A Matrix-Matrix Multiplication Approach to
the Automatic Differentiation and
Parallelization of Straight-Line Codes

H. M. Biicker?®, K. R. Buschelman”, and P. D. Hovland
8 Institute for Scientific Computing, Aachen University of Technology,
52056 Aachen, Germany.

b Mathematics and Computer Science Division, Argonne National Laboratory,

9700 South Cass Ave, Argonne, IL 60439, USA.

Abstract

A Straight-line code, which consists of assignment, addition, and multiplication
statements, is an abstraction of a serial computer program to compute a function
with n inputs. Given a serial straight-line code with N statements, we derive an
algorithm that automatically evaluates not only the function but also its first-order
derivatives with respect to the n inputs on a parallel computer. The basic idea
of the algorithm is to marry automatic computation of derivatives with automatic
parallelization of serial programs. The algorithm requires O(My log dN) scalar op-
erations, where O(My) is the time complexity of a parallel multiplication of two
dense N x N matrices and d represents a measure of the complexity of the straight-
line code. Although d can be exponential in N in the worst case, it tends to be only
polynomial in N for many important problems.

Key words: Automatic differentiation, forward mode, automatic parallelization,
arithmetic circuit.

1 Introduction

Given a serial computer program to compute a function, one can apply tech-
niques of automatic differentiation to evaluate the function simultaneously
with its first-order derivatives [6]. One can also parallelize a serial computer
program automatically [8,9]. In this note, we show how these two concepts can
be married. The resulting algorithm takes as input a serial code for a func-
tion and automatically evaluates the function and its first-order derivatives
on a parallel computer. Parallel calculation of higher-order derivatives based
on Taylor series expansion can be found in [7].

Preprint submitted to Elsevier Preprint 10 October 2000

The algorithm described in this note is of theoretical interest and enhances our
understanding of parallel automatic differentiation. It is not intended to repre-
sent practical issues involved in a particular implementation of such software.
More practical issues in this field are discussed in [1-3,5].

The structure of this note is as follows. In Sec. 2, straight-line codes are spec-
ified as an abstraction of more complicated programs. For the parallel evalu-
ation of the underlying function, a common representation of a straight-line
code known as an arithmetic circuit is introduced. In Sec. 3, we show how the
circuit can be adapted to a so-called augmented arithmetic circuit in order to
include derivative information. In Sec. 4, transformations on the augmented
arithmetic circuit are described that will be used for its parallel evaluation,
which is described in Sec. 5. The resulting algorithm is illustrated by an ex-
ample in Sec. 6.

2 Conversion of Straight-Line Code into an Arithmetic Circuit

A straight-line code is a finite sequence of elementary operations without loops,
conditionals, branching, or subroutines. Straight-line codes may be considered
an abstraction of more complicated programs. More precisely, they represent
a trace of a particular run of a program provided specific values for the input
variables are given. A straight line code has no branches or jumps of any type;
that is, every loop is unrolled, every conditional statement is replaced by the
appropriate branch, and every subroutine is inlined. This note is concerned
with straight-line codes in which every statement is of one of the following
three forms:

(i) o ¢
(ii) T < T; + Z;
(ili) xp < 24 - 2§,

where x; and x; are previously defined variables and ¢ € R is a constant. For
the sake of simplicity, we assume that, in a straight-line code, each variable
has only one assignment. This assumption may lead to tremendous growth of
the number of variables but preserves uniqueness of the left-hand sides.

Straight-line codes are commonly represented by graphs, known as arithmetic
circuits. Formally, an arithmetic circuit is an edge- and node-weighted directed
acyclic graph G = (X, E, p, o) with a set of nodes X and a set of edges E that
are weighted by the functions p and o, respectively. The set of nodes X is the
disjoint union of three different kinds of nodes, namely, X = L U A U M,
where L denotes the set of Leaves, A the set of Addition nodes, and M the

T <6
T |6 2 | T2

1‘2<_2 /
X3 < T1 + To

w3 <+ +> 2

Ty $— To + T3

Ty < T3 - X4

Ts

Tg $— T3 + Ty

A . A
X7 < T4 T 6 (T 7

Fig. 1. Taking (z1,%2) = (6,2) as input, the straight-line code and its associated
arithmetic circuit compute zg and z7 given by (1) and (2), respectively.

set, of Multiplication nodes. The nodes of the arithmetic circuit satisfy

indegree(l) =0, VielL,
indegree(a) > 0, VacA,
indegree(m) = 2, Vme M.

