
Using Automatic Di�erentiation for Second-Order Matrix-freeMethods in PDE-constrained OptimizationP. D. Hovland� D. E. Keyesy L. C. McInnesz W. SamyonoxAbstractClassical methods of constrained optimization are often based on the assumptions that projectiononto the constraint manifold is routine but accessing second-derivative information is not. Bothassumptions need revision for the application of optimization to systems constrained by partialdi�erential equations, in the contemporary limit of millions of state variables and in the parallelsetting. Large-scale PDE solvers are complex pieces of software that exploit detailed knowledge ofarchitecture and application and cannot easily be modi�ed to �t the interface requirements of ablackbox optimizer. Furthermore, in view of the expense of PDE analyses, optimization methodsnot using second derivatives may require too many iterations to be practical. For general problems,automatic di�erentiation is likely to be the most convenient means of exploiting second derivatives.We delineate a role for automatic di�erentiation in matrix-free optimization formulations involvingNewton's method, in which little more storage is required than that for the analysis code alone.1 IntroductionYears of two-sided (from architecture up, from applications down) algorithms research has made itpossible to solve partial di�erential equation (PDE) problems implicitly with reasonable scalability.PDEs are equality constraints on the state variables in many optimization problems. Hardly auxiliary,the PDE system may contain millions of degrees of freedom. In problems of shape optimization andcontrol, the number of optimization parameters is typically much smaller than the number of statevariables. In problems of parameter identi�cation, the number of parameters to be optimized maybe comparable to the number of state variables, but few general-purpose optimization frameworkshave been demonstrated at the scale required for three-dimensional problems. We therefore proposethat large-scale PDE-constrained optimization codes usually should be constructed around the datastructures and functional capabilities of the PDE solver.Optimization is easily incorporated through the Lagrange saddle-point formulation into a Newton-like parallel PDE framework that accommodates substructuring. Newton's method is a common elementin the most rapidly convergent solvers and optimizers. Furthermore, a PDE solver that is not part of anoptimization framework is probably short of what the client really wants. Hence, for both algorithmicand teleological reasons, analysis and optimization belong together.We focus in Section 2 on the Newton-Krylov-Schwarz (NKS) family of parallel implicit root�nders,and we give an example of pseudo-transient globalization of NKS (	NKS) in a large-scale parallelcontext, aerodynamics. The �rst-order optimality conditions of equality-constrained optimization usingthe Lagrangian are presented in Section 3, which introduces a parallel optimization framework called�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844http://www.mcs.anl.gov/~hovlandyMathematics & Statistics Department, Old Dominion University, Norfolk, VA 23529-0077; ISCR, Lawrence LivermoreNational Laboratory, Livermore, CA 94551-0808; and ICASE, NASA Langley Research Center, Hampton, VA 23681-2199http://www.math.odu.edu/~keyeszMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844http://www.mcs.anl.gov/~mcinnesxMathematics & Statistics Department, Old Dominion University, Norfolk, VA 23529-00771



LNKS (Lagrange-Newton-Krylov-Schur or Lagrange-Newton-Krylov-Schwarz). In Section 4 we sketcha prototype parameter identi�cation example from the �eld of radiation transport. The complexityof LNKS when automatic di�erentiation (AD) is employed in the Krylov matrix-vector operation isdiscussed in Section 5. Finally, in Section 6 we summarize our work and indicate some future directions.2 Newton-Krylov-SchwarzIn this section, we describe the NKS framework from the inside outward, then illustrate it in a large-scaleparallel context.2.1 SchwarzSchwarz [10, 13, 22] methods are solvers or preconditioners that create concurrency at a desired granu-larity algorithmically and explicitly through partitioning, without the necessity of any code dependenceanalysis or special compiler. Generically, in continuous or discrete settings, Schwarz partitions a so-lution