
On Implementing High-Performance Collective I/OPhillip M. Dickens� Rajeev ThakuryAbstractIn many parallel applications, the I/O requirements quite often present a signi�cantobstacle in the way of achieving good performance. An important area of current re-search is the development of techniques by which these costs can be reduced. One suchapproach is collective I/O, where the processors cooperatively develop an I/O strategythat reduces the number, and increases the size, of I/O requests, thereby making amuch better use of the I/O subsystem. While many studies have been presented in theliterature showing excellent results using collective I/O techniques, there has been littlediscussion of implementation techniques for collective I/O operations and the impacton performance of various implementation strategies. A closely related issue, whichhas not yet received su�cient attention, is whether the high cost of I/O can be furtherreduced by executing the collective I/O operation in the background, thus overlappingits execution with other computation occurring in the foreground.In this paper, we investigate both of these important issues. First, we explore theissues that arise in the implementation of a collective I/O library and show the im-pact on performance resulting from various implementation strategies. To make theseresults as general as possible, we investigate the performance of collective I/O imple-mentations on four di�erent parallel architectures: the IBM SP2, the Intel Paragon,the HP Exemplar, and the SGI Origin2000. We show that a naive implementationof collective I/O does not result in signi�cant performance gains for any of the ar-chitectures, but that an optimized collective I/O implementation provides excellentperformance across all of the platforms under study. Furthermore, we demonstratethat there exists a single implementation strategy that provides the best performancefor all computational platforms.Next, we explore the issues that arise in the implementation of thread-based collec-tive I/O operations. We show that that the most obvious implementation technique,which is to spawn a thread to execute the whole collective I/O operation in the back-ground, frequently provides the worst performance, often performing much worse thanjust executing the collective I/O routine entirely in the foreground. To improve the per-formance of thread-based collective I/O, we develop an alternate approach where partof the collective I/O operation is performed in the background, and part is performedin the foreground. We demonstrate that this new technique can provide signi�cant per-formance gains, o�ering up to 50% improvement when compared with implementationsthat do not attempt to overlap collective I/O and computation.�Department of Computer Science and Applied Mathematics, Illinois Institute of TechnologyyMathematics and Computer Science Division, Argonne National Laboratory

1 IntroductionParallel computers are increasingly being used to solve large, I/O-intensive applications inseveral di�erent disciplines. However, in many such applications the I/O subsystem performspoorly and represents a signi�cant obstacle to achieving good performance. The problemis often not with the hardware; many parallel I/O subsystems o�er excellent performance.Rather, the problem arises from other factors, primarily the I/O patterns exhibited by manyparallel scienti�c applications [9, 18, 2, 3, 22, 24, 25, 28]. In particular, each processor tendsto make a large number of small I/O requests, incurring the high cost of I/O on each suchrequest. One reason for this access pattern is that parallel scienti�c codes frequently involvelarge arrays distributed across the processor's local memory. After a processor performssome computation on its local array, it will often need to read/write its portion of the arrayfrom a common �le. If the processor's local portion of the array is not stored in a logicallycontiguous fashion, the processor will be forced to make a series of disjointed I/O requeststo complete the operation. While each processor may need to perform several, disjointedrequests, it is often the case that in the aggregate the whole array is being written to orread from the �le. The application can use this knowledge to signi�cantly improve its I/Operformance.The technique of collective I/O has been developed to better utilize the parallel I/Osubsystem [10, 26, 27, 4, 17, 23, 5, 8]. In this approach, the processors exchange informationabout their individual I/O requests to develop a picture of the aggregate I/O request. Basedon this global knowledge, I/O requests are combined and submitted in their proper order,making a much more e�cient use of the I/O subsystem.There are three approaches to collective I/O: two-phase I/O [10, 26, 27], disk-directed I/O[17, 19], and server-directed I/O [7, 23] The primary distinction between these approachesis the level at which the optimal I/O strategy is derived and carried out. In disk-directedI/O, the collective I/O request is sent to the disk controllers which collectively determineand carry out the optimal I/O strategy. In server-directed I/O, the I/O servers collectivelydetermine and carry out the optimal strategy, and in two-phase I/O, the application pro-cessors collectively determine and carry out the optimized approach. In this paper, we dealonly with two-phase collective I/O.To help understand how two-phase I/O can improve performance, consider a collectiveread operation. If the data is distributed across processors in a way that conforms to theway it is stored on disk, each processor can read its local array in one large I/O request. Thisdistribution is termed the conforming distribution and represents the optimal I/O perfor-mance. Assume the array is not distributed across the processors in a conforming manner.The processors can still perform the read operation assuming the conforming distribution,and then use interprocessor communication to redistribute the data to the desired distri-bution. Since interprocessor communication is, in general, orders of magnitude faster thanI/O operations, it is possible to obtain performance that approaches that of the conformingdistribution. Our research shows up to a 1000% improvement in performance when using acollective I/O approach rather than a non-collective approach.There have been several studies in the literature that document excellent performance1

using two-phase I/O [4, 12, 27]. However, two important issues have not yet been ad-dressed. The �rst issue has to do with the sensitivity of the two-phase I/O algorithm tovarious implementation approaches. In a previous study [12], it was shown that for at leastone architecture, the Intel Paragon, a \naive" implementation of two-phase I/O provided abandwidth of 78 Megabytes per second (MB/sec), but that an optimized two-phase I/O im-plementation provided a bandwidth of 440 MB/sec. In this paper, we extend these results tothree other computational platforms and demonstrate that there exists one implementationapproach that provides the best performance across all four architectures.The next issue has to do with mechanisms by which the impact of large I/O require-ments can be further reduced. It can be argued that basic collective I/O techniques arematuring, and that other approaches must be developed to further reduce the impact of I/Orequirements on large, scienti�c computations. A very promising approach for obtaininghigh performance is to use threads to execute the collective I/O in the background whilecontinuing with other computation in the foreground. This approach does not reduce thecost of collective I/O per se, but can signi�cantly reduce the impact of collective I/O byoverlapping its execution with other computation.We study the potential bene�ts of thread-based collective I/O by taking the best collectiveI/O implementation found in this study, and attempting to overlap its execution with com-putation occurring in the foreground. We show that the most natural implementation choice,to simply spawn o� a thread to perform the whole collective I/O routine in the background,is quite often the worst implementation option. We demonstrate that this approach improvesperformance on only one architecture and produces signi�cantly worse performance on two ofthe four architectures. To overcome this poor performance, we developed a technique wherepart, but not all, of the collective I/O is performed in the background. We demonstratethat this modi�ed technique, in general, is a much better implementation option than eitherperforming the whole collective I/O operation in the foreground or performing the wholeoperation in the background.There are three important contributions of this research. First, it serves as a guide forimplementation techniques for two-phase I/O on a wide range of parallel architectures. Sec-ondly, it provides signi�cant insight into the development of implementation techniques forthe split-collective parallel I/O operations de�ned in MPI-2 [21]. These operations providean implementation the opportunity to perform collective I/O in the background, but thereare currently no implementations that do so. The wide-spread use of MPI, and the impor-tance of developing portable parallel I/O operations, make this a very important and timelyapplication of this research. Thirdly, this research sheds new light on the use of threadsfor collective I/O and disproves the commonly held belief that simply spawning a thread toperform work in the background leads to signi�cant performance gains.The rest of the paper is organized as follows. In Section 2, we discuss the technique oftwo-phase collective I/O in more detail. In Section 3, we outline various implementationtechniques for two-phase I/O, and we study their performance in Section 4. In Section 5,we discuss the split-collective parallel I/O operations de�ned in MPI-2, and we investigateapproaches to their implementation in Section 6. In Section 7 we discuss related work, andwe provide our conclusions and future work in Section 8.2

Interprocessor Communication Network

IOP0 IOP1 IOP2 IOP3

P0 P1 P2 P3

a) Four compute processors and four I/O
processors.

