
A Matrix-Matrix Multiplication Approach tothe Automatic Di�erentiation andParallelization of Straight-Line CodesH. M. B�ucker a, K. R. Buschelman b, and P. D. Hovland baInstitute for Scienti�c Computing, Aachen University of Technology,52056 Aachen, Germany.bMathematics and Computer Science Division, Argonne National Laboratory,9700 South Cass Ave, Argonne, IL 60439, USA.AbstractA Straight-line code, which consists of assignment, addition, and multiplicationstatements, is an abstraction of a serial computer program to compute a functionwith n inputs. Given a serial straight-line code with N statements, we derive analgorithm that automatically evaluates not only the function but also its �rst-orderderivatives with respect to the n inputs on a parallel computer. The basic ideaof the algorithm is to marry automatic computation of derivatives with automaticparallelization of serial programs. The algorithm requires O(MN log dN) scalar op-erations, where O(MN) is the time complexity of a parallel multiplication of twodense N �N matrices and d represents a measure of the complexity of the straight-line code. Although d can be exponential in N in the worst case, it tends to be onlypolynomial in N for many important problems.Key words: Automatic di�erentiation, forward mode, automatic parallelization,arithmetic circuit.1 IntroductionGiven a serial computer program to compute a function, one can apply tech-niques of automatic di�erentiation to evaluate the function simultaneouslywith its �rst-order derivatives [6]. One can also parallelize a serial computerprogram automatically [8,9]. In this note, we show how these two concepts canbe married. The resulting algorithm takes as input a serial code for a func-tion and automatically evaluates the function and its �rst-order derivativeson a parallel computer. Parallel calculation of higher-order derivatives basedon Taylor series expansion can be found in [7].Preprint submitted to Elsevier Preprint 10 October 2000

The algorithm described in this note is of theoretical interest and enhances ourunderstanding of parallel automatic di�erentiation. It is not intended to repre-sent practical issues involved in a particular implementation of such software.More practical issues in this �eld are discussed in [1{3,5].The structure of this note is as follows. In Sec. 2, straight-line codes are spec-i�ed as an abstraction of more complicated programs. For the parallel evalu-ation of the underlying function, a common representation of a straight-linecode known as an arithmetic circuit is introduced. In Sec. 3, we show how thecircuit can be adapted to a so-called augmented arithmetic circuit in order toinclude derivative information. In Sec. 4, transformations on the augmentedarithmetic circuit are described that will be used for its parallel evaluation,which is described in Sec. 5. The resulting algorithm is illustrated by an ex-ample in Sec. 6.
2 Conversion of Straight-Line Code into an Arithmetic CircuitA straight-line code is a �nite sequence of elementary operations without loops,conditionals, branching, or subroutines. Straight-line codes may be consideredan abstraction of more complicated programs. More precisely, they representa trace of a particular run of a program provided speci�c values for the inputvariables are given. A straight line code has no branches or jumps of any type;that is, every loop is unrolled, every conditional statement is replaced by theappropriate branch, and every subroutine is inlined. This note is concernedwith straight-line codes in which every statement is of one of the followingthree forms:(i) xk c(ii) xk xi + xj(iii) xk xi � xj,where xi and xj are previously de�ned variables and c 2 R is a constant. Forthe sake of simplicity, we assume that, in a straight-line code, each variablehas only one assignment. This assumption may lead to tremendous growth ofthe number of variables but preserves uniqueness of the left-hand sides.Straight-line codes are commonly represented by graphs, known as arithmeticcircuits. Formally, an arithmetic circuit is an edge- and node-weighted directedacyclic graph G = (X;E; �; �) with a set of nodes X and a set of edges E thatare weighted by the functions � and �, respectively. The set of nodes X is thedisjoint union of three di�erent kinds of nodes, namely, X = L _[A _[M ,where L denotes the set of Leaves, A the set of Addition nodes, and M the2