space into n subspaces, possibly overlapping, whose union is the original space, and forms anapproximate inverse of the operator in each subspace. Algebraically, to solve the discrete linear system,Ax = f , let Boolean rectangular matrix Ri extract the ith subset of the elements of x: xi = Rix, andlet Ai = RiARTi . Then the Schwarz approximate inverse, B�1, is de�ned as PiRTi A�1i Ri. From thePDE perspective, subspace decomposition is domain decomposition. We form B�1 � A�1 out of (ap-proximate) local solves on (possibly overlapping) subdomains, as in Fig. 1. This can be used to iteratein a stationary way, as a splitting matrix: xk+1 = (I �B�1A)xk +B�1f . However, since �(I �B�1A)may be greater than unity in general, this additive splitting may not converge as a stationary iteration.\Multiplicative" Schwarz methods (Gauss-Seidel-like, relative to the Jacobi-like \additive" above) canbe proved convergent when A derives from an elliptic PDE, under certain partitionings.H � h
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Figure 1: Left: A domain 
 partitioned into nine overlapping subdomains, 
i, extended slightly byoverlapping to subdomains 
0i, showing the scales of the mesh spacing (h), the subdomain overlap (�),and the subdomain diameter (H). Right: Two adjacent subdomains with common edge � pulled apartto show overlap regions as separate bu�ers, which are implemented in the local data structures of each.In the PDE context, Boolean operators Ri and RTi , i = 1; : : : ; n, represent gather and scatter(communication) operations, mapping between a global vector and its ith subdomain support. WhenA derives from an elliptic operator and Ri is the characteristic function of unknowns in a subdomain,optimal convergence (independent of dim(x) and the number of partitions) can be proved, with theaddition of a coarse grid, which is denoted with subscript \0": B�1 = RT0 A�10 R0 +Pi>0 RTi A�1i Ri.Here, R0 is a conventional geometrically based multilevel interpolation operator. It is an importantfreedom in practical implementations that the coarse grid space need not be related to the �ne gridspace or to the subdomain partitioning.The A�1i (i > 0) in B�1 are often replaced with inexact solves in practice, denoted by ~A�1i . Theexact forward matrix-vector action of A in B�1A is still required, even if inexact solves are employedin the preconditioner. 2



Condition number estimates for B�1A are given in Table 1 for generous overlap � = O(H). Other-wise, if � � H , the two-level result is O(1+H=�). The two-level Schwarz method with generous overlaphas a condition number that is independent of the �neness of the discretization and the granularity ofthe decomposition, which implies perfect algorithmic scalability. However, there is an increasing imple-mentation overhead in the coarse-grid solution required in the two-level method that o�sets this perfectalgorithmic scalability. In practice, a one-level method is often used, since it is amenable to a perfectlyscalable implementation. These condition number results are extensible to nonself-adjointness, mildinde�niteness, and inexact subdomain solvers. The theory requires a \su�ciently �ne" coarse mesh,H , for the �rst two of these extensions, but computational experience shows that the theory is oftenpessimistic.2.2 Krylov-SchwarzAlthough the spectral radius, �(I � B�1A), may exceed unity, the spectrum, �(B�1A), is profoundlyclustered, so Krylov acceleration methods should work well on the preconditioned solution of B�1Ax =B�1f . Krylov-Schwarz methods typically converge in a number of iterations that scales as the square-root of the condition number of the Schwarz-preconditioned system. For convergence scalability esti-mates, assume one subdomain per processor in a d-dimensional isotropic problem, where N = h�d andP = H�d. Then iteration counts may be estimated as in the last two columns of Table 1.Table 1: Theoretical condition number estimates �(B�1A), for self-adjoint positive-de�nite ellipticproblems [22] and corresponding iteration count estimates for Krylov-Schwarz based on an idealizedisotropic partitioning of the domain in two or three dimensions.Preconditioning �(B�1A) 2D Iter. 3D Iter.Point Jacobi O(h�2) O(N1=2) O(N1=3)Domain Jacobi O((hH)�1) O((NP )1=4) O((NP )1=6)1-level Additive Schwarz O(H�2) O(P 1=2) O(P 1=3)2-level Additive Schwarz O(1) O(1) O(1)2.3 Newton-Krylov-SchwarzLet F (x) = 0 be a discrete system of nonlinear equations arising from an elliptically dominated systemof PDEs. Let its Jacobian be denoted J � @F=@x. Inexact Newton iteration on F (x) = 0, involvesselecting an initial iterate x(0) and iterating for a correction to the current x(k): x(k+1) = x(k) +�k�x, where jjJ(x(k))�x + F (x(k))jj < �k. A large body of literature exists on how to choose �k and�k for robustness and e�ciency. Any of these members of the inexact Newton family of algorithmsmay be implemented as a Newton-Krylov-Schwarz method, by iterating for �x with a linear Krylov-Schwarz method. Partitioning x induces block structure on the Jacobian matrix. As anticipated in thepresentation of Schwarz above, we do not need any Jacobians explicitly; rather, matrix-vector actionof the Jacobian at point x(k) may be performed with �nite Fr�echet di�erencing (FD) or automaticdi�erentiation (AD) about the point, and preconditioning of the Jacobian is done with approximatelocal operators, approximately solved in accordance with overall performance trade-o�s.Newton-Krylov-Schwarz has been demonstrated to be an e�ective parallel implicit solver for large-scale nonlinear problems derived from PDEs (see, e.g., P. Brown and collaborators at LLNL [7, 8] and D.Knoll and collaborators at LANL [17, 19]). It has been applied to problems in aerodynamics, radiationtransport, porous media, semiconductors, geophysics, astrophysical MHD, population dynamics, andother �elds. It has been implemented in a parallel matrix-free object-oriented framework, includingboth FD and AD distributed matvecs, in PETSc software from Argonne [2].We advocate employing 	NKS in a split-discretization formulation, in which economizations aretaken in the left-hand side preconditioner blocks of J relative to the more accurate, physical discretization-dictated right-hand operator for J . Examples of such economizations include sacri�ced coupling for pro-3



cess concurrency, segregation of physics into successive phases with simple structure (operator-splitting),the Jacobian of a lower-order discretization for fewer nonzeros and fewer colors in a minimal coloring,the Jacobian of a related discretization allowing \fast" solves, a Jacobian with lagged values for anyterms that are expensive to compute or small or both, and a Jacobian stored in half precision for supe-rior (nearly doubled) memory bandwidth, as measured in words per second, in the bandwidth-limitedlinear algebra routines of a sparse, unstructured PDE solver.2.4 Pseudo-Transient Newton-Krylov-SchwarzNKS is commonly robusti�ed with pseudo-transience (	NKS) [15, 21] or other continuation strategies.In 	NKS one solves F (x) = 0 through a series of modi�ed problemsH`(x) � x� x`�1�t` + F (x) = 0; ` = 1; 2; : : : ;each of which is solved (approximately) for x`. This sequence hugs a physical transient when �t` issmall, for which the associated diagonally dominant Jacobians are well conditioned. �t` is advancedfrom �t0 � 1 to �t` ! 1 as ` ! 1, so that x` approaches the root of F (x) = 0. Unlike manyrobusti�cation techniques, 	NKS does not require reduction in jjF (x)jj at each step; its ability to climbhills in the residual norm is useful in problems with complex physics, such as combustion, in which alocal minimum (e.g., extinction) may not be the physically desired one.2.5 Example from Computational AerodynamicsTo illustrate the e�ectiveness of NKS in practice, we quote below some performance data for a com-putational aerodynamics problem, which won a 1999 Gordon Bell prize [1]. The Euler equations weresolved on a tetrahedral unstructured grid for the ow over an ONERA M6 wing.The �nest-granularity decomposition consisted of 3072 subdomains on a grid of approximately 2.8Mvertices. Each subdomain was computed on a pair of Intel Pentium Pro processors (6144 processorsaltogether) on the ASCI Red machine at Sandia, which executed in shared-memory OpenMP mode onthe evaluation of F (x), while the linear algebra portions of the computation were left single-threadedon each node. Up to 0.227 Top/s were achieved; see [1, 14] for details.
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Figure 2: Execution time and aggregate op rate for 	NKS on incompressible Euler ow over an ON-ERA M6 wing, on a tetrahedral grid of 2,761,744 vertices, based on the KMeTiS-PETSc implementationof the NASA code FUN3D run on up to 3072 nodes of ASCI Red.