Let N denote the number of statements of the straight-line code. With ev-
ery statement of the straight-line code, a node is associated. Therefore, ev-
ery left-hand side variable can be thought of as a node, and setting X =
{1, 9, x3,...,xx} is appropriate. All edges of the arithmetic circuit are di-
rected away from leaves. There is an edge from node z; to node x; whenever z;
is an input to z;. Both nodes and edges are weighted.

The following example, depicted in Fig. 1, is borrowed from [8]. Given a
straight-line code, then one can construct the corresponding arithmetic cir-
cuit by associating a node in the circuit with every statement in the code.
Notice that the node types are different and correspond to the three kinds of
statements and that edges are used to propagate the appropriate input to an
operation. The code and the arithmetic circuit given in the figure compute a
function f satistying (zg,x7) = f(21,z2), where

T = 22 + 3T129 + 205 + 21 + Ty (1)
T7 = T} + brizy + 81175 + 4. (2)

In [8, Sec. 2.6, it is shown how the function f can be evaluated in a polyloga-
rithmic number of parallel steps using a computer whose network architecture
is a so-called three-dimensional mesh of trees. The algorithm given there is
quite general in the sense of being able to handle additions and multiplica-
tions not only over R but over any commutative semiring where the terms
“addition” and “multiplication” are interpreted appropriately. It consists of

repeated applications of basic matrix and vector operations. The purpose of
this note is to show how fast evaluation of the function and the first-order
derivatives of that function can be accomplished. The algorithm given here
is a modification of the algorithm given in [8] for a particular choice of the
semiring. However, both the arithmetic circuit and the operations involved in
evaluating the circuit need modifications, which we describe in the following
sections.

3 Augmenting an Arithmetic Circuit with Derivative Information

Suppose that a straight-line code for the computation of a function f takes n
independent variables as input and produces some dependent variables as
output. Furthermore, assume that not only the function f evaluated at specific
input values is sought but also its Jacobian evaluated at the same input. To
this end, the arithmetic circuit sketched in Fig. 1 is augmented with derivative
information. While the structure of the circuit remains unchanged, the node
and edge weights are modified to propagate the derivative information. The
resulting graph is called an augmented arithmetic circuit.

Without loss of generality, a straight-line code can be arranged such that all
assignments of the form z; <— ¢; are given at the beginning. Furthermore, let
the first n constant assignments represent the input values for the function.
For example, if f(z) = « + 1, the straight-line code evaluating f at x = 7 is
given by

T 7
To 1
T3 < T + X9,

where n = 1 and, more important, the order of the first two assignments is
determined by the above assumption. The constants involved in the function
evaluation are associated with the leaves of the circuit, whereas the addition
and multiplication operations introduce nodes of corresponding type. More-
over, calculation of derivatives with respect to n inputs gives rise to the prop-
agation of gradient vectors with dimension n, as is reflected in the concept of
doublets. The functions p: X — D and o : £ — D are used to denote node
weights and edge weights, respectively, where the set D := R x R" is the set
of doublets.

The use of doublets arises from the need to store intermediate values during
the simultaneous computation of f and its Jacobian. A doublet is a pair,
denoted by square brackets, with a function part and an associated gradient
part. If w = [uf,uV] is a doublet, then u/ € R is used to refer to some

intermediate scalar value involved in the evaluation of the function f, whereas
uV € R" refers to some intermediate gradient value involved in the derivative
computation.