P0 P1

0

1

2

3

0 1 2 3

P2 P3

b) 4 X 4 Array partitioned in
Block−Block order.Figure 1: Example system with four compute processors, four I/O processors and a 4 X 4array.2 Two-Phase I/OIn this section, we provide a simple example to demonstrate the two-phase I/O techniqueand show how it can signi�cantly improve performance. The architecture chosen for thisdiscussion is based on the two distributed memory architectures studied, the Intel Paragonand the IBM SP2 (we discuss all of the architectures in the next section).Most parallel architectures provide some form of hardware support for parallel I/O. Inthe case of the two distributed memory architectures studied, this support consists of a setof I/O processors, each of which controls some number of disks. The data in a �le is dividedinto a set of striping units, each of which represents a logically contiguous portion of the�le data. These striping units are (generally) distributed among the disks in a round robinfashion and are contiguous on a disk. Performance is enhanced because concurrent requeststo di�erent positions within the same �le can be serviced in parallel by the I/O subsystem.To illustrate how a two-phase algorithm can exploit this hardware consider the followingsimple example.Assume an SPMD computation where each processor computes over a di�erent region ofa two dimensional array. Further, assume there are four compute nodes, four I/O processorsand that a 4 X 4 array of integers is distributed across the local memories of the processors(see Figure 1). The array is stored on the disks in row-major order with a striping unitequal to one row of the array. The array is distributed among the processors in a block-blockdistribution as shown in Figure 1.Assume the processors are all ready to write their data to disk. In the two-phase I/Oapproach, the processors �rst communicate with each other to determine the aggregate I/Orequest and the optimal strategy for performing this request. In this example, the wholearray is being written to disk. Since the conforming distribution is row major, the optimalI/O strategy is for each processor to write out one full row of the array to disk in one request.3

Assume the derived strategy is for P0 to write row 0 of the array to disk, for processor P1 towrite row 1 to disk and so forth. Then the processors must use interprocessor communicationto permute the data to match the conforming distribution. In particular, processor 0 mustsend data elements (1,0) and (1,1) to P1, P1 must send to P0 data elements (0,2) and (0,3),P2 must send to P3 elements (3,0) and (3,1), and P3 must send to P2 data elements (2,2)and (2,3). After this exchange is completed, each processor is able to write out its row inone I/O operation.Contrast this with the I/O activity required in the non-collective I/O implementation.Processor P0 would have to make two separate I/O calls, one to write array elements (0,0) and(0,1), and another to write elements (1,0) and (1,1). Similarly, each of the other processorswould have to make two I/O requests to write their data to disk resulting in eight small I/Ooperations. Performance is degraded even more since processors P0 and P1 contend for I/Oprocessors IOP0 and IOP1, and processors P2 and P3 contend for I/O processors IOP2 andIOP3.As can be seen, using a collective I/O strategy can signi�cantly reduce the (very ex-pensive) calls to the I/O subsystem. The next task is to determine the best collective I/Oimplementation for each architecture and to determine if there exists a single implementationthat provides the best performance across all of the architectures under study. We beginwith a more detailed description of the four parallel machines used in this study.3 Experimental Design3.1 Computational PlatformsOf the four architectures studied, two of the machines, the IBM SP2 and the Intel Paragon,are distributed memory architectures. The other two, the SGI Origin 2000 and the HPExemplar, are distributed shared memory (DSM) architectures. The IBM SP2 used in theseexperiments is located at Argonne National Laboratory, and consists of 80 compute nodesand 4 I/O processors. Each I/O processor controls 4 SSA disks, each with a 9 Gigabytecapacity. The Intel Paragon used is located at the California Institute of Technology, and iscon�gured with 381 compute nodes and 64 I/O processors. Each I/O processor controls a4-Gigabyte Seagate drive.The SGI Origin2000 used in these experiments, is also housed at Argonne National Labo-ratory, and was con�gured (at the time of these experiments) with ten �ber channel connec-tions to an array of 90 9-Gigabyte disks. The Origin had 128 processors that were con�guredas three separate machines, the largest of which (and the one used in this study) contained96 compute processors. The �ber channels are shared by all of the processors, and the I/Otra�c shares the same routers and Cray links as does the memory tra�c. However, the I/Otra�c does not interact directly with any of the compute processors.The HP Exemplar, located at the California Institute of Technology, is con�gured with256 compute processors grouped in clusters termed hypernodes. Each hypernode consists of16 compute processors and 4 Gigabytes of shared random-access memory connected througha non-blocking 8X8 cross-bar switch. Each hypernode has its own local �le system, and a4

�le system cannot span more than one hypernode. In general, the �le systems consist ofeight disks with a total of 35 Gigabytes of storage although there is some variation fromhypernode to hypernode. Since a �le system cannot span more than one hypernode, parallelaccess by more than 16 processors must all
ow through the same hypernode on which the�le system is located. As with the SGI Origin2000 however, the I/O tra�c
ows directlyinto the �le system bu�er and and does not interact with the host processors.3.2 ApplicationThe goal of this research was to determine the best implementation strategy for collectiveI/O, and to use this implementation as the basis for thread-based collective I/O. Thus wewere interested in the performance characteristics of various implementation options for thecollective I/O routine itself, and for di�erent implementation techniques for thread-basedcollective I/O. For this reason, we used a simple test application which did nothing butmake repeated calls to the various implementations of the collective I/O and the thread-based collective I/O operations. Another constraint on the application is that the number ofprocessors must be a power of two, and that the array being written must be two dimensional,where the number of rows is equal to the number of columns. However, the principles applyto more general cases as well. Also, the collective I/O operation called by the applicationwas a collective write operation. We focused on write operations because it is usually moredi�cult to obtain high performance for parallel writes than for parallel reads.3.3 Implementation Options for Two-Phase I/OThe motivation for this phase of the research arose while implementing a set of collectiveI/O routines on the Intel Paragon. We had developed a rather simple implementation thatprovided much better performance than non-collective I/O operations, but did not achieveanywhere close to the available bandwidth. We then experimented with several implementa-tion options to determine their impact on the performance of two-phase I/O and to quantifythe improvement in performance due to various approaches. In this section, we describe thesteps we took to achieve high performance collective I/O operations on the Intel Paragon andshow that these same techniques can improve performance over a wide range of architectures.3.3.1 Initial ImplementationThe initial implementation of the two-phase I/O algorithm used in these experiments isquite simple. First, the processors exchange information related to their individual I/Orequirements to determine the aggregate I/O requirement. Next, each processor goes througha series of sending and receiving messages to redistribute the data into the conformingdistribution. When a processor receives a portion of its data it performs a simple byte forbyte copy into its write bu�er. When a processor sends a portion of its data, it performsa byte for byte copy from its local array into the send bu�er (this is not always necessaryas discussed below). After all data has been exchanged, each processor performs its writeoperation in one large request. This initial implementation uses both blocking sends and5