x1 6x2 2x3 x1 + x2x4 x2 + x3x5 x3 � x4x6 x3 + x5x7 x4 � x5
6x1 2 x2+x3 + x4�x5+x6 � x7Fig. 1. Taking (x1; x2) = (6; 2) as input, the straight-line code and its associatedarithmetic circuit compute x6 and x7 given by (1) and (2), respectively.set of Multiplication nodes. The nodes of the arithmetic circuit satisfyindegree(l) = 0; 8 l 2 L;indegree(a) > 0; 8 a 2 A;indegree(m) = 2; 8 m 2 M:Let N denote the number of statements of the straight-line code. With ev-ery statement of the straight-line code, a node is associated. Therefore, ev-ery left-hand side variable can be thought of as a node, and setting X =fx1; x2; x3; : : : ; xNg is appropriate. All edges of the arithmetic circuit are di-rected away from leaves. There is an edge from node xi to node xj whenever xiis an input to xj. Both nodes and edges are weighted.The following example, depicted in Fig. 1, is borrowed from [8]. Given astraight-line code, then one can construct the corresponding arithmetic cir-cuit by associating a node in the circuit with every statement in the code.Notice that the node types are di�erent and correspond to the three kinds ofstatements and that edges are used to propagate the appropriate input to anoperation. The code and the arithmetic circuit given in the �gure compute afunction f satisfying (x6; x7) = f(x1; x2), wherex6 = x21 + 3x1x2 + 2x22 + x1 + x2 (1)x7 = x31 + 5x21x2 + 8x1x22 + 4x32: (2)In [8, Sec. 2.6], it is shown how the function f can be evaluated in a polyloga-rithmic number of parallel steps using a computer whose network architectureis a so-called three-dimensional mesh of trees. The algorithm given there isquite general in the sense of being able to handle additions and multiplica-tions not only over R but over any commutative semiring where the terms\addition" and \multiplication" are interpreted appropriately. It consists of3

repeated applications of basic matrix and vector operations. The purpose ofthis note is to show how fast evaluation of the function and the �rst-orderderivatives of that function can be accomplished. The algorithm given hereis a modi�cation of the algorithm given in [8] for a particular choice of thesemiring. However, both the arithmetic circuit and the operations involved inevaluating the circuit need modi�cations, which we describe in the followingsections.3 Augmenting an Arithmetic Circuit with Derivative InformationSuppose that a straight-line code for the computation of a function f takes nindependent variables as input and produces some dependent variables asoutput. Furthermore, assume that not only the function f evaluated at speci�cinput values is sought but also its Jacobian evaluated at the same input. Tothis end, the arithmetic circuit sketched in Fig. 1 is augmented with derivativeinformation. While the structure of the circuit remains unchanged, the nodeand edge weights are modi�ed to propagate the derivative information. Theresulting graph is called an augmented arithmetic circuit.Without loss of generality, a straight-line code can be arranged such that allassignments of the form xi ci are given at the beginning. Furthermore, letthe �rst n constant assignments represent the input values for the function.For example, if f(x) = x + 1, the straight-line code evaluating f at x = 7 isgiven by x1 7x2 1x3 x1 + x2;where n = 1 and, more important, the order of the �rst two assignments isdetermined by the above assumption. The constants involved in the functionevaluation are associated with the leaves of the circuit, whereas the additionand multiplication operations introduce nodes of corresponding type. More-over, calculation of derivatives with respect to n inputs gives rise to the prop-agation of gradient vectors with dimension n, as is re
ected in the concept ofdoublets. The functions � : X ! D and � : E ! D are used to denote nodeweights and edge weights, respectively, where the set D := R � R n is the setof doublets.The use of doublets arises from the need to store intermediate values duringthe simultaneous computation of f and its Jacobian. A doublet is a pair,denoted by square brackets, with a function part and an associated gradientpart. If u = [uf ;ur] is a doublet, then uf 2 R is used to refer to some4