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3 Implications of NKS for OptimizationEquality constrained optimization leads, through the Lagrangian formulation, to a multivariate non-linear root�nding problem for the gradient (the �rst-order necessary conditions), which is amenable totreatment by Newton's method. To establish notation, consider the following canonical framework, inwhich we enforce equality constraints on the state variables only. (Design variable constraints requireadditional notation, and inequality constraints require additional algorithmics, but these generalizationsare well understood.) Choose m design variables u to minimize the objective function, �(u; x), subjectto n state constraints, h(u; x) = 0, where x is the vector of state variables. In the Lagrange framework,a stationary point of the Lagrangian functionL(x; u; �) � �(x; u) + �Th(x; u)is sought. When Newton's method is applied to the �rst-order optimality conditions, a linear systemknown as the Karush-Kuhn-Tucker (KKT) system arises at each step. There is a natural \outer"partitioning: the vector of parameters is often of lower dimension than the vectors of states and mul-tipliers. This suggests a Schur complement-like block elimination process at the outer level, not forconcurrency, but for numerical robustness and conceptual clarity. Within the state-variable subprob-lem, which must be solved repeatedly in the Schur complement reduction, Schwarz provides a natural\inner" partitioning for concurrency.A major choice to be made in the Newton approach to constrained optimization is between exactelimination of the states and multipliers by satisfying constraint feasibility at every step (reducedsystem), and progress in all variables simultaneously, possibly violating constraints on intermediateiterates (full system). An advantage of the former is the existence of high-quality, robust blackboxsoftware for this so-called reduced sequential quadratic programming (RSQP) approach. The advantagesof the latter are in reuse of high-quality parallel PDE software, the freedom to use inexact solves (since�nely resolved PDE discretizations in 3D militate against exact elimination), and the ease of applicationof automatic di�erentiation software, without having to di�erentiate through the nonlinear subiterationsthat would be implied by repeated projection to the constraint manifold in RSQP.We mention three classes of PDE-constrained optimization:� Design optimization (especially shape optimization): u parameterizes the domain of the PDE(e.g., a lifting surface) and � is a cost-to-bene�t ratio of forces, energy expenditures, and so forth.Typically, m is small compared with n and does not scale directly with it. However, m may stillbe several hundred in industrial applications.� Optimal control: u parameterizes a continuous control function acting on the surface of thedomain, and � is the norm of the di�erence between desired and actual responses of the system.Typically, m / n2=3.� Parameter identi�cation/data assimilation: u parameterizes an unknown continuous con-stitutive or forcing function de�ned throughout the domain, and � is the norm of the di�erencebetween measurements and simulation results. Typically, m / n.Written out in partial detail, the optimality conditions are@L@x � @�@x + �T @h@x = 0 ; (1)@L@u � @�@u + �T @h@u = 0 ; (2)@L@� � h = 0 : (3)Newton's method iteratively seeks a correction,0@ �x�u�� 1A to the iterate 0@ xu� 1A :5



With subscript notation for partial derivatives, the Newton correction (KKT) equations are24 (�;xx + �Th;xx) (�;xu + �Th;xu) hT;x(�;ux + �Th;ux) (�;uu + �Th;uu) hT;uh;x h;u 0 350@ �x�u�� 1A = �0@ �;x + �Th;x�;u + �Th;uh 1Aor 24 Wxx W Tux JTxWux Wuu JTuJx Ju 0 350@ �x�u�+ 1A = �0@ gxguh 1A ; (4)where Wab � @2�@a@b + �T @2h@a@b , Ja � @h@a , and ga = @�@a , for a; b 2 fx; ug, and where �+ = �+ ��.3.1 Newton Reduced SQPThe RSQP method [20] consists of a three-stage iteration. We follow the language and practice of [4, 5]in this and the next subsection.� Design Step (Schur complement for middle blockrow):H �u = f ;where H and f are the reduced Hessian and gradient, respectively:H � Wuu � JTu J�Tx W Tux + �JTu J�Tx Wxx �Wux� J�1x Juf � �gu + JTu J�Tx gx � �JTu J�Tx Wxx �Wux� J�1x h� State Step (last blockrow): Jx �x = �h� Ju �u� Adjoint Step (�rst blockrow):JTx �+ = �gx �Wxx �x�W Tux �uIn each overall iteration, we must form and solve with the reduced Hessian matrix H , and we mustsolve separately with Jx and JTx . The latter two solves are almost negligible compared with the costof forming H , which is dominated by the cost of forming the sensitivity matrix J�1x Ju. Because of thequadratic convergence of Newton, the number of overall iterations is few (asymptotically independentof m). However, the cost of forming H at each design iteration is m solutions with Jx. These arepotentially concurrent over independent columns of Ju, but prohibitive.In order to avoid computing any Hessian blocks, the design step may be approached in a quasi-Newton (e.g., BFGS) manner [20]. Hessian terms are dropped from the adjoint step RHS.� Design Step (severe approximation to middle blockrow):Q �u = �gu + JTu J�Tx gx ;where Q is a quasi-Newton approximation to the reduced Hessian� State Step (last blockrow): Jx �x = �h� Ju �u� Adjoint Step (approximate �rst blockrow):JTx �+ = �gx6