The symbols @ and ® denote addition and multiplication on doublets. More
precisely, the addition of two doublets v and w is defined by u = v & w, where

u =vf +wf (3)

uw=wY +vY; (4)

that is, the separate addition of function and gradient part. The product of
two doublets v and w is defined by u = v ® w, where

uw =of wf (5)
u’ =v'wY +wlvY. (6)

Here, the gradient part is defined in a product rule-like manner.

Note that both addition and multiplication on doublets are commutative and
associative. Furthermore, the operation ® distributes over @& from left and
from right; in other words, for all u,v,w € D the relations

u@Vdw) =(u®v)d (u® w) and vow)Ru=WRu) (v u)

hold. Hence, the triplet (D, ®,®) is a commutative semiring [10], and the
algorithm given in [8] is applicable. The doublet [1,0,] is the multiplicative
identity element in D, where 0,, denotes the n-dimensional zero vector. The
doublet [0,0,] is the additive identity element as well as the multiplicative
absorbent in . For the sake of brevity, the doublet [0, 0,,] is hereafter referred
to as the zero doublet.

Let e; € R™ denote the tth Cartesian unit vector, and recall that ¢; denotes
the constants assigned at the beginning of the straight-line code. Then, the
initial node and edge weights of the augmented arithmetic circuit are given by

p(z;) = [ci, €], V€ L fori<n, (7)
p(z;) =[¢,0,], Va; €L fori>n, (8)
p(z;) =1[0,0,], Va, € AUM, 9)
o(e) =[1,0,], VeekE. (10)

If a leaf corresponds to the sth input to the function, that is, a variable of the
function whose derivative is to be evaluated, the gradient part of its doublet
is initialized to the ith unit vector; otherwise, the gradient part is initialized
to the zero vector. Addition and multiplication nodes are set to the zero dou-
blet. Edges are weighted with the multiplicative identity element in ID. The
initialized augmented arithmetic circuit related to the example given in Fig. 1

711 [6, (5)] 2, (D] |r2

l |
7 (D] — D)ra
[1,(8)] [1.(5)]

—
—_
—
[} en]
~—
—
—
—_
—
[} en]
S—
—

336@ X)7

Fig. 2. Given the arithmetic circuit from Fig. 1, its augmented arithmetic circuit is
initialized according to (7)-(10)

is depicted in Fig. 2, where, for the sake of clarity, addition and multiplica-
tion nodes are labeled reflecting their type rather than with their initial node
weights, the zero doublet.

The algorithm to be presented in this note can be adequately described by
means of linear algebra expressions involving matrices and vectors whose en-
tries are modified throughout the course of the algorithm. Recall that NV de-
notes the number of nodes of the augmented arithmetic circuit. Then, an N x N
matrix of edge weights, W, is introduced. The (i, j) entry of this matrix is de-
fined to be o(e; ;), the weight of the edge between node x; and node z;. If there
is no edge between these nodes, the corresponding matrix entry is set to the
zero doublet. Note that, from the above construction of the circuit, the ma-
trix W is upper triangular with zero doublets along the diagonal. Its nonzero
entries are initially given by (10). Furthermore, we introduce an N-dimensional
vector of node weights, v, whose ith component is given by p(z;), the weight
of node ;. This vector is initialized according to (7)—(9).

The complexity of the algorithm presented in this note will be described in
terms of a parameter of the straight-line code and its augmented arithmetic
circuit. It is useful to introduce this parameter here while having the circuit
of Fig. 2 in mind. The degree of a node is defined inductively. The degree
of a leaf is 1. The degree of an addition node is the maximum degree of its
inputs. The degree of a multiplication node is the sum of the degrees of its
inputs. For instance, the degree of node x4 is 2 and the degree of node z7 is 3;

notice the degree of the multivariate polynomials (1) and (2), respectively.
The degree of an (augmented) arithmetic circuit is then the maximum degree
of any node. For instance, the degree of the circuit depicted in Fig. 2 is 3.
If a circuit with N nodes has long chains of multiplication nodes, its degree
can be exponential in N; however, the degree may be polynomial in N for a
large class of problems. Note that the degree of a circuit is the degree of the
multivariate polynomial that this circuit computes.