intermediate scalar value involved in the evaluation of the function f , whereasur 2 R n refers to some intermediate gradient value involved in the derivativecomputation.The symbols � and
 denote addition and multiplication on doublets. Moreprecisely, the addition of two doublets v and w is de�ned by u = v�w, whereuf = vf + wf (3)ur = wr + vr; (4)that is, the separate addition of function and gradient part. The product oftwo doublets v and w is de�ned by u = v
 w, whereuf = vf � wf (5)ur = vfwr + wfvr: (6)Here, the gradient part is de�ned in a product rule-like manner.Note that both addition and multiplication on doublets are commutative andassociative. Furthermore, the operation
 distributes over � from left andfrom right; in other words, for all u; v; w 2 D the relationsu
 (v � w) = (u
 v)� (u
 w) and (v � w)
 u = (v
 u)� (w
 u)hold. Hence, the triplet (D ;�;
) is a commutative semiring [10], and thealgorithm given in [8] is applicable. The doublet [1; 0n] is the multiplicativeidentity element in D , where 0n denotes the n-dimensional zero vector. Thedoublet [0; 0n] is the additive identity element as well as the multiplicativeabsorbent in D . For the sake of brevity, the doublet [0; 0n] is hereafter referredto as the zero doublet.Let ei 2 R n denote the ith Cartesian unit vector, and recall that ci denotesthe constants assigned at the beginning of the straight-line code. Then, theinitial node and edge weights of the augmented arithmetic circuit are given by�(xi) = [ci; ei]; 8 xi 2 L for i � n; (7)�(xi) = [ci; 0n]; 8 xi 2 L for i > n; (8)�(xi) = [0; 0n]; 8 xi 2 A _[M; (9)�(e) = [1; 0n]; 8 e 2 E: (10)If a leaf corresponds to the ith input to the function, that is, a variable of thefunction whose derivative is to be evaluated, the gradient part of its doubletis initialized to the ith unit vector; otherwise, the gradient part is initializedto the zero vector. Addition and multiplication nodes are set to the zero dou-blet. Edges are weighted with the multiplicative identity element in D . Theinitialized augmented arithmetic circuit related to the example given in Fig. 15

[6; (10)]x1 [2; (01)] x2
�x3 � x4

x5�x6
 x7

[1; (00)] [1; (00)] [1; (00)]
[1; (00)] [1; (00)][1; (00)]

[1; (00)]
[1; (00)][1; (00)] [1; (00)]

Fig. 2. Given the arithmetic circuit from Fig. 1, its augmented arithmetic circuit isinitialized according to (7){(10)is depicted in Fig. 2, where, for the sake of clarity, addition and multiplica-tion nodes are labeled re
ecting their type rather than with their initial nodeweights, the zero doublet.The algorithm to be presented in this note can be adequately described bymeans of linear algebra expressions involving matrices and vectors whose en-tries are modi�ed throughout the course of the algorithm. Recall that N de-notes the number of nodes of the augmented arithmetic circuit. Then, anN�Nmatrix of edge weights, W, is introduced. The (i; j) entry of this matrix is de-�ned to be �(ei;j), the weight of the edge between node xi and node xj. If thereis no edge between these nodes, the corresponding matrix entry is set to thezero doublet. Note that, from the above construction of the circuit, the ma-trix W is upper triangular with zero doublets along the diagonal. Its nonzeroentries are initially given by (10). Furthermore, we introduce anN -dimensionalvector of node weights, v, whose ith component is given by �(xi), the weightof node xi. This vector is initialized according to (7){(9).The complexity of the algorithm presented in this note will be described interms of a parameter of the straight-line code and its augmented arithmeticcircuit. It is useful to introduce this parameter here while having the circuitof Fig. 2 in mind. The degree of a node is de�ned inductively. The degreeof a leaf is 1. The degree of an addition node is the maximum degree of itsinputs. The degree of a multiplication node is the sum of the degrees of itsinputs. For instance, the degree of node x6 is 2 and the degree of node x7 is 3;6