blocking receives. We refer to this implementation option as Step1. The pseudo code forStep1 is shown below.Begin Two-phase I/Oexchange information regarding write requests ;Use this information to determine collective strategy;for (i = 1 ; i < numProcs; i++){source = (mynode - i + numProcs) % numProcs ;dest = (mynode + i) % numProcsdo I need to send dest some of my data ?if (yes){copy portion of local array into send buffer ;Send to dest ;}does source have data to send me ?if (yes){wait for message from source ;copy into write buffer ;}do I need to copy some of my data into write buffer?if (yes){copy portion of my local array into write buffer ;}}Write my write buffer to disk in a conforming manner ;End Two-phase I/OIt is important to note that the copy from the local array into a send bu�er is notnecessary when the data is distributed among the processors in a block-block distributionand the conforming distribution is row major (as assumed in these experiments). This isbecause in such cases the data to be redistributed is contiguous within the local array. Inthe general case however, such as when the data is distributed in a block-cyclic manner orwhen the local array has a ghost area, this copying would be required. To make our resultsas general as possible we include the cost of such copying in our algorithm. Also note that6

the copy from the receive bu�er into the write bu�er is necessary in our example becausethe received data must be stored noncontiguously in the write bu�er.3.3.2 Step2: Reducing Copy CostsAs can be seen, the two-phase I/O operation requires a signi�cant amount of copying toand from various bu�ers. For this reason, it would be expected that modi�cations to theimplementation which reduced the cost of copying data would have a signi�cant impact onperformance. The next step then was to change all of the copy routines to use the memcpy()library call whenever possible. We term this implementation approach Step2.3.3.3 Step3: Asynchronous CommunicationThe next step (Step3) investigated the use of asynchronous rather than synchronous com-munication. In this approach, the processor �rst posts all of its sends (using MPI Isend)and then posts all of its receives (using MPI Irecv). After posting its communications, theprocessor copies any of its own data that it will write to disk from its local array into itswrite bu�er. The processor then goes into a loop polling for messages, and copies the mes-sages into its write bu�er as they arrive. Finally, it waits for all of the send operations tocomplete and then performs the write to disk. This approach can increase paging costs sincethe application will allocate memory for many communication bu�ers, but should decreasewaiting time since the runtime system can complete any message when it arrives rather thanwaiting for a particular message.3.3.4 Step4: Reversing the Order of Asynchronous CommunicationThe next approach (Step4) reverses the order of the asynchronous communications. Thusa processor �rst posts all of its receives, and then posts all of its sends. The idea behindthis optimization is that communication in MPI is faster if the application has posted abu�er into which a message may be received, rather than �rst receiving the message into asystem bu�er and then copying it into the application bu�er [16]. As noted above however,pre-allocating all of the communication bu�ers can result in increased paging costs.3.3.5 Step5: Combining Synchronous with Asynchronous CommunicationThe �nal optimization (Step5) combined asynchronous receives with synchronous sends. Theidea behind this optimization is to reduce communication costs by posting asynchronousreceives and to reduce paging costs by having only one send bu�er allocated at any giventime.3.4 ExperimentsWe compared the performance of each approach across all computational platforms, wherethe metric of interest was the bandwidth achieved by each implementation. In this set of7

experiments, a 64 Megabyte array of integers was distributed across the processors in ablock-block distribution as shown in Figure 1. On the IBM SP2 and the SGI Origin2000, weused 4, 8, 16, 32, and 64 processors. On the HP Exemplar we also used 128 processors. Dueto memory constraints, we employed 16, 32, 64 and 128 processors on the Intel Paragon. Allexperiments on the Intel Paragon, the HP Exemplar and the SGI Origin2000 were performedwith the machine in dedicated mode. On the SP2, we used the average of the results of thirtyseparate trials, taken at the same time of day, over a course of three weeks.Another important issue we wanted to investigate was how each approach scaled as thesize of the array and the number of processors were simultaneously increased. To test this,we employed the largest number of processors with which the application could be con�guredon the given machine, and varied the size of the �le from four Megabytes to one Gigabyte.We used 64 processors on the Intel Paragon and SGI Origin2000, 128 processors on the HPExemplar, and 256 processors on the Intel Paragon. We tested each approach with 4, 16,64, 256 and 1024 Megabyte �les.Lastly, we wanted to investigate the impact of executing the collective I/O operation inthe background while the main thread continues with other computation in the foreground.We provide a detailed description of these experiments in Section 5.4 Experimental ResultsThe results of these experiments are shown in Figure 2 and Figure 3. To reduce complexity,we show only the results of the non-collective approach, Step1, Step2 and Step5. This isbecause across all architectures, the results for Step3 and Step4 generally fell between theresults for Step2 and Step5.The power of collective I/O techniques can be seen from the fact that there was a signi�-cant increase in performance when moving from the non-collective I/O approach to the unop-timized collective approach for all architectures. These results also clearly demonstrate thatthe chosen implementation strategy for the collective I/O algorithm does have a signi�cantimpact on performance. In particular, Step5, which combines asynchronous receives withsynchronous sends, provided the best performance across all architectures. As noted above,this approach balances reduced paging costs (only the receive bu�ers are pre-allocated), andreduced waiting costs (the system can receive any message as it becomes available).It is helpful to consider the results obtained for each architecture in more detail.4.1 IBM SP2The importance of both software techniques and the I/O subsystem hardware is clearlydemonstrated by the results obtained for the IBM SP2 used in these experiments. Theoptimized two-phase I/O algorithm (the software technique) resulted in a bandwidth of 68MB/sec compared to 5 MB/sec for the non-collective approach (with 64 processors). How-ever, the under-con�gured I/O subsystem (only four I/O processors) resulted in a maximumbandwidth of 79 MB/sec (obtained using 32 processors), which was the smallest maximumbandwidth observed across all architectures studied.8

0 20 40 60 80
Number of Processors

0.0

50.0

100.0

150.0

B
a

n
d

w
id

th
 (

M
e

g
a

B
y
te

s
 p

e
r

S
e

c
o

n
d

)

IBM SP2

Non−Collective
Step1
Step2
Step5

0 50 100 150
Number of Processors

0.0

50.0

100.0

150.0

200.0

B
a

n
d

w
id

th
 (

M
e

g
a

B
y
te

s
 p

e
r

S
e

c
o

n
d

)

HP Exemplar

Non−Collective
Step1
Step2
Step5

0 20 40 60 80
Number of Processors

0.0

200.0

400.0

600.0

B
a

n
d

w
id

th
 (

M
e

g
a

B
y
te

s
 p

e
r

S
e

c
o

n
d

)

SGI Origin 2000

Non−Collective
Step1
Step2
Step5

0 50 100 150
Number of Processors

0.0

100.0

200.0

300.0

B
a

n
d

w
id

th
 (

M
e

g
a

B
y
te

s
 p

e
r

S
e

c
o

n
d

)

Intel Paragon

Non−Collective
Step1
Step2
Step5

Figure 2: This �gure shows the bandwidth achieved with non-collective I/O and with threedi�erent implementations of collective I/O (Step1, Step2, and Step5).9

0 500 1000 1500
Total File Size (MegaBytes)

0.0

20.0

40.0

60.0

80.0

100.0

B
a

n
d

w
id

th
 (

M
e

g
a

B
y
te

s
 p

e
r

S
e

c
o

n
d

)

IBM SP2 (64 Processors)

Non−Collective
Step1
Step2
Step5

0 500 1000 1500
Total File Size (MegaBytes)