In each overall iteration of quasi-Newton RSQP, we must perform a low-rank update on Q or itsinverse, and we must solve with Jx and JTx . This strategy vastly reduces the cost of an iteration; however,it is no longer a Newton method. The number of overall iterations is many. Since BFGS is equivalentto unpreconditioned CG for quadratic objective functions, O(mp) sequential cycles (p > 0, p � 12 ) maybe anticipated. Hence, quasi-Newton RSQP is not scalable in the number of design variables, and noready form of parallelism can address this convergence-related defect.To summarize, conventional RSQP methods apply a (quasi-)Newton method to the optimality con-ditions: solving an approximate m�m system to update u, updating x and � consistently (to eliminatethem), and iterating. The unpalatable expense arises from the exact linearized analyses for updates tox and � that appear in the inner loop. We therefore consider replacing the exact elimination steps ofRSQP with preconditioning steps in an outer loop, as described in the next subsection.3.2 Full Space Lagrange-NKS MethodThe new philosophy is to apply a Krylov-Schwarz method directly to the (2n +m) � (2n +m) KKTsystem (4). For this purpose, we require the action of the full matrix on the full-space vector and agood full-system preconditioner, for algorithmic scalability. One Newton SQP iteration is a perfectpreconditioner|a block factored solver, based on forming the reduced Hessian of the Lagrangian H|but, of course, far too expensive. Backing o� wherever storage or computational expense becomesimpractical for large-scale PDEs generates a family of attractive methods.To precondition the full system, we need approximate inverses to the three left-hand side matricesin the �rst algorithm of Section 3.1, namely, H , J , and JT . If a preconditioner is available for H , andexact solves are available for J , and JT , then it may be shown [16] that conjugate gradient Kryloviteration on the (assumed symmetrizable) reduced system and conjugate gradient iteration on the fullsystem yield the same sequence of iterates. The iterates are identical in the sense that if one were to usethe values of u arising from the iteration on the reduced system in the right-hand side of the block rowsfor x and �, one would reconstruct the iterates of the full system, when the same preconditioner usedfor H in the reduced system is used for the Wuu block in the full system. Moreover, the spectrum of thefull system is simply the spectrum of the reduced system supplemented with a large multiplicity of uniteigenvalues. If one retreats from exact solves with J and JT , the equivalence no longer holds; however,if good preconditioners are used for these Jacobian blocks, then the cloud of eigenvalues around unityis still readily shepherded by a Krylov method, and convergence should be nearly as rapid as in thecase of exact solves.This Schur-complement-based preconditioning of the full system by was proposed in this equality-constrained optimization context by Biros and Ghattas in 1998 [4] and earlier in a closely relatedcontext by Batterman and Heinkenschloss [3]. From a purely algebraic point of view, the same Schur-complement-based preconditioning was advocated by Keyes and Gropp in 1987 [16] in the context ofdomain decomposition. There, the reduced system was a set of unknowns on the interface betweensubdomains, and the savings from the approximate solves on the subdomain interiors more than paidfor the modest degradation in convergence rate relative to interface iteration on the Schur complement.The main advantage of the full system problem is that the Schur complement never needs to be formed.Its exact action is felt on the design variable block through the operations carried out on the full system.Biros and Ghattas have demonstrated the large-scale parallel e�ectiveness of the full system algo-rithm on a 3D Navier-Stokes ow boundary control problem, where the objective is dissipation mini-mization of ow over a cylinder using suction and blowing over the back portion of the cylinder as thecontrol variables [5]. They performed this optimization with domain-decomposed parallelism on 128processors of a T3E, using an original optimization toolkit add-on to the PETSc [2] toolkit. To quoteone result from [5], for 6�105 state constraints and 9�103 controls, full-space LNKS with approximatesubdomain solves beat quasi-Newton RSQP by an order of magnitude (4.1 hours versus 53.1 hours).Two names have evolved for the new algorithm: Lagrange-Newton-Krylov-Schwarz was proposedby Keyes in May 1999 at the SIAM Conference on Optimization, and Lagrange-Newton-Krylov-Schurby Biros and Ghattas in [5]. The former emphasizes the use of NKS to precondition the large Jaco-bian blocks, the latter the use of Schur complements to precondition the overall KKT matrix. Both7



preconditioner su�xes are appropriate in a nested fashion, so we propose Lagrange-Newton-Krylov-Schur-Schwarz (LNKSS) when both preconditioners are used (see Fig. 3).