notice the degree of the multivariate polynomials (1) and (2), respectively.The degree of an (augmented) arithmetic circuit is then the maximum degreeof any node. For instance, the degree of the circuit depicted in Fig. 2 is 3.If a circuit with N nodes has long chains of multiplication nodes, its degreecan be exponential in N ; however, the degree may be polynomial in N for alarge class of problems. Note that the degree of a circuit is the degree of themultivariate polynomial that this circuit computes.4 Transformations on the Augmented Arithmetic CircuitUpon instantiation of an augmented arithmetic circuit, the weights of theleaves are doublets, the �rst n of which can be thought of as inputs to thecircuit. We shall evaluate the circuit by carrying forward these doublets usingrepeated application of three elementary procedures: mult, skip, and add.After each iteration of applying these three procedures, the resulting graph isstill an augmented arithmetic circuit with the same number of nodes. How-ever, the weights of both nodes and edges may be modi�ed. The type of anode may switch from a multiplication node to an addition node and from anaddition node to a leaf. Similarly, an edge weight may change from a nonzerodoublet to a zero doublet, hereafter referred to as the deletion of an edge, andone may change from a zero doublet to a nonzero doublet, creating an edge.Eventually, all edges will be deleted, and all nodes will become leaves withweights containing the desired function and derivative information.The three procedures to be described operate simultaneously on all nodesof the circuit and will be illustrated by �gures. In these �gures, rectanglesdenote leaves; white circles are used for addition and multiplication nodes;and gray-shaded circles stand for nodes of any type, that is, leaves, addition,or multiplication nodes. The most straightforward of the three procedures isillustrated in Fig. 3. The procedure add evaluates those addition nodes xk inparallel whose inputs are all leaves. Hence, the type of a node xk is changedfrom an addition node to a leaf. The weight of the new leaf xk is the sum ofall input node weights, vi, scaled by the input edge weights, wi; thus�(xk) = sMi=1(wi
 vi): (11)After the new weight of node xk is assigned, all incoming edges are set to thezero doublet, that is, all incoming edges are deleted.The application of add can be formulated in terms of the vector of nodeweights, v, and the matrix of edge weights, W. Recall from the de�nitionof v that the node weights, vi, in Fig. 3 are the entries of v at position `i7

v1x`1 v2x`2 vsx`s: : :
� xkw1 w2 ws add7�! v1x`1 v2x`2 vsx`s: : :sMi=1(wi
 vi) xkFig. 3. Application of add on an addition node xk whose inputs are all leavesevaluates xk, changes its type to a leaf, and deletes all incoming edges.for i = 1; 2; : : : ; s. Similarly, from the de�nition ofW, the edge weights, wi, arethe entries of column k ofW at position `i for i = 1; 2; : : : ; s. An interpretationof the transformation of the circuit based on simultaneously applying (11) toall nodes xk whose inputs are all leaves is therefore as follows: the vector ofnode weights is updated by the matrix-vector multiplication v W Tv whereadditions and multiplications are executed on doublets; in addition, the matrixof edge weights is modi�ed only at certain entries. Consequently, applying addis no harder than computing a matrix-vector multiplication,W Tv, in parallel.The procedure mult is used to simultaneously handle multiplication nodesand is depicted in Fig. 4. Only those multiplication nodes that have at leastone leaf as input are transformed by mult; that is, any multiplication nodethat has no input from a leaf is simply ignored in this transformation. Assumethat one input of a multiplication node xk is a leaf, say xi, and one is anarbitrary node, say xj. Then, the edge from xi to xk is removed, the edgefrom xj to xk is weighted by the weight vi of the leaf xi, and the type of xkis changed from a multiplication node to an addition node. We note that ifboth inputs are leaves, a rule is required to determine which node is removed.We have chosen to remove the edge between xi and xk, where i < j, but otherrules are possible.The e�ect of mult in terms of v and W is as follows. Since node weights arenot modi�ed, the vector v remains unchanged. The deletion of edges and theassignments from node weights to edge weights correspond to an update of Wfor speci�c entries.The circuit can be evaluated completely by applying add and mult in analternating fashion. However, long addition chains in the circuit would beevaluated rather ine�ciently because add can be applied only to nodes whoseinputs are all leaves. Hence, partial sums occurring in the evaluation of longaddition chains are carried forward linearly with the length of the chains.It would be desirable to collapse long addition chains into chains of abouthalf the length to enable logarithmic complexity in evaluating long additionchains. Therefore, a way of making available the input of an addition node to8