4 Transformations on the Augmented Arithmetic Circuit

Upon instantiation of an augmented arithmetic circuit, the weights of the
leaves are doublets, the first n of which can be thought of as inputs to the
circuit. We shall evaluate the circuit by carrying forward these doublets using
repeated application of three elementary procedures: MULT, SKIP, and ADD.
After each iteration of applying these three procedures, the resulting graph is
still an augmented arithmetic circuit with the same number of nodes. How-
ever, the weights of both nodes and edges may be modified. The type of a
node may switch from a multiplication node to an addition node and from an
addition node to a leaf. Similarly, an edge weight may change from a nonzero
doublet to a zero doublet, hereafter referred to as the deletion of an edge, and
one may change from a zero doublet to a nonzero doublet, creating an edge.
Eventually, all edges will be deleted, and all nodes will become leaves with
weights containing the desired function and derivative information.

The three procedures to be described operate simultaneously on all nodes
of the circuit and will be illustrated by figures. In these figures, rectangles
denote leaves; white circles are used for addition and multiplication nodes;
and gray-shaded circles stand for nodes of any type, that is, leaves, addition,
or multiplication nodes. The most straightforward of the three procedures is
illustrated in Fig. 3. The procedure ADD evaluates those addition nodes x in
parallel whose inputs are all leaves. Hence, the type of a node x; is changed
from an addition node to a leaf. The weight of the new leaf x} is the sum of
all input node weights, v;, scaled by the input edge weights, w;; thus

S

par) = Dlw; @ vy). (11)

=1

After the new weight of node zy is assigned, all incoming edges are set to the
zero doublet, that is, all incoming edges are deleted.

The application of ADD can be formulated in terms of the vector of node
weights, v, and the matrix of edge weights, W. Recall from the definition
of v that the node weights, v;, in Fig. 3 are the entries of v at position ¢;

Ty, Ty, Ty, Ty, Xy, Ty,

U1

Us U1 U2 T Us

15 .../ -

wy W2 Wy

Jfk @(wz ® v;) [Tk
i=1

Fig. 3. Application of ADD on an addition node zj; whose inputs are all leaves
evaluates xj, changes its type to a leaf, and deletes all incoming edges.

forv=1,2,...,s. Similarly, from the definition of W, the edge weights, w;, are
the entries of column £ of W at position ¢; for¢ = 1,2,...,s. An interpretation
of the transformation of the circuit based on simultaneously applying (11) to
all nodes x; whose inputs are all leaves is therefore as follows: the vector of
node weights is updated by the matrix-vector multiplication v <— Wv where
additions and multiplications are executed on doublets; in addition, the matrix
of edge weights is modified only at certain entries. Consequently, applying ADD
is no harder than computing a matrix-vector multiplication, W7''v, in parallel.

The procedure MULT is used to simultaneously handle multiplication nodes
and is depicted in Fig. 4. Only those multiplication nodes that have at least
one leaf as input are transformed by MULT; that is, any multiplication node
that has no input from a leaf is simply ignored in this transformation. Assume
that one input of a multiplication node x; is a leaf, say z;, and one is an
arbitrary node, say z;. Then, the edge from z; to x; is removed, the edge
from z; to x; is weighted by the weight v; of the leaf x;, and the type of x;
is changed from a multiplication node to an addition node. We note that if
both inputs are leaves, a rule is required to determine which node is removed.
We have chosen to remove the edge between z; and xy, where ¢ < j, but other
rules are possible.

The effect of MULT in terms of v and W is as follows. Since node weights are
not modified, the vector v remains unchanged. The deletion of edges and the
assignments from node weights to edge weights correspond to an update of W
for specific entries.