Lagrangeoptimizer Newtonnonlinear solver Krylovaccelerator Schursubspace precond. Schwarzsubdomain precond.Figure 3: LNKSS: A Parallel Optimizer for BVP-constrained ProblemsAutomatic di�erentiation has two roles in the new algorithm: formation of the action on a Krylovvector of the full KKT matrix, including the full second-order Hessian blocks, and supply of approxi-mations to the elements of J (and JT ) for the preconditioner. While the synergism of AD with LNKSSis in many ways obvious, advocacy of this novel combination is the primary thrust of the current paper.4 Example of LNKS Parameter Identi�cationThe e�ectiveness of Schwarz preconditioning is illustrated in the analysis context in Section 2.5. In thissection, we illustrate Schur preconditioning and automatic di�erentiation in the parameter identi�cationcontext. Schwarz and Schur techniques will be combined in a large-scale example from multidimensionalradiation transport in the future. The governing constraint for our one-dimensional problem is thesteady state version of the following radiation di�usion equation for material temperature:@T@t = r � (�(x)T� rT ): (5)Instead of solving the impulsive Marshak wave formulation of this problem, we ignore the time derivativeand impose Dirichlet boundary conditions of 1.0 and 0.1, respectively, on T (x) at the left- and right-hand endpoints of the unit interval. The resulting ODE boundary value problem is discretized withcentered �nite di�erences. The state variables are the discrete temperatures at the mesh nodes, andthe design variables are the parameters � and �(x). The cost function is temperature matching,�(u; T ) = 12 jjT (x) � �T (x)jj2, where �T is based on a given �, �(x) pro�le. These parameters arespeci�ed for the computation of �T (x), and then \withheld," to be determined by the optimizer. Moregenerally, �T (x) would be a desired or experimentally measured pro�le, and the phenomenological lawand material speci�cation represented by � and �(x) would be determined to �t. The Brisk-Spitzer formof the nonlinear dependence of the di�usivity on the temperature is � = 2:5. For �T we assume a jumpin material properties at the midpoint of the interval: �(x) = 1; 0 � x � 12 and �(x) = 10; 12 < x � 1.Our initial implementation of LNKS is in the software framework of MATLAB [18] and ADMAT[12]. ADMAT is an automatic di�erentiation framework for MATLAB, based on operator overloading.After an m-�le is supplied for the cost function and constraint functions, all gradients, Jacobians, andHessians (as well as their transposes and their contracted action on vectors) used anywhere in the LNKSalgorithm are computed automatically without further user e�ort. There is one exception in the currentcode: our almost trivial cost function (with no parametric dependence and separable quadratic statedependence) is di�erentiated by hand, yielding an identity matrix for �xx. Our preconditioner is theRSQP block factorization, except that the reduced Hessian preconditioner is replaced with the identity.The reduced Hessian preconditioner block should be replaced with a quasi-Newton reduced Hessian inthe future. In the present simple experiments, Newton's method is used without robusti�cation of anykind. Figure 4 shows how the optimizer eventually �nds the values of 2.5 for � and 10 for �right � �(x)8
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Figure 4: Left: Four convergence histories for (�; �right) merged into one plot. Right: KKT normconvergence history for the parameter identi�cation problem with initial iterate based on � = 0:5,�right = 1:5.in the interval 12 � x < 1, from four di�erent starting points of (0:5; 1:5); (0:5; 12); (2:8; 8) and (2:9; 15).A sample convergence history for the norm of the residual of (1){(3) shows quadratic behavior.Shown in Fig. 5 are initial and �nal distributions of T (x) for � and �right displaced as in Fig. 4 in alldirections away from the \true" values of (2:5; 10). The left-hand graphs show the \true" temperaturepro�le to be matched (the curve common to all four plots) and the equilibrium temperature pro�leat the initial values