vixi xj

 xk mult7�! vixi xj

� xkviFig. 4. Application of mult on a multiplication node xk with at least one leaf asinput deletes the incoming edge from the leaf, transfers the leaf's weight to the edgefrom the arbitrary node to xk, and changes xk's type to an addition node.its predecessor in the circuit is sought. Roughly speaking, that addition nodeis skipped over. The procedure skip serves that purpose by transforming thoseaddition nodes that themselves point to addition nodes, as is shown in Fig. 5.This procedure does not evaluate any node but rearranges edges so that thenext application of add may evaluate signi�cantly more addition nodes. Foreach pair of addition nodes xj and xk, the procedure skip removes the edgefrom xj to xk and introduces new edges from each of xj's input nodes x`i tonode xk for i = 1; 2; : : : ; s. A new edge from x`i to xk is weighted by wi
 w,where w is the weight of the edge being removed.Similar to mult, the procedure skip does not change the vector of nodeweights. To see the e�ect of skip on the matrix of edge weights, W, whoseentries will be denoted by wik in the following discussion, we de�ne the matrixof edge weights linking addition nodes exclusively. Let W� = (w�ik) be thisx`1 x`2 x`s: : :
� xj
� xk

w1 w2 ws
w skip7�!

x`1 x`2 x`s: : :
� xj
� xk

w1 w2 wsw1
 w w2
 w ws
 w: : :Fig. 5. Application of skip to a pair of addition nodes xj and xk deletes the edgefrom xj to xk and introduces a new edge from each of xj's inputs to xk that isweighted by the product of the corresponding input edge weight and the weight ofthe edge being removed. 9

matrix with entryw�ik = 8<:wik if nodes xi and xk are addition nodes[0; 0n] otherwise.An update of the form W W � W� then represents the simultaneousremoval of all edges between any pair of addition nodes. Consider now anarbitrary entry wik of the matrix of edge weights representing the edge fromnode xi to node xk and study wik's transformation by the procedure skip.If xk is not an addition node the entry wik remains unchanged. If xk is anaddition node and there is another addition node xj that points to xk with edgeweight w�jk and there is an edge from xi to xj, then the new edge between xiand xk introduced by skip is weighted by wij
w�jk. Summing over all possibleaddition nodes xj leads to a term WW� so that, in summary, the update ofthe matrix of edge weights for the application of skip is represented byW W �W� +WW�;where subtraction, addition, and multiplication of matrices are to be under-stood in the usual sense but operating on doublets rather than on scalars.Therefore, applying skip is no harder than computing a parallel matrix-matrixmultiplication.5 Parallel Evaluation of the Augmented Arithmetic CircuitThe three transformations introduced in the preceding section are now used ina parallel algorithm to evaluate the function associated to the given straight-line code along with its Jacobian evaluated at the same input. We have alreadymentioned that the augmented arithmetic circuit can be evaluated by applyingadd and mult in an alternate fashion. The purpose of skip is to rearrangethe edges of the circuit, enabling the evaluation of as many addition nodes aspossible; therefore, skip can be regarded as a preprocessing step for add. Thecomplete algorithm follows from properly arranging the three transformations:Algorithm 1repeatapply procedure multapply procedure skipapply procedure adduntil circuit is evaluatedParallelism is obtained by using parallel implementations of the linear algebraoperations corresponding to the three procedures. The time complexity of the10