0.0

50.0

100.0

150.0

200.0

B
a

n
d

w
id

th
 (

M
e

g
a

B
y
te

s
 p

e
r

S
e

c
o

n
d

)

HP Exempler (128 Processors)

Non−Collective
Step1
Step2
Step5

0 500 1000 1500
Total File Size (MegaBytes)

0.0

200.0

400.0

600.0

B
a

n
d

w
id

th
 (

M
e

g
a

B
y
te

s
 p

e
r

S
e

c
o

n
d

)

SGI Origin 2000 (64 Processors)

Non−Collective
Step1
Step2
Step5

0 500 1000 1500
Total File Size (MegaBytes)

0.0

100.0

200.0

300.0

400.0

500.0

B
a

n
d

w
id

th
 (

M
e

g
a

B
y
te

s
 p

e
r

S
e

c
o

n
d

)

Intel Paraon (256 Processors Used)

Non−Collective
Step1
Step2
Step5

Figure 3: This �gure shows performance as the number of processors is held constant andthe size of the �le is varied between four Megabytes and one Gigabyte.10

The impact of the under-con�gured I/O subsystem is also evident when comparing theresults obtained for 32 and 64 processors. With 32 processors, there was an increase inbandwidth of 310% when going from the non-collective approach to the initial collectiveI/O implementation, a 95% increase between Step1 and Step2, and a further 10% increasebetween Step2 and Step5. With 64 processors however, there was a greater increase betweenthe non-collective approach and Step1 (740%, showing the non-collective approach does notscale), a reduced improvement of 62% between Step1 and Step2, and no improvement inperformance between Step2 to Step5. This decrease in relative performance is due to a sig-ni�cant increase in contention for the four I/O processors with 64 application processors.This increased contention makes the write to disk much more expensive than the cost ofdata permutation, and thus techniques that modify only the data permutation costs (whichinclude all of the implementation techniques outlined here) have less of an impact on perfor-mance as the actual write becomes the dominant cost. The impact of the contention for theI/O processors was also demonstrated by the fact that there was a decrease in bandwidth asthe number of processors was increased from 32 to 64.It is interesting to note that the di�erence in performance between Step1, which uses abyte for byte copy, and Step2, which uses memcpy whenever possible, also began to shrinkas the number of processors increased from 32 to 64. This also was due to the fact that thecost of permuting the data, which included the cost of copying, became less important asthe number of application processors contending for the I/O processors became large.These same trends are seen in Figure 3 where we held the number of processors at 64 andincreased the �le size from 4 MB to 1024 MB. Again we observed no di�erence in performancebetween Step2 and Step5 because the cost of performing the actual write to disk was thedominant cost. Also, the poor scalability of the non collective approach becomes even moreapparent as the �le is increased to 1 Gigabyte.4.1.1 HP ExemplarThe HP Exemplar used in these experiments also demonstrated the impact of both hardwareand software design on the performance of the �le system. In particular, the de�ning featureof the Exemplar �le system is that a �le cannot span more than one hypernode. Thuswhenever more than 16 processors access the same �le, all of the �le activity is being funneledinto one particular hypernode (or more speci�cally one particular �le system bu�er) creatinga signi�cant bottleneck. This bottleneck is clearly demonstrated by the fact that the highestobserved bandwidth (140 MB/sec using Step5) was obtained with eight processors.Consider the results for Step5 in more detail. It is interesting that as the number ofprocessors increased from 8 to 16, the bandwidth actually decreased even though all 16processors resided on the same hypernode. What is happening is that system processes,such as the �le system daemon, must execute on one of the 16 processors in a hypernode,and thus on that node(s) there was competition between the collective I/O process and thesystem process(es) thereby reducing performance. It is also interesting to note that there wasa modest increase in performance as the size of the �le remained constant and the number ofprocessors was increased from 16 to 128. However, as shown in Figure 3, when the number11

of processors was held at 128 and the size of the �le grew to one Gigabyte, the cost of all128 processors performing their write into the same �le system bu�er became prohibitiveand overall performance was reduced (by approximately 20%). The Exemplar was the onlyarchitecture for which such a reduction in performance was observed.Now consider the results of Step1 in more detail. With four and eight processors, thenon-collective approach outperformed the collective approach by a rather signi�cant margin(62 MB/sec versus 23 MB/sec with eight processors). What was happening was that thecost of data permutation was much more expensive than the cost of writing to disk. Infact, our measurements indicated that with eight processors it took on the order of twiceas long to permute the data as it did to perform the actual write to disk. This somewhatsurprising observation again had to do with contention. In this case however the contentionwas for memory bandwidth as the processors, which all shared the same region of memory,exchanged information and data. However, as the number of processors increased to 16 andbeyond, the cost of data permutation began to decrease, and the cost of many processorsperforming small, independent writes to disk, began to increase. With 128 processors, thenon-collective approach degraded to a bandwidth of less than 1 MB/sec, and the unoptimizedcollective I/O approach achieved a bandwidth of 72 MB/sec.Another interesting result is that as the number of processors increased, the di�erence inperformance between Step1 and Step2 virtually disappeared. In fact in the limit, as shownin Figure 3, Step1 signi�cantly outperformed Step2. This is certainly counter-intuitive sincethe only di�erence between the two implementations is that Step2 used memcpy, rather thana byte for byte copy, whenever possible. The explanation for this result is as follows.Consider the results for a 256 MB �le with a 128 processors shown in Figure 3. Withthis con�guration, the data permutation cost associated with Step1 was approximately threetimes as great as that for Step2 (as would be expected). However, the cost of performing theactual write to disk was less than one half the cost incurred by Step2. Given that the writeto disk is very expensive with 128 processors, the net result is that Step1 achieved a higherbandwidth than Step2 (108 MB/sec versus 75 MB/sec). The most reasonable explanationfor this signi�cant di�erence in the cost of performing the write to disk is that performing abyte for byte copy helped to separate (in time) the concurrent writes, thereby reducing I/Ocontention. We conducted a simple experiment to test this hypothesis.In this experiment, we removed the impact of data permutation and focused on the actualwrite to disk. We conducted the experiment with 128 processors, all writing into a 256 MB�le assuming the conforming distribution. In this experiment we observed a bandwidth of 94MB/sec. We then inserted a very simple delay mechanism before the write, forcing some ofthe processors to delay their writes for a short period of time. This very simple modi�cationincreased the bandwidth to 140 MB/sec, suggesting that when a large number of processorsare writing into the same �le on the same hypernode, that some staggering of the writes cansigni�cantly improve performance. We did not attempt to study the optimal delay to insertbetween writes as that activity is beyond the scope of this study.12