of the parameters. Within each half-interval, the temperature gradient is sharperon the right (smaller values of T (x)), since the heat ux across every station is the same and thetemperature-dependent di�usion coe�cient factor inside the divergence operator of (5) is smaller inzones of smaller temperature. In regions with a larger �-factor, the overall average temperature dropis smaller by the same reasoning. Small � suppresses the nonlinear dependence of the di�usivity ontemperature, so the initial temperature pro�les are nearly linear within each constant-� region in the�rst two plots. Only in the �rst case is the approach to the true (�; �right) monotonic, but plain Newtonis robust enough to converge from all quadrants.5 Complexity of Automatic Di�erentiation-based LNKSAlthough our demonstration example is low dimensional, LNKS will generally be applied to largeproblems of n state variables and m parameters. Upon surveying existing AD tools, we concludethat the preconditioned matrix-vector product can be formed in time linear in these two parameters.The shopping list of matrix actions in forming the preconditioned Jacobian-vector product of LNKS isWxx;Wuu;Wux, W Tux, Ju, JTu , J�1x , J�Tx , and H�1.The �rst six are needed in the full-system matrix-vector multiplication. For this multiplication werequire \working accuracy" comparable to the state of the art in numerical di�erentiation.Accurate action of the last three is required in RSQP but not in the full system preconditioner. Werecommend approximate factorizations of lower-quality approximations, including possibly justWuu forH , or a traditional quasi-Newton rank-updated approximation to the inverse.We estimate the complexity of applying each block of the KKT Jacobian, assuming only that h(x; u)is available in subroutine call form and that all di�erentiated blocks are from AD tools, such as theADIC [6] tool we are using in a parallel implementation of LNKSS. We assume that Jx is needed,element by element, in order to factor it; hence, JTx is also available. Since these are just preconditionerblocks, we generally derive these elements from a di�erent (cheaper) function call for the gradient of theLagrangian than that used for the matvec. De�ne Ch, the cost of evaluating h; px, 1 + the chromaticnumber of Jx � h;x; and pu, 1 + the chromatic number of Ju � h;u. Then the costs of the Jacobianobjects are shown in the �rst three rows of Table 2.9
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Figure 5: Initial and �nal temperature distributions for the radiation di�usion example with a startingpoint in each quadrant relative to the pro�le-matching parameters for (�; �right) = (2:5; 10): upper left(0:5; 1:5), upper right (0:5; 12), lower right (2:8; 8), lower right (2:9; 15).For the Hessian arithmetic complexity, we estimate the cost of applying each forward block to avector. Assume that h(x; u) and �(x; u) are available and that all di�erentiated blocks are resultsof AD tools. De�ne C�, the cost of evaluating �; q, 1 + number of nonzero rows in �00; and r, animplementation-dependent \constant," typically ranging from 3 to 100. Then the cost of the Hessian-vector products can be estimated from the last two rows of Table 2.For the inverse blocks, we need only low-quality approximations or limited-memory updates [9] ofthe square systems J�1x , J�Tx , and H�1.The complexities for all operations required to apply the full-system matrix-vector product and itspreconditioner are at worst linear in n or m, with coe�cients that depend upon chromatic numbers(a�ected by stencil connectivity and intercomponent coupling of the PDE, and by separability structureof the objective function) and the implementation e�ciency of AD tools.Table 2: Complexity of formation of matrix objects or matrix-vector actions using forward or hybridmodes of modern automatic di�erentiation software. The asterisk signi�es that the reverse mode con-sumes memory, in a carefully drawn time-space trade-o�, so r is implementation dependent.Object Cost: Forward Mode Cost: Fastest (Hybrid) ModeJx; JTx pxCh pxChJuv 2Ch 2ChJTu v puCh rCh�Wxxv;W Tuxv pxCh + qC� r(Ch + C�)�Wuuv;Wuxv puCh + qC� r(Ch + C�)�10



