
An Evaluation of Java’s I/O Capabilities for
High-Performance Computing

Phillip M. Dickens
Illinois Institute of Technology

10 West 31st Street
Chicago, Illinois 60616

pmd@work.csam.iit.edu

Rajeev Thakur
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

thakur@mcs.anl.gov

ABSTRACTJava is quickly becoming the preferred language for writ-ing distributed applications because of its inherent supportfor programming on distributed platforms. In particular,Java provides compile-time and run-time security, automaticgarbage collection, inherent support for multithreading, sup-port for persistent objects and object migration, and porta-bility. Given these signi�cant advantages of Java, there is agrowing interest in using Java for high-performance comput-ing applications. To be successful in the high-performancecomputing domain, however, Java must have the capabilityto e�ciently handle the signi�cant I/O requirements com-monly found in high-performance computing applications.While there has been signi�cant research in high-performanceI/O using languages such as C, C++, and Fortran, therehas been relatively little research into the I/O capabilitiesof Java. In this paper, we evaluate the I/O capabilities ofJava for high-performance computing. We examine severalapproaches that attempt to provide high-performance I/O|many of which are not obvious at �rst glance|and investi-gate their performance in both parallel and multithreadedenvironments. We also provide suggestions for expandingthe I/O capabilities of Java to better support the needs ofhigh-performance computing applications.
1. INTRODUCTIONThere is a growing interest in the use of Java for high-performance computing, stemming from Java's signi�cantsupport for programming on distributed platforms. Thissupport includes compile-time and run-time security thatcan be used as the basis for writing secure applications. Javaalso provides inherent support for multithreading, allowingthe overlapping of computation with communication or I/O.Java can save the state of an object and recreate that ob-ject on another machine, supporting both persistent objectsand object migration. Java provides automatic garbage col-

lection, alleviating the programmer from memory manage-ment. Perhaps the greatest bene�t of Java is its portability:a Java application can be executed on any platform withJava support.Despite the many advantages of Java-based computation, itis still unclear whether Java has the capability to supportthe signi�cant I/O demands found in large scienti�c appli-cations. In this paper, we investigate the I/O capabilitiesof Java for high-performance computing. We perform ex-periments on two di�erent parallel machines, a distributed-memory system (IBM SP) and a shared-memory system(SGI Origin2000), both of which employ modern parallel/high-performance �le systems. We investigate I/O mechanismsde�ned in Java that can be used to take advantage of suchparallel �le systems and study the performance implicationsof each such approach. Finally, we provide suggestions forrelatively simple changes to the Java I/O model that cansigni�cantly improve performance.
1.1 Contributions of this PaperThe key contribution of this paper is that it provides adetailed discussion and performance analysis of several ap-proaches to parallel �le I/O available in Java and does soacross two di�erent parallel architectures and �le systems.To date, there has been relatively little research focusingon the I/O capabilities of Java in general, and on its capa-bilities to perform parallel �le I/O in particular. To makeour results as general as possible, we do not consider anyapproaches that cannot be performed by a user at the ap-plication level.
1.2 OrganizationThe rest of this paper is organized as follows. In Section 2we discuss I/O in high-performance computing applications.In Section 3 we provide background information on the I/Omechanisms de�ned in Java. We describe several approachesfor performing parallel �le I/O in Java in Section 4. Exper-imental results are presented in Section 5. We o�er simplesuggestions for improving the Java I/O model in Section 6.Related work is discussed in Section 7, followed by conclu-sions in Section 8.

2. I/O IN HIGH-PERFORMANCECOMPUT-
INGMany computationally intensive scienti�c applications alsoneed to access large amounts of data, and I/O is often thebottleneck in such applications [3, 13, 22]. A common I/Orequirement is as follows. The application has some largedata structures, say multidimensional arrays, distributedamong processes in some fashion. The arrays must be readfrom or written to a �le containing the global array. Theprogram may begin by reading in an input array and maythen write arrays to �les several times during the course ofthe computation. The arrays in these applications are notjust byte arrays, but rather consist of integers, or oating-point numbers, or some other data type. As we shall seelater on this paper, the fact that they are not just byte ar-rays is important in the context of using Java for I/O inthese kinds of applications. In addition, the �les are usuallyrandom-access �les, and processes seek to di�erent locationsin the �les to read/write data.In this paper, we focus on the problem of concurrent readingor writing of data from multiple processes/threads to a com-mon �le in Java. We assume that a large one-dimensionalarray of integers is block-distributed among processes andmust be read from or written to a common �le containingthe global array. While simple, this example is su�cient todemonstrate the strengths and weaknesses of the Java I/Omodel as applicable to the basic needs of high-performancecomputing applications. Our experiments assume (and em-ploy) a random-access �le that is striped across the disks ofa parallel �le system.Much of the research related to parallel I/O has been per-formed in the context of C, and C provides excellent supportfor such operations. In particular, C allows the casting ofan array of any type into an array of bytes, and multidi-mensional arrays can be treated as one-dimensional arraysof the same size. The Unix I/O functions simply take apointer to a one-dimensional array, the number of bytes tobe read or written, the o�set in the �le, and carry out therequest as a single I/O operation. It is also quite simple toperform parallel reads and writes in C without the need forsynchronization (on �le systems that support such access).In particular, each process can seek to an independent (non-overlapping) region of a shared random-access �le and thenperform its reads or writes to disjoint regions of the �le inparallel.There are other advantages of C/Unix based I/O as well.One advantage is that local (nonportable) hooks to a parallel�le system can provide excellent performance enhancementson some machines. For example, the O DIRECT option avail-able on the XFS �le system on the SGI Origin2000 allowsthe application to bypass the system �le cache and writedirectly to disk. On systems with high disk bandwidth, thisoption can improve performance signi�cantly [7]. The disad-vantage of this approach, of course, is that it is not portable.Another advantage of C-based I/O is that there are portableAPIs, such as MPI-IO [10], that are implemented in an op-timized fashion for di�erent machines and �le systems.The situation with Java, however, is quite di�erent. Becauseof various Java language constraints, performing parallel �le