4.1.2 SGI Origin2000The SGI Origin2000 used in these experiments had a very powerful I/O system with 10�ber channel connections connected to a total of 100 9-Gigabyte disks. Additionally, the�le system (XFS) on this platform has a software optimization that allows an application towrite directly from user space to disk (assuming the data to be written falls within a givenset of constraints), thus avoiding the write from user space to kernel space. This softwareoptimization, which uses the O DIRECT
ag in the open call, made a tremendous di�erencein performance, more than doubling the bandwidth for all of the collective implementationoptions studied. This optimization is particularly e�ective for concurrent writes to a common�le (as done in these experiments) on a well-con�gured I/O system. The results shown inFigure 2 and Figure 3 all used this optimization.There are two striking results that can be seen from Figure 2. First, the maximum band-width obtained (435 MB/sec with 64 processors) is signi�cantly higher than that achievedby any of the other architectures. This was a direct result of the powerful hardware con�g-uration and the software optimization. Secondly, the di�erence between the non collectiveapproach (17 MB/sec with 64 processors) and Step1 (353 MB/sec with 64 processors) wasthe largest across all architectures studied. This result is a powerful demonstration of thefact that a high performance I/O subsystem, even when it incorporates software optimiza-tions such as a direct write to disk, cannot be e�ectively utilized unless some sort of globalI/O strategy is employed.Given the very powerful I/O system (both hardware and software), we were interestedin whether the data redistribution costs, or the actual write to disk, would dominate thecosts of the collective I/O operation. To answer this question, we inserted simple timersinto the code and monitored the amount of time spent in each of the two phases. Ourmeasurements showed that it was the data permutation costs, rather than the write to disk,that was the dominant cost (because of the fast I/O system on this machine). In fact, with16 processors the time spent in the data permutation phase represented 90% of the totalcost of the collective operation (using Step5). With 32 processors, the data permutationphase represented 75% of the total cost, and with 64 processors, the data permutationphase took approximately 55% of the total cost (again using Step5). This is particularlynoteworthy because, for all other architectures using 64 processors and Step5, the write todisk represented at least 90% of the cost of the collective I/O operation. However, when thenumber of processors on the Origin was held constant at 64 and the �le size was increasedto 1 Gigabyte, the percentage of time spent in the write to disk did begin to increase. Inthe limit, the data redistribution phase accounted for around 35% of the total cost of thecollective I/O operation. The fact that the relative time spent in the write increased to 65%is re
ected in Figure 3 where, as can be seen, the performance of Step1, Step2 and Step5begin to converge as the �le size approaches 1 Gigabyte.4.1.3 Intel ParagonThe Intel Paragon used in these experiments also had a very powerful I/O subsystem con-sisting of 64 I/O processors. However, the power of this hardware support is not evident in13

Figure 2. In particular, the maximumbandwidth observed was 170 MB/secs with 64 proces-sors using Step5, and there was a decrease in performance when the number of processors wasincreased from 64 to 128. Given the powerful I/O subsystem, it is somewhat surprising thatbandwidth actually decreased as the number of processors was increased to 128. The reasonfor this decrease in performance was a combination of two factors: increased contention forthe I/O processors and a �le size too small to use the I/O subsystem e�ciently. This expla-nation was validated by the results shown in Figure 3, where we observe a bandwidth of 420MB/sec using 256 processors and a 1 Gigabyte �le.It is interesting to note that the bandwidth was still increasing when the �le size wasincreased from 256 MB to 1 Gigabyte, suggesting that even higher bandwidths are possiblewith an increased �le size. The Intel Paragon was the only architecture studied whereperformance was still increasing at the limits of these experiments.5 Executing Collective I/O in the BackgroundIn the previous section, we showed that a non-collective I/O algorithm cannot make e�cientuse of even a very powerful I/O subsystem. Further, we showed that a naive implementationof two-phase I/O does not, in general, provide high performance, but that an optimizedalgorithm can o�er excellent performance. However, it can be argued that basic collectiveI/O techniques are maturing, and that we must look to other approaches to make a furthersigni�cant impact on the performance of applications with large I/O requirements. Onepromising approach is to use threads to execute the collective I/O operation in the back-ground while the main thread continues with other computation in the foreground. Thisapproach does not reduce the cost of I/O per se, but can reduce the impact of I/O on theperformance of the application.As noted above, MPI-2 [21] de�nes just such operations, termed split-collective oper-ations, where the collective I/O routine may be executed in the background while othercomputation/communication continues in the foreground. Given the importance of MPI asa standard for message passing applications, and given its de�nition of a set of portable col-lective I/O operations, it is worthwhile to frame our discussion in terms of implementationtechniques for split-collective I/O operations.5.1 Split-Collective I/O OperationsA split-collective operation has a begin function, which initiates the collective I/O, andan end function, which blocks the calling thread until the collective operation is completed.Between calls to the begin and end functions, the implementationmay allow the main threadto continue with its computation while the collective I/O operation is carried out in thebackground, overlapping the two operations. We say may because an implementation isallowed to perform the entire collective I/O in the begin function (in the main thread),thus executing the collective I/O and the computation sequentially. Currently, no publishedimplementation of MPI parallel I/O overlaps computation in the main thread with collectiveI/O in the background. 14

There are essentially three implementation options for split-collective I/O operations: toperform all of the collective I/O in the background, to perform part of the collective I/Oin the background and part in the foreground, and to perform none of the collective I/Oin the background. In the �rst case, the begin function would spawn a thread to performthe collective I/O and then immediately release the main thread allowing it to continue itscomputation. The background thread would simply exit when it completed the collectiveI/O, and the end function would ensure that the main thread blocks until the backgroundthread did exit. In the second option, part, but not all, of the collective I/O would beperformed in the background. Consider a collective write request. When the main threadexecutes the begin function, the implementation may choose to execute all of the collectiveI/O routine except the actual write to disk in the begin function, then spawn a thread toperform the write to disk and immediately release the main thread. In this case the endfunction would again block the main thread until the I/O thread exited. This sequence wouldbe reversed in the case of a collective read operation. In the �nal implementation option, theentire collective I/O operation would be performed in the begin function and there would beno attempt to overlap computation with collective I/O. In the following sections we exploreeach of these alternatives.6 Experiments with Thread-Based Collective I/O6.1 Non-collective I/O and ThreadsThe �rst set of experiments was designed to provide an estimate of the maximum speedupobtainable by overlapping computation with I/O operations. The application program sim-ply repeated the execution of a compute phase followed by an I/O phase. The compute phaseconsisted of performing some number of
oating point multiplications, and the I/O phaseconsisted of each processor writing a four Megabyte section of an array to disk assumingthe conforming distribution. That is to say, each processor wrote its section of the arrayto di�erent locations on the disk, but the processors did not engage in a collective phaseto map out the optimal I/O strategy, nor did they collect and redistribute data among theprocessors. The time taken to complete the compute phase was controlled by varying thenumber of
oating point operations. We used 8, 16, 32 and 64 processors, and calibrated thecompute phase to take approximately as long as the average I/O phase with 64 processors.Since each processor writes four Megabytes to the �le, the total number of bytes written was32 Megabytes with 8 processors, 64 Megabytes with 16 processors, 128 Megabytes with 32processors and 256 Megabytes with 64 processors. It is important to note that we calibratedthe length of the compute phase independently for each architecture. That is to say, thelength of the compute phase for a given architecture was dependent only on the time requiredfor that particular architecture to write 256 Megabytes to disk.The metric of interest was the time required to complete both the computation phaseand the I/O phase. In the �rst approach, the application performed the compute phase andthe I/O phase sequentially (i.e. there was no overlap of computation and I/O). In the secondapproach, the application spawned a thread to perform the I/O in the background and then15