algorithm depends on the number of iterations necessary to evaluate all nodesof the augmented arithmetic circuit and is given by the following result.Theorem 1 Given a (serial) straight-line code with N statements and asso-ciated augmented arithmetic circuit of degree d, the (parallel) algorithm toevaluate and carry forward a gradient of each intermediate variable xi withrespect to n input variables simultaneously with the evaluation of xi itself re-quires O(nMN log dN) scalar operations, where O(MN) is the time complexityof a parallel multiplication of two dense N � N matrices on a given parallelarchitecture.PROOF. The above algorithm is a modi�cation of the algorithm given in [8,Sec. 2.6] with a particular choice of the semiring. Speci�cally, the number ofiterations within Alg. 1 needed to evaluate the circuit is the same, namely,O(log dN). The overall complexity of a single iteration within Alg. 1 is givenby the matrix-matrix multiplication WW� whose time complexity is O(MN)provided the entries of W are taken from R (i.e., scalar entries). The resultthen follows from observing that, by (3){(6), additions and multiplications ondoublets require at most 3n+ 1 scalar operations on R . 2An additional level of parallelism can be exploited to remove the dependenceon n in the above count. In particular, one can decompose a doublet consistingof a scalar function part and an n-dimensional gradient part into n \reduced"doublets each having a scalar function part and a scalar gradient part. Hence,one can replicate the function information across n di�erent collections ofprocessors by storing reduced doublets on each collection of processors. Bysimultaneously performing n matrix-matrix multiplications based on thesereduced doublets, one achieves O(MN log dN) at the cost of increasing thenumber of processors by a factor of n which is assumed in the remainder ofthis section.In the worst case, the degree d can be exponential in N leading to a runningtime of O(MNN logN). For many problems, d is polynomial in N , leading toa running time of O(MN logN).The time complexity of matrix-matrix multiplication O(MN) is strongly de-pendent on the computer architecture used. Dekel, Nassimi, and Sahni haveshown that, with a PRAM model, this operation can be performed with arunning time of O(logN) requiring O(N3) processors [4]. This yields a lowerbound on the time complexity for computing derivatives: O(N log2N) in theworst case, and simply O(log2N) in many important cases. In the case wherethe number of processors, p, is signi�cantly less than N , matrix-matrix multi-plication has a running time of O(N3=p), yielding corresponding complexities.11

6 ExampleThe parallel algorithm is illustrated by an example showing how functionand simultaneous derivative evaluation is carried forward through the aug-mented arithmetic circuit. The example is based on the straight-line codeshown in Fig. 1. The corresponding augmented arithmetic circuit with leavesand edges initialized by doublets is depicted in Fig. 2. The modi�cations ofnode and edge weights during the course of Alg. 1 is given in Fig. 6. For sim-plicity, edges weighted by multiplicative identity element on doublets, [1; (00)],are represented in this �gure without label, and those edges weighted by thezero doublet are not drawn.The algorithm begins with the procedure mult, but since none of the mul-tiplication nodes has at least one leaf as input, this operation does nothing.The �rst application of the procedure skip �nds two pairs of addition nodes.Considering the �rst pair x3 and x4, notice that the edge between these twonodes is deleted and two new edges pointing to x4 are introduced, one from x1and another from x2. Both new edges are weighted by the product of mul-tiplicative identity elements [1; (00)] 2 D . The second pair of addition nodesis x3 and x6. The edge connecting these nodes is removed, and two new edgesfrom x1 and x2 are created that both point to x6.The �rst application of add evaluates the nodes x3 and x4 whose types arechanged to leaves. Additionally, all their incoming edges are deleted. Noticethat the addition node x6 is not involved in the �rst add because one of itsinputs, x5, is not a leaf.The following mult has an e�ect on x5 and x7 because these nodes both haveat least one leaf as input. Both nodes are changed to addition nodes, and theedges are transformed as follows. One input of the node x7 is a leaf and oneis not. As a result, the incoming edge from the leaf x4 is removed, and theincoming edge from the nonleaf x5 is assigned a weight equal to that of x4. Forthe node x5, both inputs are leaves. Following our heuristic, we remove theincoming edge from x3 and assign the weight of x3 to the remaining incomingedge from x4.Through the course of applying skip for the second time, two pairs of nodes,x5 and x6 as well as x5 and x7, are encountered. The outgoing edges from x5are deleted, and two new outgoing edges from x4 are introduced, one to x6and another to x7. The weights of the new edges are given by multiplying theweight of the incoming edge, [8; (11)], with those of the corresponding edgesbeing removed.
12

After application of �rst skip:[6; (10)]x1 [2; (01)] x2
�x3 � x4

x5�x6
 x7

After application of �rst add:[6; (10)]x1 [2; (01)] x2
[8; (11)]x3 [10; (12)] x4

x5�x6
 x7After application of second mult:[6; (10)]x1 [2; (01)] x2
[8; (11)]x3 [10; (12)] x4

�x5�x6 � x7
[8; (11)]
[10; (12)]

After application of second skip:[6; (10)]x1 [2; (01)] x2
[8; (11)]x3 [10; (12)] x4

�x5�x6 � x7
[8; (11)]

[8; (11)] [80; (1826)]
Fig. 6. Application of Alg. 1 to the augmented arithmetic circuit whose initializationis shown in Fig. 2. The result is the function given by (1) and (2) and its Jacobian,both evaluated at (x1; x2) = (6; 2).