6 Summary and Future PlansAs in domain decomposition algorithms for PDE analysis, partitioning in PDE-equality constrainedoptimization may be used to improve some combination of robustness, conditioning, and concurrency.Orders of magnitude of savings may be available by converging the state variables and the designvariables within the same outer iterative process, rather than a conventional SQP process that exactlysatis�es the auxiliary state constraints.As with any Newton method, globalization strategies are important. These include parameter con-tinuation (physical and algorithmic), mesh sequencing and multilevel iteration (for the PDE subsystem,at least; probably for controls, too), discretization order progression, and model �delity progression.The KKT system appears to be a preconditioning challenge, but an exact factored preconditioner isknown, and departures of preconditioned eigenvalues from unity can be quanti�ed with comparisonsof original blocks with blockwise substitutions in inexact models and solves. (For the full system, theKKT matrix will be nonnormal, so its spectrum does not tell all.)With the extra, but automatable, work of forming Jacobian transposes and Hessian blocks, but noextra work in Jacobian preconditioning, any parallel analysis code may be converted into a paralleloptimization code|and automatic di�erentiation tools will shortly make this relatively painless.The gamut of PDE solvers based on partitioning should be mined for application to the KKTnecessary conditions of constrained optimization and for direct use in inverting the state Jacobianblocks inside the optimizer.We expect shortly to migrate our ADMAT/MATLAB code into the parallel ADIC/PETSc frame-work, while increasing physical dimensionality and parameter dimensionality. We will also tune thenumerous preconditioning parameters for optimal parallel execution time. In the multidimensionallarge-scale context, we will incorporate multilevel Schwarz linear preconditioning for spatial Jacobian.Following the recent invention of the additive Schwarz preconditioned inexact Newton (ASPIN) [11], wewill also experiment with full nonlinear preconditioning of the KKT system. This could include indi-vidual discipline optimizations as nonlinear preconditioner stages in a multidisciplinary computationaloptimization process|a key engineering (and software engineering) challenge of the coming years.AcknowledgmentsWe acknowledge important discussions on algorithmics with George Biros (CMU), Xiao-Chuan Cai (UC-Boulder), Omar Ghattas (CMU), Xiaomin Jiao (UIUC), Tim Kelley (NCSU), Michael Wagner (ODU), andDavid Young (Boeing); on applications with Kyle Anderson (NASA Langley), Frank Graziani (LLNL), DanaKnoll (LANL), and Carol Woodward (LLNL); and on software with Satish Balay, Bill Gropp, Dinesh Kaushik,Barry Smith (all of Argonne) and Arun Verma (Cornell). This work was supported by the MICS subprogram ofthe O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy under Contract W-31-109-Eng-38; by Lawrence Livermore National Laboratory under ASCI Level-2 subcontract B347882 to Old DominionUniversity; by NASA under contract NAS1-19480 (while the second author was in residence at ICASE); and bythe NSF under grant ECS-8957475. Computer facilities were provided by the DOE ASCI Alliance Program.References[1] W. K. Anderson, W. D. Gropp, D. K. Kaushik D. E. Keyes, and B. F. Smith. Achieving highsustained performance in an unstructured mesh CFD application. In Proceedings of SC'99. IEEEComputer Society, 1999. Gordon Bell Prize Award Paper in the \Special" Category.[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. The Portable Extensible Toolkit forScienti�c Computing (PETSc), version 28. http://www.mcs.anl.gov/petsc/petsc.html, 2000.[3] A. Battermann and M. Heinkenschloss. Preconditioners for Karush-Kuhn-Tucker matrices arisingin optimal control of distributed systems. Technical Report TR96-34, Department of Computa-tional and Applied Mathematics, Rice University, 1996.11
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