immediately entered into its compute phase. Once the compute phase was completed, themain thread blocked (if necessary) until the I/O phase was completed.The results are shown in Figure 4. We note that in this
gure there is not (necessarily)any correlation in the time scales of the four architectures studied as the time required towrite a 256 Megabyte �le to disk and the corresponding amount of computation performed byeach machine are architecture dependent. However, what can be compared is the percentageby which performance was improved due to executing the write to disk in the background.As can be seen, using a background thread to perform the write did have a signi�cant im-pact on performance as the number of processors and the size of the �le were simultaneouslyincreased. With 64 processors, the SP2 showed an improvement in performance of 46%, theParagon showed an improvement of 35%, and the SGI Origin produced an improvement of38%. The Exemplar showed a 26% improvement in performance with 32 processors, but onlya 9% improvement with 64 processors. This decrease re
ects some ine�ciency in the threadlibrary which exerts itself when there are a large number of threads (in this case 128), andall of the threads are attempting to write into the same region of memory (the �le systemcache). As can be seen, the Exemplar is the only architecture for which such a decrease inperformance was observed.6.2 Collective I/O and ThreadsIn the previous section, it was shown that spawning a background thread to overlap I/Owith computation can result in signi�cant performance gains, at least when the I/O threaddoes nothing but perform a single, large write to disk. In this section, we seek to determineif similar bene�ts can be obtained when the whole collective I/O operation is executed inthe background.In these experiments, the processors executed the whole collective I/O operation in thebackground, including the use of inter-processor communication to collectively determinethe optimal I/O strategy and the redistribution the data. These experiments modeled anSPMD computation, where each processor operated on a di�erent region of a 64-Megabytearray. The array was distributed among the local memories of the processors in a block-block distribution as shown in Figure 1. We held the size of the array constant and measuredthe time required to complete both the computation and collective I/O for 8, 16, 32 and64 processors. The collective I/O operation was a collective write. We note that, due tomemory constraints, we employed 16, 32, 64 and 128 processors on the Intel Paragon. Thebest implementation of collective I/O (Step5) was used in all experiments.The most natural implementation option is to simply spawn a thread to perform thewhole collective I/O operation in the background, while the main thread continues with othercomputation in the foreground. In terms of implementation techniques for split-collectiveoperations, this corresponds to spawning an I/O thread in the begin function and then im-mediately returning control to the main thread allowing it to continue with its computation.The main thread would then be blocked in the end function until the collective I/O operationis completed. We compared this approach to performing the collective I/O and computationin sequence. 16

0 20 40 60 80
Number of Processors

0.0

2.0

4.0

6.0

8.0

T
im

e
 t

o
 C

o
m

p
le

te
 I

/O
 a

n
d

 C
o

m
p

u
ta

ti
o

n

IBM SP2

Non−Overlapped I/O and Computation
Overlapped I/O and Computation

0 20 40 60 80
Number of Processors

0.0

1.0

2.0

3.0

4.0

T
im

e
 t

o
 C

o
m

p
le

te
 I

/O
 a

n
d

 C
o

m
p

u
ta

ti
o

n

HP Exemplar

Non−Overlapped I/O and Computation
Overlapped I/O and Computation

0 20 40 60 80
Number of Processors

0.0

0.5

1.0

1.5

T
im

e
 t

o
 C

o
m

p
le

te
 I

/O
 a

n
d

 C
o

m
p

u
ta

ti
o

n

SGI Origin 2000

Non−Overlapped I/O and Computation
Overlapped I/O and Computation

0 50 100 150
Number of Processors

0.0

1.0

2.0

3.0

4.0

T
im

e
 t

o
 C

o
m

p
le

te
 I

/O
 a

n
d

 C
o

m
p

u
ta

ti
o

n

Intel Paragon

Non−Overlapped I/O and Computation
Overlapped I/O and Copmutation

Figure 4: This �gure shows the improvement in performance that is possible when compu-tation is overlapped with a large write to disk assuming the conforming distribution.17

In Figure 5 we compare these two approaches. In this �gure, we measure the timerequired to complete one iteration of a compute phase followed by (or overlapped with) acollective I/O phase (labeled Seconds per Iteration). As can be seen, the results are quitedisappointing. The use of a background thread to overlap computation with collective I/Oresulted in little, if any, improvement in performance for any architecture other than theIBM SP2. On the HP Exemplar (with more than 8 processors), and the SGI Origin2000,this approach actually decreased performance, and this decrease became more signi�cant asthe number of processors was increased. On the Intel Paragon, the performance of bothapproaches was about the same. This clearly demonstrates that merely spawning a threadto perform the collective I/O operation in the background is not, in general, su�cient toachieve high performance.To understand these results, it is important to di�erentiate between user-level threads,where the threads are executing in user space, versus kernel-level threads, where the threadsare managed by the kernel. With user-level threads, there is very little context and thusthe cost of thread switching is quite low. The trade-o� however is that when a user-levelthread blocks, such as when it performs a write to disk, the whole process is blocked, notjust the calling thread. With kernel-level threads, only the calling thread is blocked, allow-ing computation and I/O (or communication) to be overlapped. However, the kernel mustschedule and control these threads. While the cost of managing kernel-level threads is lessthan that for a heavy-weight process, this cost is still greater than the cost of implement-ing user-level threads. For this reason, kernel-level threads are often termed light-weightprocesses. Kernel-level threads were used in all of the experiments reported here.Note that only parts of the collective I/O algorithm can actually be overlapped withcomputation. In particular, setting up and initiating communications, setting up the diskwrite and copying to and from message bu�ers cannot be overlapped with computation. Thetime spent waiting for messages to arrive and waiting for a write to disk to complete can beoverlapped. Thus there is a trade-o�. When the actions taken by the I/O thread cannot beoverlapped with the main thread, the two threads are competing for control of the CPU. Thisof course requires the multiplexing of threads on and o� the CPU, incurring the relativelyhigh costs of thread switching. As shown in this set of experiments, the performance gainsobtained by overlapping (parts) of the collective I/O with computation were o�set, or morethan o�set, by the overhead of thread scheduling and thread switching.To reduce these costs, we modi�ed the implementation such that the collective I/O threadperformed part, but not all, of the collective I/O algorithm. In particular, all of the copyingand interprocessor communication required by the collective I/O algorithm were performedby the main thread. The I/O thread was spawned to perform only the actual write todisk. With this approach, competition between the main thread and the I/O thread wasminimized, and the overlap of computation and I/O was maximized.Consider how this approach corresponds to the implementation of MPI split-collectiveoperations. In this case the initial part of the two-phase I/O routine is executed in the beginfunction. This includes all of the activity required to redistribute the data in such a way thateach processor can perform its write to disk assuming the conforming distribution. Oncethis part of the collective I/O routine is complete, the begin function spawns a thread to18

0 20 40 60 80
Number of Processors

0.0

1.0

2.0

3.0

4.0

S
e

c
o

n
d

s
 p

e
r

It
e

ra
ti
o

n

IBM SP2
Performing Collective I/O Sequentially or with a Thread

No Overlap (Sequential)
All Collective I/O Performed in Background

0 20 40 60 80
Number of Processors

0.0

1.0

2.0

3.0

S
e

c
o

n
d

s
 p

e
r

It
e

ra
ti
o

n

HP Exemplar
Performing Collective I/O Sequentially or with a Thread

No Overlap (Sequential)
All Collective I/O Performed in Background

0 20 40 60 80
0.0

1.0

2.0

3.0

S
e

c
o

n
d

s
 p

e
r

It
e

ra
ti
o

n

SGI Origin 2000
Performing Collective I/O Sequentially or With a Thread

No Overlap (Sequential)
All Collective I/O Performed in Background

0 50 100 150
Number of Processors

0.0

1.0

2.0

3.0

S
e

c
o

n
d

s
 p

e
r

It
e

ra
ti
o

n

Intel Paragon
Performing Collective I/O Sequentially or with a Thread

No Overlap (Sequential)
All Collective I/O Performed in Background

Figure 5: This �gure shows the time required to complete one iteration of a compute phasefollowed by (or overlapped with) a collective I/O phase.19