I/O in Java is a much more complex issue. This is the focusof the next section.
3. I/O IN JAVATo understand the issues associated with performing parallelI/O in Java, it is necessary to briey review the Java I/Omodel [11].Generally, I/O in Java is divided into two parts: byte-orientedI/O, which includes bytes, integers, oats, doubles and soforth, and text-oriented I/O, which includes characters andtext. In this paper, we are concerned only with byte-oriented(binary) �le I/O. In Java, byte-oriented I/O is handled byinput streams and output streams, where a stream is anordered sequence of bytes of unknown length.Java provides a rich set of classes and methods for operatingon byte input and output streams. These classes are hier-archical, and at the base of this hierarchy are the abstractclasses InputStream and OuputStream. It is useful to brieydiscuss this class hierarchy in order to clarify the possibleapproaches to performing high-performance I/O in Java. Tofacilitate this discussion, Figure 1 provides a graphical rep-resentation of this I/O hierarchy. We note that we have notincluded every class that deals with byte-oriented I/O buthave included only those classes that are pertinent to ourdiscussion.
3.1 InputStream and OutputStream ClassesThe abstract classes InputStream and OutputStream are thefoundation for all input and output streams. They de�nemethods for reading/writing raw byte input/output streams.The InputStream class provides three methods for readingbytes from an input stream. One method reads a single byte,another method reads available data into a byte array, andthe third method reads the available data into a particularregion of a byte array. We are interested in the third methodsince it allows distinct threads to read into distinct regionsof the same byte array in parallel. The signature for thismethod is:public int read(byte[] buf, int offset, int length)throws IOExceptionIn addition to the three read methods, the InputStreamclassde�nes methods to skip over bytes in the input stream, todetermine the number of bytes available in an input stream,and to close an input stream.The OutputStream class provides methods for writing thatare analogous to those of InputStream. In particular, itprovides three write methods: one to write a single byteto an output stream, one to write an array of bytes to anoutput stream, and one to write a subarray of bytes to anoutput stream. We are interested primarily in the thirdmethod, which can be used as the basis for performing par-allel writes (when used in the context of random-access �les,as discussed below). The signature for this method is:

InputStream

FileInputStream

ByteArrayInputStream

FilterInputStream

BufferedInputStream

DataInputStream

RandomAccessFileOutputStream

FileOutputStream

ByteArrayOutputStream

FilterOutputStream

BufferedOutputStream

DataOutputStreamFigure 1: This �gure shows the I/O class hierarchy pertinent to this investigation. Note that theRandomAccessFile class is completely outside of the InputStream and OutputStream hierarchy. As discussedin Section 3.5, however, a connection can be made between a RandomAccessFile and a FileInputStream orFileOutputStream.public void write(byte[] buf, int offset,int length) throws IOExceptionIn addition to the three write methods, this class also sup-ports methods to ush and close output streams. A verysigni�cant feature of the OutputStream class is that, unlikethe InputStream class, it does not support skipping (or seek-ing) over bytes in the output stream. This precludes mul-tiple threads from writing to distinct regions of the outputstream, which basically precludes performing parallel writes.The solution to this problem is discussed in Section 4.
3.2 File Input and Output StreamsThe FileInputStream and FileOutputStream classes areconcrete subclasses of InputStream and OutputStream, re-spectively, and provide a mechanism to read from and writeto �les. FileInputStream provides all the methods of theInputStream class and de�nes only one new method, whichcan be used to obtain a �le descriptor object. The signaturefor this method is:public final FileDescriptor getFD()throws IOExceptionNote that the ability to skip over bytes in a �le input streammeans that multiple threads can seek to disjoint regions inan input �le. This feature, in addition to the fact that mul-tiple threads can read into disjoint sections of a byte array inparallel, provides the basis for parallel reads into a commonarray.There are three constructors for �le input streams. One con-structor takes as a parameter a string representing the �lename. Another constructor takes as a parameter a Java.io.Fileobject. The third constructor requires a �le descriptor ob-ject. For reasons discussed below, the third constructor ismost pertinent to this discussion and has the following sig-nature:

public FileInputStream(FileDescriptor fd)Similar to the FileInputStreamclass, the FileOutputStreamclass also provides the three write methods available in itssuperclass and de�nes only one new method for obtaininga �le descriptor object. The constructor for this class mostpertinent to our discussion takes as a parameter a �le de-scriptor and has the following signature:public FileOutputStream(FileDescriptor fd)We note that it is not possible for multiple threads to seekto di�erent locations in a �le output stream since the classprovides no method to do so.
3.3 Byte Array StreamsThe ByteArrayInputStream class reads data from a bytearray using the methods of the superclass. It provides twoconstructors: one that takes a byte array as its parameter(and uses this byte array as the input source), and one thattakes a byte array plus an o�set and a length, and uses thissubarray as the input source. Otherwise, it de�nes no newmethods.The ByteArrayOutputStream class writes bytes into succes-sive components of an internal byte array. The size of thisinternal byte array is determined by the class constructors.One constructor takes no arguments and employs a defaultbu�er size of 32 bytes. The second constructor takes as anargument the initial size of the bu�er. In either case, the sizeof the byte array grows to accommodate additional data. Acopy of the internal byte array can be obtained through thetoByteArray method. The signature for this method is:public synchronized byte[] toByteArray()

Note that the toByteArray method is synchronized: ac-cesses to this method are serialized by the implementation.
3.4 Filter StreamsFilter streams provide methods to chain streams together tobuild composite streams. For example, a BufferedOutputStreamcan be chained to a FileOutputStream to reduce the numberof calls to the �le system.The FilterInputStream and FilterOutputStream classesde�ne a number of subclasses that manipulate the data of anunderlying stream. The constructor for a FilterInputStreamobject takes as a parameter an InputStream object, and theconstructor for a FilterOutputStream object takes as a pa-rameter an OutputStream object. Otherwise, these classesprovide the same methods de�ned by the InputStream andOutputStream classes.Two subclasses of �lter streams are pertinent to this inves-tigation. One subclass is DataInputStream, which allowsraw byte input to be treated at the level of Java primitivetypes. The other subclass, BufferedInputStream, providesbu�ering for an underlying stream. Similar subclasses arede�ned by FilterOutputStream. It is worthwhile to brieydiscuss these two subclasses.
3.4.1 Buffered StreamsThe BufferedInputStreamand BufferedOutputStreamclassesprovide bu�ering for an underlying stream, where the streamto be bu�ered is passed as an argument to the constructor.The bu�ering is provided by an internal system bu�er whosesize can (optionally) be speci�ed by the user.
3.4.2 Data StreamsAll the classes discussed thus far manipulate raw byte dataonly. Applications, however, deal with higher-level datatypes, such as integers, oats, doubles, and so forth. Java de-�nes two interfaces, DataInput and DataOutput, that de�nemethods to treat raw byte streams as these higher-level Javadata types. Together, these interfaces de�ne methods forreading and writing all Java data types. The DataInputStreamand DataOutputStream classes provide default implementa-tions for these interfaces. For example, the two methodsthat read and write integers are the following:public final int readInt() throws IOExceptionpublic final void writeInt(int i)throws IOExceptionIt is important to note that these methods read or writea single integer at a time. No method exists in Java forreading or writing an array of integers (or an array of anydata type other than bytes).
3.5 Random-Access FilesAs mentioned above, it is not possible to seek to some lo-cation in the �le when writing with the FileOutputStreamclass because, unlike FileInputStream, FileOutputStreamprovides no methods for seeking. To overcome this prob-lem, we use the RandomAccessFile class that provides moresophisticated �le I/O. In particular, it provides the seekmethod that we require.

public void seek(long position) throws IOExceptionIt is interesting to note that the RandomAccessFile class sitsalone in the I/O hierarchy and duplicates, rather than inher-its, methods from the stream I/O hierarchy. In particular,RandomAccessFile duplicates the read and write methodsde�ned by the InputStream and OutputStream classes andimplements the DataInput and DataOutput interfaces thatare implemented by the data stream classes. However, sinceRandomAccessFile is not in the stream hierarchy, it cannotbe directly used where input or output streams are required.There is, however, a (not entirely obvious) way to form aconnection between the RandomAccessFileclass and the restof the stream hierarchy. This can be done by getting the �ledescriptor of a random-access �le with getFD() and usingthe �le descriptor as a parameter to the constructor for aFileInputStream or FileOutputStream object. Once thisconnection is made, a random-access �le can be chained to�lter streams and byte-array streams.
4. APPROACHES TO PARALLEL FILE I/O