13

The following application of add, which is not shown in the �gure, completesthe computation by evaluating node x6 as the doublet[6; (10)]� [2; (01)]� �[8; (11)]
 [10; (12)]� = [88; (1927)];calculating node x7, which is the doublet[80; (1826)]
 [10; (12)] = [800; (260420)];and computing node x5, which is unnecessary because it corresponds to anintermediate value and not to an output of the function.These results agree with those obtained from analytically di�erentiating (1)and (2) and evaluating them at the same input, namely,x6j(6;2) = 88; @x6@x1 �����(6;2) = 19; @x6@x2 �����(6;2) = 27;x7j(6;2) = 800; @x7@x1 �����(6;2) = 260; @x7@x2 �����(6;2) = 420:7 SummaryGiven a function in the form of a serial straight-line code, one can computederivatives of this function in a parallel and automatic fashion. The key is tomarry automatic di�erentiation and automatic parallelization. The algorithmfor this task is derived from a representation of the straight-line code in termsof an arithmetic circuit. The arithmetic circuit is augmented with derivativeinformation. The function and its derivative are evaluated by transforms onthe arithmetic circuit. These transformations, in turn, are described by basiclinear algebra operations whose parallel execution leads to the time complex-ity O(MN log dN), where O(MN) is the time complexity of a parallel multi-plication of two dense N � N matrices and d is the degree of the arithmeticcircuit.AcknowledgementsWe thank Gail Pieper for her suggestions, which improved the readability ofthis manuscript. This work was performed while the �rst author was visitingthe Mathematics and Computer Science Division, Argonne National Labora-tory, USA. The work was supported in part by the Mathematical, Information,14

and Computational Sciences Division subprogram of the O�ce of AdvancedScienti�c Computing Research, U.S. Department of Energy, under ContractW-31-109-Eng-38.References[1] J. Benary, Parallelism in the reverse mode, in Computational Di�erentiation:Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss, andA. Griewank, eds., Philadelphia, 1996, SIAM, pp. 137{148.[2] C. Bischof, A. Griewank, and D. Juedes, Exploiting parallelism inautomatic di�erentiation, in Proceedings of the 1991 International Conferenceon Supercomputing, E. Houstis and Y. Muraoka, eds., Baltimore, Md., 1991,ACM Press, pp. 146{153.[3] C. H. Bischof, Issues in parallel automatic di�erentiation, in AutomaticDi�erentiation of Algorithms, A. Griewank and G. Corliss, eds., Philadelphia,PA, 1991, SIAM, pp. 100{113.[4] E. Dekel, D. Nassimi, and S. Sahni, Parallel matrix and graph algorithms,SIAM Journal on Computing, 10 (1981), pp. 657{675.[5] H. Fischer, Automatic di�erentiation: Parallel computation of function,gradient and Hessian matrix, Parallel Computing, 13 (1990), pp. 101{110.[6] A. Griewank, Evaluating Derivatives: Principles and Techniques ofAlgorithmic Di�erentiation, SIAM, Philadelphia, 2000.[7] E. Kaltofen and M. F. Singer, Size E�cient Parallel Algebraic Circuitsfor Partial Derivatives, in IV International Conference on Computer Algebrain Physical Research, D. V. Shirkov, V. A. Rostovtsev, and V. P. Gerdt, eds.,Singapore, 1991, World Scienti�c, pp. 133{145.[8] F. T. Leighton, Introduction to Parallel Algorithms and Architectures:Arrays, Trees and Hypercubes, Morgan Kaufmann, San Mateo, 1992.[9] G. L. Miller, V. Ramachandran, and E. Kaltofen, E�cient parallelevaluation of straight-line code and arithmetic circuits, SIAM Journal onComputing, 17 (1988), pp. 687{695.[10] A. Rosenfeld, An Introduction to Algebraic Structures, Holden-Day, SanFrancsico, 1968.
15

