins problem. The problem became a favorite of Tarski,who gave it to many of his students and colleagues, but it remained unsolveduntil 1996.�This work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Advanced Scienti�c Computing Research, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38.1



It is not di�cult to show that every �nite Robbins algebra satis�es the Hunt-ington equation and that every Robbins algebra satisfying x00 = x satis�es theHuntington equation. A bit more di�cult is showing that any of the follow-ing properties of Boolean algebra is also su�cient: x + x = x, 90(x + 0 = x),91(x + 1 = 1). An important step was taken in 1982 when Steve Winkershowed (by hand) that every Robbins algebra satisfying the (very weak) condi-tion 9c9d(c+ d)0 = c0 also satis�es the Huntington equation [6].From 1980 through 1996, many attempts were made, with and without com-puters, to solve the problem. The attempts with computers relied on automatedtheorem-proving programs, such as Otter, for �rst-order logic with equality.A new theorem prover Eqp [3] featuring associative-commutative uni�cationwas written in the early 1990s. Associative-commutative (AC) uni�cation [5]builds the properties of associativity and commutativity of binary functions intothe inference processes so that those properties need not be used explicitly tomake inferences. The main advantage of AC uni�cation is that expressions canbe stored and used in a canonical form rather than in various commuted andassociated forms. The main disadvantage is that a pair of expressions can beAC-uni�ed in an enormous number of ways. To address this particular problem,a heuristic was developed that uses only the simplest AC uni�ers, reducing thenumber of inferences from a pair of equations, in some cases from millions totens. The heuristic is incomplete (i.e., it can block all paths to a proof), butit is valuable in practice. A second important feature of Eqp is the \basic"restriction on paramodulation [1], which reduces redundancy in the search fora proof.In 1996, a series of experiments was designed to attack the Robbins prob-lem with Eqp. Proof searches were conducted with various combinations ofparameters to the program, including use of the AC heuristic and the \basic"restriction, limits on the size of equations, and strategies for selecting the nextequations for making inferences. After fourteen multiday searches, using a totalof about �ve CPU-weeks of computer time, a proof was found. The successfulsearch, which took about eight CPU-days, produced a proof of Winker's condi-tion 9c9d(c + d)0 = c0 from fCommutativity, Associativity, Robbinsg. BecauseWinker's condition is su�cient to derive the Huntington equation, the Robbinsproblem had been solved. In subsequent searches, Eqp was able to derive theHuntington equation directly. Details of the work and a proof can be foundin [4].The proof was accepted as correct after being checked by hand and by sev-eral independent proof-checking programs. Mathematicians and logicians havecarefully studied Eqp's proofs, but little insight into the nature of the problemhas been gained. As far as we know, all known proofs of the Robbins conjectureare based on Eqp's proofs. 2
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