IN JAVAIn this section we describe six di�erent approaches for per-forming parallel �le I/O in Java. Most of these approachesare di�erent ways of working around the problem that Javadoes not directly support the reading or writing of arrays ofany data type other than bytes.
4.1 Using Raw Byte ArraysIf the data to be read or written is already in the form ofa byte array, it is trivial to read or write the data usingthe Java methods for reading/writing byte arrays. As notedabove, however, byte is the only data type for which sucharray operations are de�ned.Let us assume that multiple threads of a parallel programneed to write di�erent parts of a byte array to a common�le. Assume further that the �le system permits concur-rent writes to disjoint locations in a �le. We can performthe I/O as follows. Each thread in the parallel programcreates a RandomAccessFile object, calculates its o�set inthe shared �le, and seeks to that position. It then uses thewrite method de�ned by the RandomAccessFile to writeits portion of the byte array in a single operation, as shownbelow.// this is executed by the main threadbyte buf[] = new byte[buf_size];// this code is executed by all of the threads.// First create a RandomAccessFile object, then// calculate offset in fileRandomAccessFile raf =new RandomAccessFile (filename,access);raf.seek(position);// calculate offset within byte array and number// of bytes to write, then perform write

raf.write(buf,my_start_buf,num_bytes);It is important to note that this approach works correctlyboth when existing �le is overwritten and when a new �leis created, because of the semantics of the seek method.In particular, a seek to a location past the end of the �le,followed by a write, extends the length of the �le [18].
4.2 Converting to/from an Array of BytesAs we shall see in Section 5, I/O involving byte arrays issimple and also performs well. The problem, however, isthat real applications do not operate on arrays of bytes.Rather, they deal with arrays of other data types, such asintegers, oats, and doubles. Java, unfortunately, providesno methods for performing I/O operations on such arrays.Furthermore, unlike C, Java does not allow users to sim-ply cast an array of some other type into an array of bytes.Nonetheless, we can still use the byte-array methods by ex-plicitly converting an array of some other data type into anarray of bytes, and vice versa.For example, we can write an array of integers by �rst right-shifting one byte at a time into a byte array and then writingthe byte array. Similarly, we can read an array of integers by�rst reading into a byte array and then converting the bytesinto integers. The only issue encountered in the conversionfrom bytes to integers stems from the fact that Java doesnot have unsigned data types. Thus, if the high bit of agiven byte is set, it is interpreted as a negative number whenconverted to an integer. More precisely, the lower eight bitsof the integer are copied from the eight bits of the byte, andthe upper 24 bits are set to 1 (sign extension). We must,therefore, take care of the sign bit when converting bytesto integers. The conversion can be done as follows withoutexplicitly checking the sign bit (that is, without a branch):1// Assume we are converting bytes 0 to 3 of a byte// array (buf) into element 0 of an integer array.int temp;for (int i=0; i<4; i++) {temp = (int) (buf[i]);temp = temp & 255;temp = temp << (i * 8);int_array[0] = int_array[0] | temp;}
4.3 Using Data StreamsIt is possible to read/write a single integer at a time by us-ing the methods de�ned in the DataInput and DataOutputinterfaces. As noted above, the RandomAccessFile classimplements these interfaces, making it relatively easy toperform parallel I/O operations using data streams. Thepseudo-code for this approach is shown below. Note thatthe writeIntmethod is called several times in a loop, writ-ing one integer at a time, which is very expensive.// main program1We thank an anonymous referee for suggesting this solu-tion.

int[] int_array = new int[num_ints];// each thread calculates its position in the// file and the array, and calculates the number of// integers it needs to read or write.RandomAccessFile raf =new RandomAccessFile(filename,access);raf.seek(position);for (int i = start_buf;i < (start_buf+num_ints_to_write); i++)raf.writeInt(int_array[i]);
4.4 Using Buffered Data StreamsAs we shall see in Section 5, using regular (unbu�ered)data streams results in the poorest performance across allapproaches studied, because a call to the I/O subsystemis made for every integer read or written. It is thus de-sirable to seek approaches that internally bu�er data be-fore reading/writing. The problem, however, is that theRandomAccessFile class does not implement bu�ering, andthe FilterInputand FilterOutput streams (of which bu�eredstreams are a subclass) only work with objects of type InputStreamand OutputStream.There is a way to use system bu�ering for a RandomAccessFileobject as follows. A RandomAccessFile can be chained to aFileInputStream or FileOutputStream object through its�le descriptor. The FileInputStream or FileOutputStreamobject can be chained to a BufferedInputStream orBufferedOutputStream object, which can then be chainedto a DataInputStream or DataOutputStream object.We note, however, that it is not safe to use bu�ered datastreams for writing concurrently from multiple processes orthreads to a common random-access �le.2 This is becauseeach thread or process maintains its own local bu�er, andthe bu�ers of di�erent processes may not be coherent. Thisproblem does not exist in the case of concurrent reads, ofcourse.The pseudo code for using bu�ered streams is shown be-low, with the caveat that, depending on the implementation,there is potential for erroneous results.RandomAccessFile raf =new RandomAccessFile(filename,access);FileDescriptor fd = raf.getFD();FileOutputStream fos = new FileOutputStream(fd);BufferedOutputStream bos= new BufferedOutputStream(fos);DataOutputStream dos = new DataOutputStream(bos);// each thread calculates its offset within the array,// its offset in the file, and the number of// elements to write to disk.raf.seek(position);for (int i = start_buf;i < (start_buf + num_ints_to_write; i++)2We again thank an anonymous referee for bringing thisissue to our attention.