perform the actual write to disk and then immediately returns to the main thread allowingit to enter into its computation. Execution of the end function blocks the main thread untilthe write to disk is complete. (Again note the order of these events would be reversed in thecase of a collective read operation.)In Figure 6, the performance of the three implementation options is shown. Considerthe results of each architecture when 64 processors are used. As can be seen, executingonly the actual write to disk in the background can provide signi�cant performance bene�ts.On the Intel Paragon, this strategy provided up to a 26% improvement in performanceover both of the other techniques. On the SGI Origin2000, spawning a thread to performonly the disk write resulted in a 25% improvement over the sequential approach, and a43% improvement when compared to executing the whole collective I/O operation in thebackground. On the HP Exemplar, spawning a thread to perform only the write to diskimproved performance by 12% over the sequential approach, and by 61% when compared toperforming the whole collective I/O routine in the background. On the IBM SP2, both ofthe thread-based strategies performed at approximately the same level and provided up toa 45% improvement over executing the two phases in sequence.Before leaving this section it is important to note that performing one large I/O requestin the background assumes there is enough memory to bu�er all of the data that will bewritten to disk. If the bu�er provided by the application is not large enough to hold all ofthe data, then the implementation is forced to perform the write to disk iteratively. Thiswould certainly have a negative impact on performance, and in such cases the best techniquemay be to perform the whole collective I/O operation in the foreground.6.2.1 SGI Origin2000 Using the O DIRECT OptionThe results shown in Figure 6 for the SGI Origin2000 were obtained without using theO DIRECT option. That is, the �le system on the Origin did not copy data directly from theapplication bu�er to disk, but rather to the kernel bu�er cache �rst and then to disk. Wewere interested in knowing whether the O DIRECT option that writes directly from applicationbu�er to disk would signi�cantly modify the results shown in Figure 6. The outcome of thisset of experiments is shown in Figure 7.Again we observe that executing the whole collective I/O operation in the backgroundexhibits the worst performance of the three implementation options. What is interestinghowever is that executing only part of the collective I/O operation in the background didnot provide any improvement over the sequential approach. This result has to do with thevery powerful I/O subsystem and the ability of the �le system to bypass the kernel bu�ercache. In particular, the write to disk was so fast that the time required to complete thewrite was less than the time required to perform the interprocessor communication and dataredistribution (45% for the write, 55% for the data permutation). Since the proportion oftime spent in the disk operation was relatively small, and since this was the only time athread was active, it makes sense that there would be little improvement in performance.20

0 20 40 60 80
Number of Processors

0.0

1.0

2.0

3.0

4.0

5.0

S
e

c
o

n
d

s
 p

e
r

It
e

ra
ti
o

n

IBM SP2
Three Implementation Options

Sequential
All Collective I/O Performed in Background
Part of Collective I/O Performed in Background

0 20 40 60 80
Number of Processors

0.0

1.0

2.0

3.0

S
e

c
o

n
d

s
 p

e
r

It
e

ra
ti
o

n

HP Exemplar
Three Implementation Options

Sequential
All Collective I/O Performed in Background
Part of Collective I/O Performed in Background

0 20 40 60 80
Number of Processors

0.0

1.0

2.0

3.0

S
e

c
o

n
d

s
 p

e
r

It
e

ra
ti
o

n

SGI Origin 2000
Three Implementation Options

Sequential
All Coolective I/O Performed in Background
All Collective I/O Performed in Background

0 50 100 150
Number of Processors

0.0

1.0

2.0

3.0

S
e

c
o

n
d

s
 p

e
r

It
e

ra
ti
o

n

Intel Paragon
Three Implementation Options

Sequential
All Collective I/O Performed in Background
Part of Collective I/O Performed in Background

Figure 6: This �gure shows the performance of the three implementation options for split-collective I/O operations. 21

0 20 40 60 80
Number of Processors

0.0

0.5

1.0

1.5

S
e

c
o

n
d

s
 p

e
r

It
e

ra
ti
o

n

SGI Origin 2000

Sequential
All Collective I/O Performed in Background
Part of Collective I/O Performed in Background

Figure 7: This �gure shows the relative performance of thread-based collective I/O whenthe application can write directly to disk.7 Related WorkThe research most closely related to this project is the development of the MTIO library [20],which is a multi-threaded parallel I/O library. MTIO supports the overlap of computationwith collective I/O by spawning an I/O thread to complete the whole collective routine inthe background. The MTIO library is implemented on the IBM SP2. The authors report upto an 80% overlap of computation and I/O, which is similar to the results we obtained for theSP2. As noted above, however, we found that the SP2 is the only architecture for which thisapproach performed well; on other architectures we obtained better performance by doingonly the actual write to disk in the background and the rest of the collective operation inthe main thread.The performance of two-phase I/O on the Intel Paragon has been studied extensivelyby both Dickens and Thakur [12] and by Bordawekar [4]. However, neither of these studieslooks at thread-based collective I/O. Also, Bordawekar [6] provides an excellent discussionof the I/O characteristics of the HP Exemplar.Two-phase I/O is not the only approach that can signi�cantly improve performanceof I/O intensive applications. Acharya et al. [1] investigated code restructuring and otheroptimizations to improve the performance of I/O bound computations and reported excellentperformance without the use of collective I/O. However, the approach outlined in theirstudy requires signi�cant modi�cations to the application code and knowledge of future I/Orequests. Also, the Vesta �le system has been shown to enhance performance by usingprefetching and caching without two-phase I/O [13].There are other projects using collective I/O. For example, Passion has been extendedto handle out-of-core arrays [26]. Also, a variation of disk-directed I/O is used in the Pandaruntime library [23]. Excellent overviews of the �eld of parallel I/O can be found in [11, 14].22

8 Discussion and ConclusionsObtaining high performance collective I/O is critical to large, I/O intensive scienti�c com-putations. The research presented here demonstrates that it is possible to obtain such highperformance using two-phase I/O and thread-based collective operations, but it is not au-tomatic. To demonstrate the importance to performance of the implementation technique,we developed a series of optimizations to the basic two-phase I/O algorithm and studied theimpact on performance of each such optimization. One powerful example of this impact wasobserved on the Intel Paragon, where the initial collective I/O implementation resulted in abandwidth of 70 MB/sec, and the fully optimized implementation resulted in a bandwidth of440 MB/sec. In fact, all of the architectures studied showed a signi�cant increase in perfor-mance between the non-collective I/O approach and the naive implementation of collectiveI/O (Step1), and between the Step1 implementation and the fully tuned implementation(Step5) of collective I/O.Also, this research clearly demonstrates that it is possible to reduce the impact of collec-tive I/O operations by executing such operations in the background while the main threadcontinues with other computation in the foreground. We showed that the most naturalimplementation technique, to simply spawn a thread to perform the whole collective I/Ooperation in the background, is in general, not su�cient to obtain high performance. In fact,for some of the architectures studied here, this simple approach more often reduced ratherthan enhanced performance. The reason is simple: If a thread can block without blocking thewhole process, then the threads are being managed at the kernel level. This makes threadswitching expensive, and, when there is a lot of competition between the main thread andthe I/O thread, can negate the bene�ts of overlapping computation and I/O. We did showhowever that when this competition is minimized, such as when the I/O thread performsonly the actual write to disk, that (in general) excellent performance gains can be obtained.It is important to note however that this whole investigation of thread-based collectiveI/O is built upon the premise that there is su�cient computation in the main program toe�ectively overlap computation with collective I/O. Whether this is in general true remainsto be seen.There are currently three main obstacles to the investigation of thread-based collectiveI/O. Foremost is the lack of thread-safe implementations of MPI. Secondly, there is no wayto directly observe the behavior of the threads and how they interact with the rest of thesystem. Rather, using threads is like using a black box which, from time to time, exhibitscompletely non-intuitive behavior. Finally, although the threads package on each machinestudied is based on the POSIX standard, there are still enough di�erences between thelibraries to make porting of code between the architectures somewhat tedious.Current research is focusing on implementing the complete MPI-2 parallel I/O library,and performing this same study on important application codes.23