The circuit can be evaluated completely by applying ADD and MULT in an
alternating fashion. However, long addition chains in the circuit would be
evaluated rather inefficiently because ADD can be applied only to nodes whose
inputs are all leaves. Hence, partial sums occurring in the evaluation of long
addition chains are carried forward linearly with the length of the chains.
It would be desirable to collapse long addition chains into chains of about
half the length to enable logarithmic complexity in evaluating long addition
chains. Therefore, a way of making available the input of an addition node to

Fig. 4. Application of MULT on a multiplication node x; with at least one leaf as
input deletes the incoming edge from the leaf, transfers the leaf’s weight to the edge
from the arbitrary node to x, and changes z’s type to an addition node.

its predecessor in the circuit is sought. Roughly speaking, that addition node
is skipped over. The procedure SKIP serves that purpose by transforming those
addition nodes that themselves point to addition nodes, as is shown in Fig. 5.
This procedure does not evaluate any node but rearranges edges so that the
next application of ADD may evaluate significantly more addition nodes. For
each pair of addition nodes z; and wx, the procedure SKIP removes the edge
from x; to x; and introduces new edges from each of x;’s input nodes x,, to
node zy for i = 1,2,...,s. A new edge from x,, to zj is weighted by w; ® w,
where w is the weight of the edge being removed.

Similar to MULT, the procedure SKIiP does not change the vector of node
weights. To see the effect of SKIP on the matrix of edge weights, W, whose
entries will be denoted by wj in the following discussion, we define the matrix
of edge weights linking addition nodes exclusively. Let W® = (w}) be this

Ty, Ty, Ty, Ty, Ty, Ty
wy W Wy wy wa Wy
SKIP \’

T T

J J
(2) — (2)

W) Q@ W Ws @ W

Wo @ W

w

l

Fig. 5. Application of SKIP to a pair of addition nodes z; and x; deletes the edge
from x; to 7} and introduces a new edge from each of z;’s inputs to z; that is
weighted by the product of the corresponding input edge weight and the weight of
the edge being removed.

matrix with entry

o {wik if nodes z; and z;, are addition nodes

w7 =
" [0,0,] otherwise.

An update of the form W <« W — W® then represents the simultaneous
removal of all edges between any pair of addition nodes. Consider now an
arbitrary entry w;, of the matrix of edge weights representing the edge from
node z; to node x; and study w;’s transformation by the procedure SKIP.
If x, is not an addition node the entry w;; remains unchanged. If z; is an
addition node and there is another addition node z; that points to x;, with edge
weight wﬁ and there is an edge from z; to z;, then the new edge between z;
and z; introduced by SKIP is weighted by w;; ®w§?€. Summing over all possible
addition nodes z; leads to a term WW® so that, in summary, the update of
the matrix of edge weights for the application of SKIP is represented by

W W —W®+Wwe,

where subtraction, addition, and multiplication of matrices are to be under-
stood in the usual sense but operating on doublets rather than on scalars.
Therefore, applying SKIP is no harder than computing a parallel matrix-matrix
multiplication.

5 Parallel Evaluation of the Augmented Arithmetic Circuit

The three transformations introduced in the preceding section are now used in
a parallel algorithm to evaluate the function associated to the given straight-
line code along with its Jacobian evaluated at the same input. We have already
mentioned that the augmented arithmetic circuit can be evaluated by applying
ADD and MULT in an alternate fashion. The purpose of SKIP is to rearrange
the edges of the circuit, enabling the evaluation of as many addition nodes as
possible; therefore, SKIP can be regarded as a preprocessing step for ADD. The
complete algorithm follows from properly arranging the three transformations:

Algorithm 1
repeat
apply procedure MULT
apply procedure SKIP
apply procedure ADD
until circuit is evaluated

Parallelism is obtained by using parallel implementations of the linear algebra
operations corresponding to the three procedures. The time complexity of the

10

algorithm depends on the number of iterations necessary to evaluate all nodes
of the augmented arithmetic circuit and is given by the following result.

Theorem 1 Given a (serial) straight-line code with N statements and asso-
ciated augmented arithmetic circuit of degree d, the (parallel) algorithm to
evaluate and carry forward a gradient of each intermediate variable x; with
respect to n input variables simultaneously with the evaluation of x; itself re-
quires O(nMy log dN) scalar operations, where O(My) is the time complexity
of a parallel multiplication of two dense N X N matrices on a given parallel
architecture.