dos.writeInt(int_array[i]);
4.5 Using Buffering with Byte Array StreamsAnother approach to bu�ering a data input or output streamis to chain it to an underlying byte array stream. Then theread and write methods invoked on the data stream willbe directed to the underlying byte array stream rather thandirectly to disk. This composite stream is de�ned as follows:RandomAccessFile raf =new RandomAccessFile(filename,access);ByteArrayOutputStream bos =new ByteArrayOutputStream(size);DataOutputStream dos =new DataOutputStream(bos);Note that it is advantageous to specify the correct bu�er sizeto the ByteArrayOutputStream constructor, instead of justusing the default bu�er size of 32 bytes, in order to avoidthe cost of having the implementation grow (reallocate) thebu�er as needed.As in the previous cases, the individual threads seek to theircorrect position in the integer array and the shared �le. Inthe case of a write, the thread simply writes all its datato the output data stream, which in turn writes it to theunderlying byte array stream. Once the write is complete,the thread uses the toByteArray method to write the datafrom the byte array to the shared �le. This is shown below.for(int i = start_buf;i < (start_buf + num_ints_to_write; i++)dos.writeInt(int_array[i]);raf.seek(position);raf.write(bos.toByteArray());It is slightly more complicated to use byte array streams forread operations. First, each thread declares its own byte ar-ray, creates the ByteArrayInputStreamand DataInputStreamobjects, and seeks to the appropriate location in the �le.Next, each thread reads from the �le into its byte arrayusing the low-level read method. Finally, the data is trans-fered from the byte array into the integer array using theread method of the data input stream class. The pseudo-code for this operation is given below.// each thread allocates its own bufferbyte[] buf =new byte[num_bytes_to_read];ByteArrayInputStream bis =new ByteArrayInputStream(buf);DataInputStream dis =new DataInputStream(bis);raf.seek(position);raf.read(buf, 0, num_bytes_to_read);for (int i = start_buf;i < (start_buf + num_ints_to_read); i++)int_array[i] = dis.readInt();

4.6 Other ApproachesThere are two other approaches that we did not investigate.One approach is to use the JNI interface and call Unix I/Ofunctions in C. We did not use this approach for two reasons.First, it signi�cantly reduces the portability of the code.Second, we were interested in evaluating the performance ofthe I/O methods de�ned in Java itself.The other approach we do not report on is the use of objectserialization to perform I/O. We did explore this approachinitially, but found that Java adds some additional bytes tothe �le in order to store object-related information. Thismakes it di�cult to perform parallel reads or writes becausethe threads would not know where to seek in the �le. Objectserialization in Java is also known to be very slow [2].
5. PERFORMANCE RESULTSIn this section we present the results of our experiments withthe various approaches described above. We �rst describethe two machines used for our experiments.
5.1 Computational PlatformsWe conducted experiments on both a shared-memory anda distributed-memory parallel machine. The distributed-memory machine was an IBM SP located at Argonne Na-tional Laboratory. This machine has 80 compute nodes and4 I/O processors. Each I/O processor controls four SSAdisks, each of 9 Gbyte capacity. The shared-memory ma-chine used in these experiments was an SGI Origin2000,also housed at Argonne National Laboratory. This machineis con�gured with 128 compute processors and ten FibreChannel controllers connected to a total of 110 disks of 9Gbyte capacity each. Both machines have parallel/high-performance �le systems, namely, PIOFS on the SP andXFS on the Origin2000.On the shared-memory Origin2000, we wrote a multithreadedJava program, each thread running on a separate proces-sor. The threads all shared the array to be read or writ-ten, but each thread operated on a distinct subarray region.The shared array was divided equally among all the threads.Similarly, all threads accessed distinct portions of the �le.Each thread wrote 32 Mbytes at a time several times, re-sulting in a total �le size of 1 Gbyte. We used version 3.1.1of SGI's Java software, which was conformant with the be-havior of Sun's JDK 1.1.6.On the IBM SP, which is a distributed-memory machine,we wrote a multiprocess parallel program. Each process ranon a di�erent node of the SP (and a di�erent Java VirtualMachine). We could have simply spawned a Java processon each node, but our parallel program also needed someadditional information that MPI [9] typically provides, suchas the total number of processes in the computation and therank of a process in the process group (in order to determineits position in the shared �le). One way to get around thisproblem is to use one of the several research projects in thisarea, such as JavaNOW [19] or an MPI wrapper for Java [15].We used a simpler approach, however, in which we invokedthe Java program from within a simple MPI program writtenin C. The MPI program used MPI functions to determinethe rank of the process and the number of processes, andthen invoked the Java program using the system() call in C,