AcknowledgmentsThis work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Advanced Scienti�c Computing Research, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38.References[1] Acharya, A., Uysal, M., Bennett, R., Mendelson, A., Beynon, M., Hollingsworth, K.,Saltz, J. and Alan Sussman. Tuning the Performance of I/O Intensive Parallel Ap-plications. In Proceedings of the Fourth Workshop on Input/Output in Parallel andDistributed Systems, pages 15{27, Philadelphia, May 1996. ACM Press.[2] Baylor, S. and C. Wu. Parallel I/O Workload Characteristics Using Vesta. Input/Outputin Parallel and Distributed Computer Systems. Chapter 7, pages 167{185, 1996. R. Jain,J. Werth, and J. Browne editors. Kluwer Academic Publishers.[3] Crandall, P., Aydt, R., Chien, A., and D. Reed. Input-Output Characteristics of Scal-able Parallel Applications. In Proceedings of Supercomputing '95, ACM Press, December1995.[4] Bordawekar, R. Implementation of Collective I/O in the Intel Paragon Parallel FileSystem: Initial Experiences. In Proceedings of the 11th ACM International Conferenceon Supercomputing. ACM Press, July 1997.[5] Bordawekar, R., del Rosario, J. and A. Choudhary. Design and Evaluation of Primitivesfor Parallel I/O. In Proceedings of Supercomputing '93, pages 452{461, Portland, OR,1993. IEEE Computer Society Press.[6] Bordawekar, R. Quantitative Characterization and Analysis of the I/O Behavior ofa Commercial Distributed-shared-memory Machine. California Institute of TechnologyTechnical Report CACR TR-157 March 1998.[7] Cho, Y., Winslett, M., Subramaniam, M., Chen, Y., Wen Kuo, S. and Seamons, K.Exploiting Local Data in Parallel Array I/O on a Practical Network of Workstations. InProceedings of the Fifth Workshop on Input/Output in Parallel and Distributed Systems.,ACM Press, November 1997.[8] Choudhary, A., Bordawekar, R., Harry, M., Krishnaiyer, R., Ponnusamy, R., Singh, T.and R. Thakur. PASSION: Parallel and Scalable Software for Input-Output. TechnicalReport number SCCS{636, NPAC, Syracuse University, 1994.[9] Crandall, P., Aydt, R., Chien, A. and D. Reed. Input-Output Characteristics of ScalableParallel Applications, In Proceedings of Supercomputing '95, ACM press, December1995. 24

[10] DelRosario, J., Bordawekar, R. and A. Choudhary. Improved Parallel I/O via a Two-Phase Run-Time Access Strategy. In Proceedings of the IPPS '93 Workshop on In-put/Output in Parallel Computer Systems pages 56{70, Newport Beach, CA, 1993.[11] DelRasario, J. and A. Choudhary. High Performance I/O for Parallel Computers: Prob-lems and Prospects. IEEE Computer, 27(3):59{68, March 1994.[12] Dickens, P. and R. Thakur. A Performance Study of Two-phase I/O. In 4th Interna-tional Euro-Par Conference Proceedings. In Lecture Notes of Computer Science, 1470.Published by Springer, D. Pritchard and J Reev Eds., pages 959{965.[13] Feitelson, D., Corbett, P., Hsu, Y. and J. Prost. Parallel I/O Systems and Interfaces forParallel Computers. In Topics in Modern Operating Systems. IEEE Computer SocietyPress, 1997.[14] Feitelson, D., Corbett, P., Baylor, S. and Y. Hsu. Parallel I/O Subsystems in MassivelyParallel Supercomputers. In IEEE Parallel and Distributed Technology, 3(3):33{47, Fall1995.[15] Feitelson, D., Corbett, P. and J. Prost. Performance of the Vesta Parallel File System.In Technical Report RC 19760, IBM Watson Research Center, Yorktown Heights, N.Y.,September, 1994.[16] Gropp, W., Lusk, E. and A. Skjellum. Using MPI. Portable Parallel Programming withthe Message-Passing Interface. The MIT Press, Cambridge, Massachusetts. 1996.[17] Kotz, D. Disk-Directed I/O for MIMD Multiprocessors. ACM Transactions on Com-puter Systems, 15(1):41{74, February 1997.[18] Kotz, D. and N. Nieuwejaar. Dynamic File-Access Characteristics of a ProductionParallel Scienti�c Workload. In Supercomputing '94 pages 640{649, November 1994.[19] Kotz, D. Expanding the Potential for Disk-Directed I/O. In Proceedings of the 1995IEEE Symposium on Parallel and Distributed Processing. Pages 490{495, IEEE Com-puter Society Press.[20] More, S., Choudhary, A., Foster, I. and M. Xu. MTIO a Multi-Threaded Parallel I/OSystem. In Proceedings of the Eleventh International Parallel Processing Symposium,April 1997.[21] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface.URL: http://www.mpi-forum.org/docs/docs.html.[22] Nieuwejaar, N., Kotz, D., Purakayastha, A., Ellis, C. and M. Best. File-Access Char-acteristics of Parallel Scienti�c Workloads. In IEEE Transactions on Parallel and Dis-tributed Systems, volume 7, number 10, pages 1075{1089, October 1996.25

[23] Seamons, K., Chen, Y., Jones, P., Jozwiak, J. and M. Winslett. Server-Directed Collec-tive I/O in Panda. In In Proceedings of Supercomputing '95, San Diego, CA, December1995. IEEE Computer Science press.[24] Smirni, E., Aydt, R., Chien, A., and D. Reed. I/O Requirements of Scienti�c Appli-cations: An Evolutionary View. In Proceedings of the Fifth IEEE International Sym-posium on High Performance Distributed Computing, pages 49{59, IEEE ComputerSociety Press, 1996.[25] Smirni, E. and D. Reed. Lessons from Characterizing the Input/Output Behavior ofParallel Scienti�c Applications. In Performance Evaluation: An International Journal,Volume 33, Number 1, pages 27{44, June, 1998.[26] Thakur, R. and A. Choudhary. An Extended Two-Phase Method for Accessing Sectionsof Out-of-Core Arrays. Scienti�c Programming 5(4):301{317, Winter 1996.[27] Thakur, R., Choudhary, A., More, S and S. Kuditipudi. Passion: Optimized I/O forParallel Applications. IEEE Computer, 29(6):70{78, June 1996.[28] Thakur, R., Gropp, W. and E. Lusk. An Experimental Evaluation of the Parallel I/OSystems of the IBM SP and Intel Paragon Using a Production Application In Proceedingsof the 3rd International Conference of the Austrian Center for Parallel Computation(ACPC) with Special Emphasis on Parallel Databases and Parallel I/O, Lecture Notesin Computer Science 1127. Springer-Verlag, pages 24{35, September, 1996.

26