PROOF. The above algorithm is a modification of the algorithm given in |8,
Sec. 2.6] with a particular choice of the semiring. Specifically, the number of
iterations within Alg. 1 needed to evaluate the circuit is the same, namely,
O(logdN). The overall complexity of a single iteration within Alg. 1 is given
by the matrix-matrix multiplication WW*® whose time complexity is O(My)
provided the entries of W are taken from R (i.e., scalar entries). The result
then follows from observing that, by (3)-(6), additions and multiplications on
doublets require at most 3n + 1 scalar operations on R. 0O

An additional level of parallelism can be exploited to remove the dependence
on n in the above count. In particular, one can decompose a doublet consisting
of a scalar function part and an n-dimensional gradient part into n “reduced”
doublets each having a scalar function part and a scalar gradient part. Hence,
one can replicate the function information across n different collections of
processors by storing reduced doublets on each collection of processors. By
simultaneously performing n matrix-matrix multiplications based on these
reduced doublets, one achieves O(My logdN) at the cost of increasing the
number of processors by a factor of n which is assumed in the remainder of
this section.

In the worst case, the degree d can be exponential in N leading to a running
time of O(MyN log N). For many problems, d is polynomial in N, leading to
a running time of O(My log N).

The time complexity of matrix-matrix multiplication O(My) is strongly de-
pendent on the computer architecture used. Dekel, Nassimi, and Sahni have
shown that, with a PRAM model, this operation can be performed with a
running time of O(log N) requiring O(N?) processors [4]. This yields a lower
bound on the time complexity for computing derivatives: O(N log* N) in the
worst case, and simply O(log? N) in many important cases. In the case where
the number of processors, p, is significantly less than /N, matrix-matrix multi-
plication has a running time of O(N?3/p), yielding corresponding complexities.

11

6 Example

The parallel algorithm is illustrated by an example showing how function
and simultaneous derivative evaluation is carried forward through the aug-
mented arithmetic circuit. The example is based on the straight-line code
shown in Fig. 1. The corresponding augmented arithmetic circuit with leaves
and edges initialized by doublets is depicted in Fig. 2. The modifications of
node and edge weights during the course of Alg. 1 is given in Fig. 6. For sim-
plicity, edges weighted by multiplicative identity element on doublets, [1, ()],
are represented in this figure without label, and those edges weighted by the
zero doublet are not drawn.

The algorithm begins with the procedure MULT, but since none of the mul-
tiplication nodes has at least one leaf as input, this operation does nothing.
The first application of the procedure SKIP finds two pairs of addition nodes.
Considering the first pair x3 and x4, notice that the edge between these two
nodes is deleted and two new edges pointing to x4 are introduced, one from x;
and another from x,. Both new edges are weighted by the product of mul-
tiplicative identity elements [1, ()] € D. The second pair of addition nodes
is x3 and x4. The edge connecting these nodes is removed, and two new edges
from x, and x, are created that both point to xg.

The first application of ADD evaluates the nodes x3 and z, whose types are
changed to leaves. Additionally, all their incoming edges are deleted. Notice
that the addition node xg is not involved in the first ADD because one of its
inputs, x5, is not a leaf.

The following MULT has an effect on x5 and x7; because these nodes both have
at least one leaf as input. Both nodes are changed to addition nodes, and the
edges are transformed as follows. One input of the node x7 is a leaf and one
is not. As a result, the incoming edge from the leaf x, is removed, and the
incoming edge from the nonleaf x5 is assigned a weight equal to that of z4. For
the node x5, both inputs are leaves. Following our heuristic, we remove the
incoming edge from x3 and assign the weight of x3 to the remaining incoming
edge from x,.

Through the course of applying SKIP for the second time, two pairs of nodes,
x5 and g as well as x5 and x7, are encountered. The outgoing edges from x5
are deleted, and two new outgoing edges from x, are introduced, one to wg
and another to x7. The weights of the new edges are given by multiplying the
weight of the incoming edge, [8, (1)], with those of the corresponding edges
being removed.