passing the rank and number of processes as command-linearguments. After the Java program completed, it returnedto the MPI program, which then accumulated performancestatistics. Each Java process had its own private array, butall processes shared the global �le. We used a 4 Mbyte arrayper process, based on previous experiments that have shownthis to be a good size for performing I/O on this SP. Eachprocess wrote multiple times resulting in a total �le size of 1Gbyte, as on the Origin2000. We used IBM's Java software,which was conformant with the behavior of Sun's JDK 1.1.2.
5.2 ResultsThe results of our experiments are shown in Figure 2. Wenote that our intention was not to compare performance be-tween the two machines since they have very di�erent I/Ocon�gurations. Rather, we wanted to compare the perfor-mance of the various approaches on a particular machine,for two di�erent machines.The experiments can basically be divided into two cate-gories. The �rst category, which includes the �rst two ap-proaches discussed in Section 4, uses the Java I/O methodsfor reading/writing arrays of bytes. In the �rst case of thiscategory, we assume the data is already in byte form; in thesecond case (called encode/decode in Figure 2), we explic-itly perform the conversion from integer arrays to byte ar-rays and vice versa. The second category, which includes allthe other experiments, uses the data stream classes eitheralone or chained to some underlying stream that providesbu�ering.The I/O performance is quite poor when using the datastream classes and methods, even when bu�ered. The poorperformance of the data stream classes stems from threefactors. First, when used without bu�ering, this approachrequires a call to the I/O subsystem for every element ofthe array. This may be acceptable when I/O requirementsare small, but is certainly not acceptable for large scienti�capplications. Secondly, even when bu�ering is provided byan underlying stream, this approach still requires invoking amethod for every element of the array. With 64 threads anda 1 Gbyte array, each thread must make over four millioncalls to the readInt or writeInt methods. With a singlethread, this number increases to over 268,000,000. Clearlythis is a signi�cant obstacle to achieving high-performance�le I/O. The third problem is that many of the methods ofthe DataOutputStream class write to the underlying streamone byte at a time, and each such write requires a lock ac-quisition [12].Although bu�ering improved the performance of data streamsby orders of magnitude (for example, from 0.00074 Mbytes/secto 0.19 Mbytes/sec), it could not match the performanceof writing byte arrays directly, which was more than 100Mbytes/sec. We also observed that the size of the bu�erwas quite important when using the bu�ered data streams.In particular, choosing the correct bu�er size more thantripled the throughput. (We should also note that a nontriv-ial amount of experimentation was required to �nd the bestbu�er size.) Again, the di�erence in performance, however,was only in the range of 1 Mbyte/sec to 3 Mbytes/sec, forexample.

As expected, the best performance was obtained when usingthe Java I/O facilities for directly reading and writing arraysof bytes. In fact, the �rst approach, which simply assumedthe data was already in byte form, provided performance es-sentially identical to that obtained when using C. However,there was a signi�cant drop in performance (for all but oneexperiment) when the application itself had to convert datafrom an array of integers to an array of bytes or vice versa.
5.2.1 Results on the IBM SPOne striking result on the SP is the rather signi�cant drop inperformance observed when moving from 32 to 64 processorsusing the �rst approach (raw byte arrays). The reason forthis drop is the contention caused by the undercon�guredI/O subsystem with only four I/O processors. This trendwas not observed for any other approach, due to the factthat the extra computation resulted in the separation in timeof some of the concurrent write requests. The best writeperformance was obtained using the �rst approach with 32processors (resulting in a bandwidth of 106 Mbytes/sec).The best result obtained when using the second approach(conversion from integers to bytes) was 20 Mbytes/sec with64 processors. The maximum throughput observed across allthe other experiments was 7.5 Mbytes/sec, obtained with 64processors and using byte array streams for bu�ering.The best performance obtained for the read operations was96 Mbytes/sec when using the �rst approach with 16 pro-cessors. There was a small decrease in performance whenthe number of processors was increased to 32 and 64, thisagain due to the undercon�gured I/O subsystem. The bestperformance obtained using the second approach was 30Mbytes/sec with 64 processors. The best performance forall the data stream methods was 7.5 Mbytes/sec, again ob-tained with 64 processors and using byte array streams forbu�ering.
5.2.2 Results on the SGI Origin2000It is interesting to note that on the Origin2000, the secondapproach, where the application performed the conversionbetween integers and bytes itself, outperformed the �rst ap-proach when writing with 64 processors. The reason for thisdisparity again has to do with contention. As noted above,the extra computation of the second approach has the e�ectof separating in time some of the concurrent write requests.This approach resulted in a throughput of 108 Mbytes/secwith 64 processors. The best performance observed usingdata streams was 4.1 Mbytes/sec, obtained using bu�eredoutput streams with a 0.5 Mbyte bu�er.The �rst approach resulted in excellent performance for theread operations. For example, a throughput of 631 Mbytes/secwas observed when using 16 processors. Again we see a de-crease in performance when increasing the number of proces-sors to 64 because of increased contention for I/O resources.The second approach resulted in a maximum throughput of158 Mbytes/sec with 64 processors. The maximum through-put obtained using the data stream methods was 4 Mbytes/sec,when either byte arrays or bu�ered streams were used tobu�er the data streams.