12

After application of first SKIP: After application of first ADD:

o T2 o T2

Fig. 6. Application of Alg. 1 to the augmented arithmetic circuit whose initialization
is shown in Fig. 2. The result is the function given by (1) and (2) and its Jacobian,
both evaluated at (z1,z2) = (6,2).

13

The following application of ADD, which is not shown in the figure, completes
the computation by evaluating node xg as the doublet

6. (@2 (D] ([, (D] [10,()]) = (58, (3
calculating node x7, which is the doublet
80, (3)] @ [10, ()] = [800, (38)};

and computing node x5, which is unnecessary because it corresponds to an
intermediate value and not to an output of the function.

These results agree with those obtained from analytically differentiating (1)
and (2) and evaluating them at the same input, namely,

ox ox
Tl 5.0y = 88, 8—; =19, 8—; =27,
He,2) 21(6,2)
))
Z7 6.5 = 800, 2T 2 260, 2~ 490,
01 |5 9) 022 |6,

7 Summary

Given a function in the form of a serial straight-line code, one can compute
derivatives of this function in a parallel and automatic fashion. The key is to
marry automatic differentiation and automatic parallelization. The algorithm
for this task is derived from a representation of the straight-line code in terms
of an arithmetic circuit. The arithmetic circuit is augmented with derivative
information. The function and its derivative are evaluated by transforms on
the arithmetic circuit. These transformations, in turn, are described by basic
linear algebra operations whose parallel execution leads to the time complex-
ity O(MylogdN), where O(Mpy) is the time complexity of a parallel multi-
plication of two dense N x N matrices and d is the degree of the arithmetic
circuit.

Acknowledgements

We thank Gail Pieper for her suggestions, which improved the readability of
this manuscript. This work was performed while the first author was visiting
the Mathematics and Computer Science Division, Argonne National Labora-
tory, USA. The work was supported in part by the Mathematical, Information,

14

and Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38.

References

[1]

2]

3]

[4]

[9]

J. BENARY, Parallelism in the reverse mode, in Computational Differentiation:
Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss, and
A. Griewank, eds., Philadelphia, 1996, SIAM, pp. 137-148.

C. BiscHOF, A. GRIEWANK, AND D. JUEDES, Ezploiting parallelism in
automatic differentiation, in Proceedings of the 1991 International Conference
on Supercomputing, E. Houstis and Y. Muraoka, eds., Baltimore, Md., 1991,
ACM Press, pp. 146-153.

C. H. BISCHOF, Issues in parallel automatic differentiation, in Automatic
Differentiation of Algorithms, A. Griewank and G. Corliss, eds., Philadelphia,
PA, 1991, SIAM, pp. 100-113.

E. DEKEL, D. NASSIMI, AND S. SAHNI, Parallel matriz and graph algorithms,
SIAM Journal on Computing, 10 (1981), pp. 657-675.

H. FISCHER, Automatic differentiation: Parallel computation of function,
gradient and Hessian matriz, Parallel Computing, 13 (1990), pp. 101-110.

A. GRIEWANK, Fuvaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, SIAM, Philadelphia, 2000.

E. KALTOFEN AND M. F. SINGER, Size Efficient Parallel Algebraic Circuits
for Partial Derivatives, in IV International Conference on Computer Algebra
in Physical Research, D. V. Shirkov, V. A. Rostovtsev, and V. P. Gerdt, eds.,
Singapore, 1991, World Scientific, pp. 133-145.

F. T. LEIGHTON, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees and Hypercubes, Morgan Kaufmann, San Mateo, 1992.

G. L. MILLER, V. RAMACHANDRAN, AND E. KALTOFEN, Efficient parallel
evaluation of straight-line code and arithmetic circuits, SIAM Journal on
Computing, 17 (1988), pp. 687-695.

[10] A. ROSENFELD, An Introduction to Algebraic Structures, Holden-Day, San

Francsico, 1968.

15