0 20 40 60 80
Number of Processors

0.0

50.0

100.0

150.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Write Operations on SGI Origin 2000

Raw Byte Array
Encode/Decode
Data Streams
Buffered Data Streams
Byte Array Streams

0 20 40 60 80
Number of Processors

0.0

200.0

400.0

600.0

800.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Read Operations on SGI Origin 2000

Raw Byte Array
Encode/Decode
Data Streams
Buffered Data Streams
Byte Array Streams

0 20 40 60 80
Number of Processors

0.0

50.0

100.0

150.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Write Operations on IBM SP2

Raw Byte Array
Encode/Decode
Data Streams
Buffered Data Streams
Byte Array Streams

0 20 40 60 80
Number of Processors

0.0

20.0

40.0

60.0

80.0

100.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Read Operations on IBM SP2

Raw Byte Array
Encode/Decode
Data Streams
Buffered Data Streams
Byte Array Streams

Figure 2: The performance of various approaches to high-performance �le I/O in Java

6. SUGGESTIONS FOR IMPROVING JAVA
I/O PERFORMANCEThe above results demonstrate that the I/O methods thatdirectly read/write arrays of bytes are the only methodsthat provide reasonable I/O performance. Real applications,however, do not operate on byte arrays; they need the abilityto read or write arrays of other data types, such as integersand oats. The data stream methods that operate on suchdata types do not allow users to read or write arrays of datatypes. One can read or write only a single data item at atime, resulting in poor I/O performance.A relatively simple �x to these problems is for Java to pro-vide data stream methods that read/write arrays of all theprimitive data types. Since Java already knows how to writea single data type as a sequence of bytes and to read a singledata type from a sequence of bytes, it can easily be extendedto read or write an array of data types. This �x would notonly eliminate the need for many expensive I/O or methodcalls, but it would also provide the Java implementation theopportunity to optimize such methods for a particular ma-chine and �le system.This extension would require the introduction of six newmethods for writing and another six for reading. The sug-gested write methods are shown below; the read methodsare analogous and are not shown.writeShortArray (short [] data)writeCharArray (char [] data)writeIntArray (int [] data)writeLongArray (long [] data)writeFloatArray (float [] data)writeDoubleArray(double[] data)While it is certainly possible to implement these methodsat the application level (as done in this study), implement-ing them natively as part of the language should providemuch better performance. These methods do not solve theproblem for multidimensional arrays. However, multidimen-sional arrays can be accessed by calling the methods for one-dimensional arrays several times.The proposed methods overcome the performance limita-tions of the lowest-level I/O methods in Java. For high-performance computing, application developers would alsoneed a higher-level parallel I/O library (such as MPI-IO [10])for Java. Such libraries, if implemented in Java, would un-doubtedly bene�t from the proposed methods.Finally, we note that the proposed methods are not justuseful for I/O, but also for interprocess communication, andwould therefore bene�t networking applications as well.

7. RELATED WORKOther than the large body of work related to parallel I/O [1,4, 5, 8, 14, 16, 17, 20, 21], the work most closely related toours is the Jaguar project [23, 24], which aims to improveJava I/O performance as one of its goals. Jaguar allows theJava runtime system to be extended with new primitive op-erations that enable e�cient access to hardware resources.

These primitives are speci�ed as short machine code seg-ments that are directly inlined into the Java bytecode as itis compiled. The Jaguar project is, in fact, complementaryto the work discussed in this paper, the di�erence being thelevel at which performance improvement is targeted. Thispaper deals with the Java I/O facilities available to the userat the application level. The Jaguar project provides perfor-mance enhancements at a lower system level. It seems clearthat modi�cations to Java at all levels will be necessary toprovide truly high-performance �le I/O.Another interesting aspect of the Jaguar project is the ideaof pre-serialized objects, where objects are stored in a pre-serialized format ready for communication or I/O. A similaridea could be applied to arrays of Java primitive data types,with the required encoding/decoding being performed bythreads executing in the background while the main threadengages in other computation/communication.
8. CONCLUSIONSIn this paper, we have investigated the capabilities of Javafor high-performance �le I/O. This work demonstrates thatusing the data stream methods in Java generally providespoor results, even with careful bu�er size selection. Thus,to obtain reasonable performance, the application is forcedto use the low-level I/O methods that read and write ar-rays of bytes. To use these methods, the application mustitself convert the array of integers (for instance) to an ar-ray of bytes. A better solution is for Java to provide datastream methods that operate on arrays of integers and otherdata types. This would signi�cantly simplify the implemen-tation of parallel I/O operations in Java, and would providethe Java implementation the opportunity to optimize suchmethods for each di�erent platform.
AcknowledgmentsThis work was supported by the Mathematical, Information,and Computational Sciences Division subprogram of the Of-�ce of Advanced Scienti�c Computing Research Research,U.S. Department of Energy, under Contract W-31-109-Eng-38.
9. REFERENCES[1] Bordawekar, R., del Rosario, J., and Alok Choudhary.Design and Evaluation of Primitives for Parallel I/O.In Proceedings of Supercomputing '93, pages 452-461,Portland, OR, 1993. IEEE Computer Society Press.[2] Carpenter, B., Fox, G., Ko, S.H., and S. Lim ObjectSerialization for Marshalling Data in a Java Interfaceto MPI. In Proceedings of the ACM 1999 Java GrandeConference, pages 66{71, June 1999.[3] Crandall, P., Aydt, R., Chien, A., and D. ReedInput-Output Characteristics of Scalable ParallelApplications. In Proceedings of Supercomputing '95,ACM press, December 1995.[4] DelRosario, J., Bordawekar, R., and Alok Choudhary.Improved Parallel I/O via a Two-Phase Run-TimeAccess Strategy. In Proceedings of the IPPS '93Workshop on Input/Output in Parallel ComputerSystems pages 56-70, Newport Beach, CA, 1993.

[5] DelRasario, J. and A. Choudhary. High PerformanceI/O for Parallel Computers: Problems and prospects.IEEE Computer, 27(3):59-68, March 1994.[6] Dickens, P. and R. Thakur. A Performance Study ofTwo-phase I/O. In Proceedings of the 4thInternational Euro-Par Conference. Lecture Notes inComputer Science 1470. Springer-Verlag, pages959-965, September 1998.[7] Dickens, P. and R. Thakur. On ImplementingHigh-Performance Collective I/O. Submitted to TheJournal of Parallel and Distributed Computing[8] Feitelson, D., Corbett, P., Baylor, S., and Y. Hsu.Parallel I/O Subsystems in Massively ParallelSupercomputers. In IEEE Parallel and DistributedTechnology, 3(3):33-47, Fall 1995.[9] Gropp, W., Lusk, E., and A. Skjellum. Using MPI:Portable Parallel Programming with theMessage-Passing Interface. Second Edition. The MITPress, Cambridge, Massachusetts, 1999.[10] Gropp, W., Lusk, E., and R. Thakur. Using MPI-2:Advanced Features of the Message-Passing Interface.The MIT Press, Cambridge, Massachusetts, 1999.[11] Harold, E.R. Java I/O. O'Reilly & Associates, March1999.[12] Heydon, A. and M. Najork. Performance Limitationsof the Java Core Libraries. In Proceedings of the ACM1999 Java Grande Conference, pages 35{41, June1999.[13] Kotz, D. and N. Nieuwejaar. Dynamic File-AccessCharacteristics of a Production Parallel Scienti�cWorkload. In Proceedings of Supercomputing '94,pages 640-649, November 1994.[14] Kotz, D. Disk-Directed I/O for MIMDMultiprocessors. it ACM Transactions on ComputerSystems, 15(1):41-74, February 1997.[15] MPI-Java Home Page.http://www.npac.syr.edu/projects/pcrc/HPJava/mpijava.html[16] Parallel I/O Archive.http://www.cs.dartmouth.edu/pario[17] Seamons, K., Chen, Y., Jones, P., Jozwiak, J., and M.Winslett. Server-Directed Collective I/O in Panda. InIn Proceedings of Supercomputing '95, San Diego, CA,December 1995. IEEE Computer Society Press.[18] Sun Microsystems Java 1.1 Documentation.http://java.sun.com/products/jdk/1.1/docs.html[19] Thiruvathukal, G., Dickens, P., and S. Bhatti. Java onNetworks of Workstations (JavaNOW): A ParallelComputing Framework Inspired by Linda, Actors, andthe Message Passing Interface. Submitted toConcurrency: Practice and Experience.[20] Thakur, R. and A. Choudhary. An ExtendedTwo-Phase Method for Accessing Sections ofOut-of-Core Arrays. Scienti�c Programming5(4):301-317, Winter 1996.

[21] Thakur, R., Choudhary, A., More, S, and S.Kuditipudi. Passion: Optimized I/O for ParallelApplications. IEEE Computer, 29(6):70-78, June 1996.[22] Thakur, R., Lusk, E., and W. Gropp. I/O in ParallelApplications: The Weakest Link. InternationalJournal of High Performance Computing Applications,124:389{395, Winter 1998.[23] Welsh, M. and D. Culler. Jaguar: Enabling E�cientCommunication and I/O from Java. To appear inConcurrency: Practice and Experience, Special Issueon Java for High-Performance Applications.[24] Welsh, M. Tigris: A Java-Based Cluster I/O SystemTechnical report, June 1999.

